ebook img

Galactic cold cores II. Herschel study of the extended dust emission around the first Planck detections PDF

1.6 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Galactic cold cores II. Herschel study of the extended dust emission around the first Planck detections

Astronomy&Astrophysicsmanuscriptno.15916 (cid:13)c ESO2011 January18,2011 Galactic cold cores II. Herschel study of the extended dust ⋆ ⋆⋆ emission around the first Planck detections M.Juvela1,I.Ristorcelli2,V.-M.Pelkonen3,D.J.Marshall2,L.A.Montier2,J.-P.Bernard2,R.Paladini3,T.Lunttila1,A. Abergel4,Ph.Andre´5,C.Dickinson6,X.Dupac7,J.Malinen1,P.Martin8,P.McGehee3,L.Pagani9,N.Ysard1,A. Zavagno10 1 DepartmentofPhysics,P.O.Box64,FI-00014,UniversityofHelsinki,Finland,mika.juvela@helsinki.fi 2 CESR,ObservatoireMidi-Pyre´ne´es(CNRS-UPS),Universite´deToulouse,BP44346,31028ToulouseCedex04,France 1 3 IPAC,Caltech,Pasadena,USA 1 4 IAS,Universite´Paris-Sud,91405Orsaycedex,France 0 5 LaboratoireAIM,CEA/DSMCNRSUniversite´ParisDiderot,IRFU/Serviced’Astrophysique,CEASaclay,91191Gif-sur-Yvette, 2 France 6 JodrellBankCentreforAstrophysics,UniversityofManchester,OxfordRoad,Manchester,M139PL,U.K. n 7 EuropeanSpaceAgency,EuropeanSpaceAstronomyCentre,VillanuevadelaCan˜ada,Madrid,Spain a 8 CanadianInstituteforTheoreticalAstrophysics(CITA),60St.GeorgeSt.,TorontoONM5S3H8,Canada J 9 LERMA&UMR8112duCNRS,ObservatoiredeParis,61Av.del’Observatoire,75014Paris,France 5 10 Laboratoired’AstrophysiquedeMarseille,38rueF.Joliot-Curie,13388MarseilleCedex13,France 1 ReceivedSeptember15,1996;acceptedMarch16,1997 ] A ABSTRACT G Context. WithintheprojectGalacticColdCoreswearecarryingoutHerschelphotometricobservationsofcoldinterstellarclouds . h detectedwiththePlancksatellite.ThethreefieldsobservedaspartoftheHerschelsciencedemonstrationphase(SDP)providedthe p firstglimpseintothenatureofthesesources.Theaimoftheprojectistoderivethephysicalpropertiesofthefullcoldcorepopulation - revealedbyPlanck. o Aims. WeexaminethepropertiesofthedustemissionwithinthethreefieldsobservedduringtheSDP.Wedeterminethedustsub- r millimetre opacity, look for signs of spatial variations in the dust spectral index, and estimate how the apparent variations of the t s parameterscouldbeaffectedbydifferentsourcesofuncertainty. a Methods. WeusetheHerschelobservationswherethezeropointofthesurfacebrightnessscaleissetwiththehelpofthePlanck [ satellitedata.Wederivethecolourtemperatureandcolumndensitymapsoftheregionsanddeterminethedustopacitybyacom- parisonwithextinctionmeasurements.Bysimultaneouslyfittingthecolourtemperatureandthedustspectralindexvalueswelook 1 forspatialvariationsintheapparentdustproperties.Withasimpleradiativetransfermodelweestimatetowhatextentthesecanbe v explainedbyline-of-sighttemperaturevariations,withoutchangesinthedustgrainproperties. 3 Results. TheanalysisofthedustemissionrevealscoldanddensecloudsthatcoincidewiththePlancksourcesandconfirmthose 0 detections.Thederiveddustopacityvariesintherangeκ(250µm) ∼0.05–0.2cm2g−1,highervaluesbeingobservedpreferentially 0 inregionsofhighcolumndensity.Theaveragedustspectralindexβis∼1.9–2.2.Thereareindicationsthatβincreasestowardsthe 3 coldestregions.Thespectralindexdecreasesstronglynearinternalheatingsourcesbut,accordingtoradiativetransfermodels,this . 1 canbeexplainedbytheline-of-sighttemperaturevariationswithoutachangeinthedustproperties. 0 1 Keywords. ISM:clouds–Infrared:ISM–Submillimeter:ISM–dust,extinction–Stars:formation–Stars:protostars 1 : v 1. Introduction pendencies,weneedtostudyalargesampleofmolecularclouds i X andthepre-stellarcoreswithinthem.Themolecularlinesarea Amajorquestioninstarformationstudiesishowthemainfea- r central tool in the study of molecular clouds. However, in the a tures of the process depend on the initial conditions in cold cloudcoresmanymoleculeshavefrozenontodustgrainsmak- molecularclouds. The masses of the formedstars, the star for- ing it difficultto carryout quantitativeanalysis with molecular mationefficiency,thedifferencesbetweenclusteredandisolated line data alone (e.g., Kramer et al. 1999). One has to resort to star formation, and the timescales are all closely linked to the observationsof the dust componentof the clouds, either using propertiesofdensecloudcores.Inordertounderstandthesede- theextinctionorthedustemissionasatracerofthemassdistri- bution. ⋆ Planck (http://www.esa.int/Planck) is a project of the European TherecentlylaunchedHerschelandPlancksatellitesrepre- Space Agency – ESA – with instruments provided by two scientific sentasignificantstepforwardinsub-millimeterstudiesbyelim- consortia funded by ESA member states (in particular the lead coun- inatingtheatmosphericeffectsfromobservations.Thesatellites tries:FranceandItaly)withcontributionsfromNASA(USA),andtele- enablesensitivemeasurementsofthedustemissionin Galactic scopereflectorsprovidedinacollaborationbetweenESAandascien- tificConsortiumledandfundedbyDenmark. interstellar clouds, Planck over the whole sky and Herschel in ⋆⋆ Herschel is an ESA space observatory with science instruments smallerregionsbutwithhigherangularresolution.Thesatellites providedbyEuropean-ledPrincipalInvestigatorconsortiaandwithim- providethe complementarityneeded for a study of a full cross portantparticipationfromNASA. sectionoftheGalacticcoldcorepopulation.Becauseofitshigh 2 M.Juvelaetal.:GalacticcoldcoresII.HerschelstudyoftheextendeddustemissionaroundthefirstPlanckdetections Table1.Theobservedfields Likethespectralindex,alsotheabsolutevalueofthedustab- sorptioncrosssection, κ, is expectedto be variable.Thiscould Target RA(J2000) DEC(J2000) Mapsize(PACS/SPIRE) becausedbyachangeintheabundanceofdifferentdustpopula- PCC249 222117.6 +634225 50′/50′ tions,achangeinthegrainsizedistribution(see,e.g.,Steinacker PCC288 225331.3 +623144 18′/30′ etal.2010),orachangeinthecompositionofindividualgrains. PCC550 122516.5 −714603 18′/30′ Forthesub-millimetreobservations,theeffectsshouldagainbe strongestindenseandcoldregionswherethegrainsacquireice mantles and may more easily coagulate to form larger grains withκvaluesupto3–4timeshigher(e.g.,Ossenkopf&Henning sensitivity and the coverage of the sub-millimetre wavelengths 1994, Krugel & Siebenmorgen 1994, Stepnik et al. 2003). An dominatedbycolddustemission,thePlanck all-skymapspro- errorinκautomaticallytranslatestoasimilarfractionalerrorin vide an unbiased census of cold dust clouds and, in particular, themassestimates.Theabsolutevalueofκ isnoteasytomea- ofcompactpre-stellarcloudcores.Thesurveyofcoldcompact surebecauseitrequiresanindependentcolumndensityestimate dustcloudsisoneofthegoalsintheGalacticscienceprogramme thatisequallyormorereliableovertheA rangeforwhichsub- V ofPlanck.IntheHerschelOpenTimeKeyProgrammeGalactic millimetreobservationsexist. ColdCores,weusetheHerschelPACSandSPIREinstruments Inthispaperwestudythesequestionswiththehelpofpho- to map aboutone hundredtargetfields that are selected on the tometricHerschelobservations.Westartbyderivingthecolour basis of the Planck survey. This study was begun during the temperature (Sect. 3.1) and column density (Sect 3.2) maps of HerschelScienceDemonstrationPhase(SDP)whenthreefields the threeSDP fields. This firstanalysisis donewith a constant wereobserved. valueofthespectralindexβ.InSect.3.3weproceedtostudythe ThemainfeaturesofthecompactsourcesfoundintheSDP evidenceforvariationsinthedustspectralindex.Withsimulta- fieldswerereportedinJuvelaetal.(2010).Inthispaperwecon- neous fits of colour temperature and β, we calculate maps of centrateonthedustemissionatlargescales.Weareinterestedin theapparentspectralindexpayingspecialattentiontotheerror thecloudproperties,theirtemperatureandcolumndensitydistri- sourcesthatcouldaffecttheobtainedvaluesorthemorphology butions.However,wealsowanttostudythedustcomponentit- of the β maps. By comparingthe results with the near-infrared self.Thesearenotunrelatedquestionsbecausethederivedcloud reddeningof backgroundstars, we calculate maps of dust sub- massesdependontheassumptionsofthedustopacityandspec- millimetreopacity(Sect.3.4).Tocomplementthisanalysis,we tralindex.Conversely,thevariationsindustpropertiesshouldbe presentinSect.4asimpleradiativetransfermodelforthefield relatedtothephysicalconditionswithintheclouds. PCC288 and use the results to estimate the difference between Thedustspectralindexanditstemperaturedependencehave theapparentβandtherealspectralindexofthedustgrains.After received much attention because they provide additional infor- adiscussioninSect.5wepresentourfinalconclusionsinSect.6. mationonthechemicalcomposition,structure,andthesizedis- tributionof interstellardustgrains(e.g.,Ossenkopf&Henning 2. Observations 1994; Krugel & Siebenmorgen 1994; Mennella et al. 1998; Boudetet al. 2005; Me´ny et al. 2007; Compie`gne et al. 2011). ThePlancksatelliteisperformingallskysurveysatninewave- The observations consistently show an inverse T − β relation lengths between 350µm and 1cm (Tauber et al. 2010). With (e.g., Dupac et al. 2003, Hill et al. 2006, Venezianiet al. 2010 the detection methodsdescribed in Montier et al. (2010), three and the initial Herschel results including Anderson et al. 2010 target fields were selected from the Planck First Light Survey andRodonetal.2010).However,thereliabilityofthisrelation (see Table 1) for photometric observations with the Herschel is notoriouslydifficultto estimate because anynoisepresentin PACS and SPIRE instruments (for details about Herschel, see the measurementsproducesa similar anticorrelation(Schwartz Pilbrattetal.2010,Poglitschetal.2010,andGriffinetal.2010). etal.1982,Dupacetal.2003,Shettyetal.2009a).Shettyetal. The Herschel observations were performed in November and (2009b)studiedtheimportanceofobservationalnoiseandtem- December 2009. The field PCC249 was observed in the par- peraturevariationsonthereliabilityofthederiveddustproper- allel mode and the fields PCC288 and PCC550 in the normal ties. In the presenceof line-of-sighttemperaturevariations,the scanmapping,oneinstrumentatatime(seeJuvelaetal.2010). observeddustspectralindexβwillunderestimatetherealspec- ThefieldsareshowninFig. 1. Thedatawere reducedwith the tralindexofthedustgrains.Theestimatedcolourtemperatures Herschel Interactive Processing Environment (HIPE) v.2. The are not onlybiased towardsthe warm regionsbut, for example PACSmapswerecreatedusingthemadmapalgorithm.Thepro- inthetwocomponentmodelsofShettyetal.(2009b),couldbe cessing includessome highpass filtering.In orderto minimize even higher than any of the real dust temperatures. Similar re- theremovaloflargescalestructure,thelengthofthefilterwin- sults were obtained by Malinen et al. (2011) who studied syn- dowwaskeptequaltothescanlength.TheSPIREmapsarethe theticobservationsproducedbycombiningMHDmodellingand product of direct projection onto the sky and averaging of the radiativetransfercalculations.Theyconcludedthatthepresence timeordereddata. ofprotostellarradiationsourcescanfurtherincreasethebiasin In order to study dust properties over the whole fields we theobservedβvaluesandcanproduceanapparentinverseβ–T needtoestablishazeropointfortheintensityscales.Weusethe relationthatisdifficulttoseparatefromanyintrinsicrelationthe Planckmaps(datareleaseDX4,availablewithinthePlanckcore dustgrainsmayhave.Malinenetal.(2011)alsonotedthatwhen teams) at 350µm and 550µm and the Improved Reprocessing thespectralindexvariesoverthe wavelengthrangeincludedin oftheIRASSurvey(IRIS,Miville-Deschenes&Lagache2005) thespectralenergydensity(SED)fit,thederivedspectralindex maps at 100µm. The highest frequency Planck channels have can rise even above the real β(λ) of the dust anywhere in that beencalibratedwithFIRAS(Piatetal.2002)andtheIRISdata interval. Because an error in the spectral index is always asso- havebeencalibratedaccordingtoDIRBE.Whennecessary,we ciatedwithacompensatingerrorinthetemperature,thisaffects interpolate these reference data for the Herschel bands using a themassestimatesandcouldevenbiasthederiveddensitypro- modifiedblackbodycurve B ν2 fitted tothe nearesttwowave- ν filesofcompactobjects. lengthpoints. M.Juvelaetal.:GalacticcoldcoresII.HerschelstudyoftheextendeddustemissionaroundthefirstPlanckdetections 3 Table2.Theuncertaintiesofthemapzerolevels 3. Observationalresults In this section we presentthe colourtemperature,columnden- Target Wavelength Zeroleveluncertainty (µm) MJysr−1 sity,andspectralindexmaps.Therelationbetweentheseandthe intrinsicdustpropertiesisdiscussedinthelatersections. PCC288 100 14.3 160 10.3 250 3.1 3.1.Colourtemperaturemaps 350 1.2 500 0.4 The colour temperature maps of the large grain emission were PCC550 100 0.81 estimated using the 100µm, 160µm, 250µm, 350µm, and 160 1.41 500µm observations.Thecolourtemperatureswerefirst calcu- 250 0.43 350 0.23 lated with a constant value of the spectral index, β = 2.0. The 500 0.08 validity of this approximation is investigated in Sect. 3.3. The PCC249 100 4.4 useofaconstantβcanbejustifiedevenwhentheassumptionis 160 2.6 notstrictlytruebecauseitenablesmorerobustestimationofone 250 2.9 colourtemperaturethatcharacterizesthefields.Asdiscussedin 350 0.7 Sect.4,thecolourtemperatureisoftenanimprecisetracerofthe 500 0.21 physicaldusttemperatures. 1Zerolevelcalculatedusingmapaverages. All data were smoothed to the resolution of the SPIRE 500µm map (37′′) using a Gaussian kernel. As discussed in Sect.2,thedeterminationofthezeropointsofthesurfacebright- ness scales and the correction for the VSG contribution were The 100µm band contains a contribution from very small doneiterativelytogetherwiththecalculationofthecolourtem- grains (VSG). The effect is approximately similar in the IRIS peratures. In the fit the relative weight of the data are set as- and PACS 100µm bands and does not affect the calibration suming 10%uncertaintyfor the SPIRE and 20%for the PACS comparisonat that wavelength.However,the presenceof VSG measurements.ThetemperaturemapsareshowninFig.2. at 100µm could bias the values interpolated to 160µm and 250µm. Therefore, before the interpolation, we subtract from the IRIS 100µm data the VSG contributionestimated with the 3.2.Columndensitymaps De´sertetal.(1990) dustmodel.Theradiationfieldisscaledso that the model reproducesthe observed temperature of the big Thecolumndensitieswerecalculatedusingthemodifiedblack- grains(BG)thatdominatetheemissionwavelengthslongerthan bodyfitsthatresultedinthecolourtemperaturemapsofFig.2. 100µm.ThepredictedratioofVSGandBGemissionat100µm Like the spectral index, the dust absorption cross section may is used to correct the IRIS data. Because the ratio depends on varyfromregiontoregionbuttheanalysiswasperformedusing theestimatedBG temperature,thecorrectionhastobedoneit- a constant value of κ850=0.02cm2g−1 (see Juvela et al. 2010). eratively. Finally, we do a least squares fit to Herschel surface With a ν2 dependence this corresponds to κ250=0.23cm2g−1. brightness (convolved to a resolution of 4.3′) vs. Planck/IRIS The column density maps are presented in Fig. 3 where we andusetheoffsettosetthezeroleveloftheHerschelmapswhile alsoshow9arcmindiametercirclesaroundthepositionsofthe keeping the original gain calibration. For the PCC550 PACS Planckdetections.ThesewereusedinJuvelaetal.(2010)toes- observations the fits remained uncertain because of the small timatethemassesoftheregions. amountofsurfacebrightnessvariation.Inthiscasethezeropoint The column densities were transformed into mass with the wasestimatedusingthedifferenceintheaveragesurfacebright- distances adopted by Juvela et al. (2010), 800pc, 225pc, and ness rather than the extrapolation to zero Planck/IRIS surface 800pc forPCC288, PCC550,andPCC249,respectively.Inthe brightness. sameorder,thetotalmassesoftheareasdisplayedinFig.3are InthecomparisonbetweenPlanckandIRIS,thedatashould ∼890M⊙,∼31M⊙,and∼3800M⊙.Themassesabovethegiven be colour correctedbecause this could affect the quality of the columndensitycontours,andinsidethe9arcminapertures,are leastsquaresfit.Thecolourcorrectionswerecalculatedformod- listed in Table 3. The statistical errors are small and the mass ifiedblackbodyspectraB (T)ν2 thatwerefittedtotheobserva- uncertaintyis dominatedby the uncertaintiesof the calibration ν tions after a preliminary estimation of the zero points. All ob- (∼10%),thedustopacity(up to a factorof two), andthe cloud servations, including Planck and IRIS data, were colour cor- distance(typically∼30%correspondingto a∼50%uncertainty rected before repeating the least squares fits. The corrections inthemass. can be applied consistently only if the offsets of the Herschel andPlanck/IRISmapsarealreadycorrectandthereforealsothis 3.3.Dustspectralindex correctionneedstobedoneiteratively.However,thecolourcor- rectionsareless than10%,anda sufficientaccuracyisreached The 100µm–500µm data were also fitted with modifiedblack- alreadyontheseconditeration.Thesubsequentanalysiswascar- bodycurvesB (T)νβkeepingboththecolourtemperatureT and ν riedoutusingthesecolourcorrectedobservations. thespectralindexβasfreeparameters.Wemaskedoutthebor- The statistical uncertainties of the offsets were estimated dersofthemaps(∼3′)andthenorthernendofthefieldPCC288 withthebootstrapmethodandarelistedinTable2.Theuncer- wherethecolumndensitymapandthemapofdustopacity(see taintiesareoftheorderof1MJysr−1 butsmalleratthelongest Sect. 3.4 and Sect. 5.3) show a suspicious feature. The colour wavelengths with the lowest surface brightness. The error es- temperatureandspectralindexmapsareshowninFig.4andrep- timates are larger for the PACS channels apart from the field resentativeSEDsinFig.5.Themedianvaluesofβare2.21,2.21, PCC550 where, as explainedabove, the quoted offsets are cal- and1.86forPCC288,PCC550,andPCC249,respectively.The culatedusingaveragesurfacebrightnessvalues. samefitswithoutthe100µmdataareshowninAppendixB.2. 4 M.Juvelaetal.:GalacticcoldcoresII.HerschelstudyoftheextendeddustemissionaroundthefirstPlanckdetections T(K) T(K) T(K) 15 17 15 17 17 19 PCC288 PCC550 PCC249 64d 00’ 62d 40’ -71d 40’ 0) 0 0 2J 62d 30’ ( δ -71d 50’ 63d 30’ 62d 20’ 22h 54m 22h 52m 12h 26m 12h 24m 22h 25m 22h 20m α(J2000) α(J2000) α(J2000) Fig.2. DustcolourtemperaturemapsforthethreeSDPfields.Thecalculationsassumeafixedvalueofthespectralindex,β=2.0. Themapresolutionis∼37′′andthecontoursaredrawnoneKelvinapart. N(H)(cm-2) N(H)(cm-2) N(H)(cm-2) 21.6 21.9 22.2 22.5 21.0 21.3 21.6 21.9 21.3 21.6 21.9 22.2 PCC288 PCC550 PCC249 62d 40’ 64d 00’ -71d 40’ P1 0) P P1 0 0 2 (J 62d 30’ δ P2 -71d 50’ 63d 30’ P2 62d 20’ 22h 54m 22h 52m 12h 26m 12h 24m 22h 25m 22h 20m Fig.3. MapsofthehydrogencolumndensityN(H)derivedwiththecolourtemperaturemapsofFig.2.Themapshavearesolution of∼37′′andthecontoursaredrawnatlevelswherelog N(H)equals21.5,21.8,and22.1.Thecirclesshowthe9arcminapertures 10 usedinJuvelaetal.(2010). Table3.Themassestimatesoftheobservedfieldsorpartsofthe peratureandspectralindexmaps.Thewavelengthswerechosen fieldsthataredefinedbyacolumndensitylimitorcorrespondto becausetheirrelativeintensitiesareimportantindeterminingthe 9arcminapertures(regionsP,P1,andP2). spectralindex.Themapoffsetswerefirstchangedbythevalues listed in Table 2 and the surface brightness values were scaled Field Region Mass(M⊙) correspondingtoa10%gainuncertainty.Thechangesatthetwo PCC288 fullfield 1108 wavelengthswere made in opposite directionsin orderto have log N >21.8 785 themaximumeffectinthederivedβvalues.Byapplyingthe∼1σ 10 log10N >22.1 242 shiftsbothinthegainandintheoffsetandatbothwavelengths P 288 simultaneously,weshouldgetaconservativeestimateoftheun- PCC550 fullfield 36.2 certainties. In Fig. 6, the resulting shifts of the observed (T,β) log N >21.8 13.9 10 pairsareshownforthethreerandompixels.Thefullmapsofthe P1 12.2 maximum and minimum β values are shown in the Appendix, P2 11.3 Sect.B.1. PCC249 fullfield 3802 log N >21.8 1763 10 log N >22.1 627 10 3.4.Dustopacity P1 252 P2 259 We calculated extinction maps at a 1.5′ resolution using stars fromtheTwoMicronAllSkySurvey(2MASS,Skrutskieetal. 2006) and the NICER method (Lombardi& Alves 2001). The InFig.6weshowtherelationsbetweenthederivedspectral values of A are obtained from NIR colour excess assuming V indicesandthecolourtemperatures.Forthreerandomlyselected anextinctionlawwithR =3.1.Thezeroleveloftheextinction V pixels,theblackcontoursshowwheretheχ2 valueofthe SED was setwith the Schlegeletal. (1998) extinctionmap.The ex- fithasdoubledfromitsminimumvalue. tinctionestimatesenableusto estimate thesub-millimetredust To getthe first idea of the possible effect of the calibration opacity relative to the visual extinction. The extinction is con- uncertainty,wecomparedtwocaseswhereweadderrorstothe vertedto totalISM masswith the Bohlin etal. (1978) relation, 250µm and the 500µm maps and recalculate the colour tem- N(HI+H )∼1.87×1021A thatismultipliedby1.4m toac- 2 V H M.Juvelaetal.:GalacticcoldcoresII.HerschelstudyoftheextendeddustemissionaroundthefirstPlanckdetections 5 4.0 4.0 PCC288 PCC550 3.5 3.5 3.0 3.0 2.5 2.5 β β 2.0 2.0 1.5 1.5 1.0 1.0 0.5 0.5 10 15 20 25 10 15 20 25 T(K) T(K) Fig.6. Theobservedtemperaturedependenceofthespectralindexin thethreefields.Thevaluesareshownforindividualpixels (greendots).Forthreeselectedpixels,theblackcontoursshowthelimitatwhichtheχ2 valueoftheSEDfithasdoubledfromits minimumvalue.Forthesamepixelsthesmallersymbols(joinedwithsolidlines)showtheextremevaluesallowedbythecalibration uncertainty(seetext).Theerrorregionsfortheseextremecasesaredrawnwithdashedanddash-dotlines. countforthemassofhelium.Theconversionisdoneforeasier strength of the ISRF were scaled so that the surface brightness comparisonwiththeliteraturebuttheconversionfactoritselfis levelsmatchtheobservationsofPCC288to∼30%. appropriatemainlyfordiffusemediumandmayvaryacrossthe fields. Figure 7 shows the 250µm opacity maps derived from Because the proper handling of regions near the internal the SED fits done with β = 2.0. The median values in the sourcesrequireshighspatialresolution,themodelwassampled fields PCC288, PCC550, and PCC249 are 0.11, 0.064, and onto a hierarchical grid with the smallest cell size correspond- 0.061cm2g−1. The opacities obtained with fixed value of β = ing to the resolution of 10243 uniformgrid. The dust tempera- 2.0 and the free β are identical to within 20%. In the cen- turedistributionsweresolvedwitha radiativetransferprogram tral part of PCC288 the values rise close to κ(250µm) ∼0.22 thatisbasedonourMonteCarlocode(Juvela&Padoan2003) while in the northern colder region of PCC249 (corresponding but has been adapted for use with hierarchical grids (Lunttila tothePlanckdetectionP1)thepeakvalueisevenhigher,above et al., in preparation). The obtained surface brightness maps ∼0.3cm2g−1.ThevalueusedforthemassestimatesinSect.3.2 at 160µm, 250µm, 350µm, and 500µm were analysed to de- was 0.23cm2g−1. This is clearly above the median values but rivecolourtemperatureandspectralindexmaps.Noisewasnot roughly consistent with the values associated with the highest added to the synthetic observations and all wavelengths were column densities. However, in the field PCC550 the values re- given equal weight in the (T, β) fitting. The results are shown main everywherebelow κ(250µm) =0.12cm2g−1. Our typical inFig. 8wherethe threeinternalsourcesareclearlyvisible(in opacity of 0.1cm2g−1 corresponds to τ(250µm)=2.3×10−25/H, orderofincreasingluminosityfromWesttoEast).Thelefthand slightly more than twice the value found in diffuse medium frameshowsthedifferencebetweentheobservedcolourtemper- (Boulangeretal.1996). atureandthemassweightedaverageofthetruetemperature.In the regionshown,the dusttemperatureis overestimatedbybe- 4. RadiativetransfermodelofPCC288 tween∼0.25Kinthemostdiffuseareasand∼8Kattheposition of the strongest source. The median error is ∼0.8K. An error To find out the level at which temperature variationsalong the in the temperatureis associated with an oppositechangein the line-of-sight may bias the observed values of the spectral in- spectral index.In a fit with a fixed value of β = 2, the median dex and the dust temperature, we made a simple model of the error would be only 0.4K. At a temperature of T = 15K, this PCC288 region. The model was not intended as a fit to the wouldcorrespondtoalessthan15%underestimationofcolumn PCC288 observations but is only used to estimate the general density.If β is keptas a free parameter,the 0.8K bias leads to observationalbiasesinasettingsimilartothisfield.Themodel a ∼30%errorin columndensitywhenthe estimate is basedon wasbasedonthecolumndensitymapshowninFig.3andrepre- κat160µm.Thisdecreasestoonly∼10%whentheestimateis sentsaboxwithasizeof5.4pc(ford=800pc).Theline-of-sight based on 500µm. However, close to the sources the errors re- density profile was gaussian with a FWHM that was 0.4pc to- mainlarge,atleastafactoroftwo. wards the densest part of the cloud and increased up to 1.6pc in regions of low column density. The numbersroughly corre- spondtothescalesofthecentralclumpandthewholefieldbut arebasicallyadhocvalues.Inparticular,thedensitydistribution InFig.8,themedianvalueoftheobservedspectralindexis of the model is quite smooth with a maximum density of only β=1.92 which is only slightly smaller than the actual value of 3.7×104cm−3. Because also the wavelength dependenceof the the dust model, β=2.0. The values are more biased in areas of spectralindexcouldbiastheobservedβvalues(seeMalinenet high column density and the observed β is consistently below al.2011),themodellingwasdonewithamodifiedversionofthe 1.9inthesouth.Atthepositionofthesourcesβisreducedfur- normal Milky Way dust model (Draine 2003) where β was set thertoaminimumvalueof1.56.Theobservationsprovidegood to a constantvalueof 2.0 forall wavelengthsλ > 100µm.The estimatesofthe spectralindexonlyinthe morediffuseregions cloud is illuminated from the outside by an isotropic interstel- butalsoatacertaindistancefromthesourceswheretheinternal lar radiation field (ISRF; Mathis 1983). Three blackbody radi- heatingapparentlyhelpstokeepthetemperatureconstantalong ationsourceswitha temperatureof2000K andluminositiesof theline-of-sight.Althoughthe columndensityishighestin the 10,20,and50L⊙ wereaddedtorepresentinternalheating.We centralclump,thebiasishigherinthesouth,furtherawayfrom showtheresultsforamodelwherethecolumndensitiesandthe theheatingsources. 6 M.Juvelaetal.:GalacticcoldcoresII.HerschelstudyoftheextendeddustemissionaroundthefirstPlanckdetections κ(cm2/g) κ(cm2/g) κ(cm2/g) 0.1 0.2 0.3 0.1 0.2 0.1 0.2 0.3 PCC288 PCC550 PCC249 62d 40’ -71d 40’ 64d 00’ 0) 0 0 2J 62d 30’ ( δ -71d 50’ 63d 30’ 62d 20’ 22h 54m 22h 52m 12h 26m 12h 24m 22h 25m 22h 20m 22h 15m α(J2000) α(J2000) α(J2000) Fig.7. Mapsof thedustopacityderivedfromthe comparisonof the NIRextinctionmapsand SED fitswith a fixed valueofthe spectralindex,β=2.0.Thevaluesaregivenfor250µmandrelativetothetotalISMmass.Thecontoursaredrawnstartingwiththe valueof0.05cm2g−1andwithastepof0.02cm2g−1(PCC550)or0.03cm2g−1(PCC288andPCC249). 5. Discussion 5.2.Cloudmassesanddustopacity 5.1.Colourtemperatures InJuvelaetal.(2010)themasseswereestimatedonlyforcom- pactobjects,withafixedcircularapertureandwithbackground The calculation of the colour temperature maps for the full subtraction.Themasseswerequotedalsofora 9arcmindiam- Herschel fields confirmed the Planck detections of cold dust eter aperture and these can now be compared with the values emission. Evenin the field PCC249, with active star formation of Table 3 that were obtained without backgroundsubtraction. and a high average colour temperature, the Planck detections In PCC288, the estimate has increasedby a factor of two from correspondtoregionswherethecolourtemperatures,T ∼15K, 140M⊙to288M⊙.InthecaseofPCC550thebackgroundlevel are ∼2 degreesbelow the values of the surroundingareas. The issmallandthechangeismuchsmaller.Thepreviousvaluesof Planck detections are based on the cold dust signature that re- 9.2M⊙ and 8.1M⊙ for P1 and P2, respectively, have been re- mains when the warm component traced by the 100µm IRIS placedby12.2M⊙and11.3M⊙.InPCC249theintensitylevels maps has been subtracted (Montier et al. 2010). This does not areagainhighandalsothecontrastbetweentheemissioninthe require a low colour temperature for the total emission. The selectedaperturesandthesurroundingreferenceareasissmall. separation of the warm and the possible cold component is As a result, the masses obtained without background subtrac- more uncertain in warm regions where the warm component tionaremuchlarger.Thepreviousestimatesof90M⊙(areaP1) is strong and must be subtracted with higher relative accuracy. and 93M⊙ (area P2) have increased to 252M⊙ and 259M⊙. The PCC249 sources are very bright with peak surface bright- Differencesare,ofcourse,notsurprisingbecausethenewmea- ness reaching in both PACS and the 250µm SPIRE band sev- surementsare for the whole mass along the line-of-sightwhile eral thousand MJysr−1. The Planck observations were able to theoldonescorrespondtothecolumndensityexcesswithinthe locatethetwonearbycoldregionsdespitethefactthat,accord- aperture. ingtoHerschel,theyaresmallandthusbeamdiluted:thePlanck InPCC249,thenewvaluesareinbetteragreementwithmass beamshaveasignificantcontributionalsofromthewarmersur- estimates frommolecularline observations.Wang et al. (2009) roundingregions. obtainedfrom13CO(2–1)observationsavalueof1700M⊙ for Intheanalysisperformedwithafixedspectralindexvalueof aregionthatcorrespondstoourarea P1.Theestimatewascal- β=2.0,theminimumcolourtemperatureswere13.8K,13.1K, culatedforaclouddistanceof1.67kpcwhich,withthedistance 15.6K,and14.8KforPCC288,PCC550,andthenorthernand ofd = 800pcassumed here,translatesto ∼390M⊙. The value the southernareasin PCC249,respectively.Theseare a couple derived from Herschel data is still lower but already ∼65% of ofdegreeshigherthanthevaluesreportedinJuvelaetal.(2010) this number. On the other hand, the situation has not changed wheretemperatureswerecalculatedafterthe subtractionofthe much for PCC550 where the masses obtained from molecular local background. In spite of the different nature of the fields, line studies (Vilas-Boas et al. 1994; see Juvela et al. 2010) are the minimum temperatures are rather similar. Of course, even also higher than our values. In PCC550-P2 the molecular line the backgroundsubtracted observationsdo not give a true pic- datagaveamassof16.5M⊙ andthe∼50%discrepancyisstill ture of the coldest temperaturesthat inside the cores are likely notveryserious. However,for the coreP1 (coreMu5in Vilas- to be below 10K (e.g., Crapsi et al. 2007; Harju et al. 2008). Boas et al. 1994) the CO analysis lead to a value of ∼ 33M⊙ With radiative transfer modelling of the dust continuumobser- that is three times our estimate. The uncertainty of κ can ex- vations one could derive an upper limit for the central temper- plain most of this discrepancy. The values derived in Sect. 3.4 aturebutoncethetemperatureisreducedcloseto6K,thecold were all below κ(250µm) = 0.15cm2g−1 with a median value dustwillbedifficulttodetectevenwithHerschelobservations. of0.073cm2g−1.Withκ(250µm) = 0.085cm2g−1 themasses- In our simple model of the field PCC288, the minimum phys- timate of P1 would be in perfect agreementwith the value ob- ical dust temperature was only ∼2K lower than the minimum tained from the line observations.The radiative transfer model colour temperature.It is very likely that in the real clumps the ofPCC288hintedthatthecolumndensityestimatesmaybebi- centraldensitiesrisehigherthaninourradiativetransfermodel ased.InthecaseofPCC550thefinalanswertothisquestionmay andthereforealsoreachlowerphysicaltemperatures. be providedby the detailed radiative transfer modelling that is M.Juvelaetal.:GalacticcoldcoresII.HerschelstudyoftheextendeddustemissionaroundthefirstPlanckdetections 7 currentlyunderway(Ysardetal.,inpreparation).Onecanalso 5.3.Spectralindices questiontheaccuracyoftheCO massestimates.Thefractional abundances are not accurately known, the observations of the Wefittedtheobserved(T,β)valuesofFig.4withtwoanalytical cold regionsmay be affected by some degreeof molecular de- formulas,β= A(T/20K)−α andβ=(δ+ωT)−1.Theparameters pletion(e.g.,PCC550),and,conversely,theopticaldepthsofthe of the relations are listed in Table 4. The obtained T(β) rela- employed13COlinescanbecomehighenoughsothatradiative tionsaresteeperthanreportedinDupacetal.(2003)whofitted transfereffectscanbiastheresults(e.g.,self-absorptionaffecting PRONAOSobservationsusingthelatterformula.Ourrelationis theobserved13CO/C18Olineratios).Consideringallthesources closertotheresultsfromtheArcheopsexperiment(De´sertetal. of uncertainty, the mass estimates obtained from the lines and 2008)wheretheobservationsfitarelationβ= AT−αwithanex- fromdustcontinuumareingoodagreement. ponentvalueofα=0.66±0.054.TheerrorestimatesinTable4 do not reflect the true uncertainty but only the accuracy of the The median values of the dust absorption cross sections curvefitting.Onesourceofuncertaintyistheaccuracytowhich κ(250µm)obtainedfromthecomparisonwithNIRextinctionare the very small grain contribution could be subtracted from the 0.13,0.073,and0.055cm2g−1 forthefieldsPCC288,PCC550, 100µmdata.However,thetemperatureandspectralindexmaps andPCC249,respectively.Thepeakvaluesare higherbymore derivedwithoutthe100µmbandarerelativelysimilartothere- than a factor of two and, in PCC550 and PCC249, are associ- sultsshowninFig.4(seeAppendixB.2).Wewillnextexamine ated with regions of higher column density. This behaviour is thereliabilityofthedetectionofthespectralindexvariationsin expected and could be explained by an increase in grain sizes. thepresenceofothererrorsources. In PCC288, there is some indication that the dust opacity has Calibration errors affect the (T, β) values mostly in a sys- increasedinthecentralclump,closetothecolumndensitymax- tematicfashion.InFig. 6, we indicatedforthreerepresentative imum.TheincreasetowardstheNorthcornerisverylikelyonly pixelstheshiftsthatwouldresultfroma10%changeinthegain anartifact.Theresultscouldchangenoticeablyevenwithinthe calibration combined with a change in the offset that is equal limitssetbytheaccuracyofthezeropointsofthesurfacebright- totheuncertaintieslistedinTable2.Thecalibrationerrorstend nessscale.Nevertheless,theresultssuggestspatialvariationsat to move all points along a trajectory similar to that caused by least by a factor of two. Most of our κ(250mum)values are in the range0.05–0.2cm2g−1. Scaled with ν2, this correspondsto randomnoisewithoutmuchaffectingthedetectionofaninverse κ(850µm)=0.004–0.017cm2g−1.TheA valueswerecalculated T −β relation. In the field PCC550, the spectral indexreaches V assuminganextinctionlawwithR =3.1.Thisisappropriatefor values β ∼2.35 at the locations of the two cores. In the high- V β version (calibration errors causing higher 250µm and lower mostareasbutnotnecessarilyforthedensestcores.Byadopting R =5.5,theextinctionvalueswoulddecreaseby∼16%.Taking 500µm surface brightness) the centre of the PCC550 filament V would reach β ∼ 2.7 while the background would remain at intoaccountapossibledecreaseintheratioN(H)/A thecalcu- V β ∼2.4.Oppositechangesinthecalibrationwoulddecreasethe lated dust opacities could increase further by more than 30% (see Evans et al. 2009, Draine 2003, and the online tables1). spectralindexvaluesinthefilamenttoavalue∼2,still0.2–0.3 unitsabovethebackground.Thisshowsthattheincreaseofdust This would further strengthen the case for an increasing sub- opacitywithinthePCC550filamentisrobustagainstcalibration millimetredustopacityinthecoldanddensecores. errorsalthoughtheuncertaintyintheabsolutevalueofβishigh, The opacities can be compared with values found in closeto∼0.4.Theeffectsofadifferentcalibrationaresimilarin other studies. Using COBE measurements, Boulanger et al. the other two fields, changingthe absolute levelof β withouta (1996) derived an effective dust cross section for high lat- clearchangeinthemorphology. itude diffuse medium. At 850µm, the obtained values are κ(850µm)=0.005cm2g−1 inagreementwiththelowendofour WeusedMonteCarlosimulationstoquantifythenoisebias andtheevidenceforanegativeβ−T correlation.Weaddednoise measurements.InthedarkcloudIC5146,Krameretal.(2003) found the values to vary from κ /κ ∼ 1.3 × 10−5 in warm tothesurfacebrightnessmeasurementandrepeatedthefitofthe regions (20-30K) to ∼ 5 × 10−8550in Vcolder regions with T ∼ β(T) = AT−α relation.Thestatistical uncertainty of the surface brightnessmeasurements,σ ,wasestimatedfromthedifference 12K. With the conversion used in Sect. 3.4, these correspond S to∼0.003cm2g−1and0.011cm2g−1,ingeneralagreementwith betweentheobservedmapsandtheSEDfitswithafreeβparam- eter. Theseareconservativeestimatesbecausetheresidualsare our range of values. However, there are also dense and cold affected also by calibration errors. The calibration uncertainty cloudswhere similar increase of dust opacity has notbeen ob- σ was assumed to consist of a 10% uncertainty in the gain served. Nutter et al. (2008) reportedobservationsof a filament C calibration and the zero point uncertainties listed in Table 2. in Taurusand concludedthat these can be modelledaccurately To see how sensitive the extracted values are on the statistical without any spatial variations of dust properties. Juvela et al. noisealone,wecarriedoutonesetofsimulationswhereσ was (2009) estimated for a Corona Australis molecular cloud fila- S addedto the observedmaps. However,we mainlycomparethe menta κ value thatwas almostconsistentwith valuesfoundin originalobservationswithreferencesimulationswithaflatβ(T) diffuseclouds.Thisinspiteofthefactthattheregionhadmore than20mofvisualextinctionandhadaminimumcolourtemper- relation. These are based on the SED fits that were made with β = 2.0.Inthefirstsetofsimulationsσ andσ wereaddedto ature of ∼11K although,on the other hand,the sub-millimetre S C the inputmaps. In the secondset of simulationsone quarterof measurements may have suffered from some spatial filtering. eachsurfacebrightnessmapwasadditionallyscaledwitharan- Theresultsshouldbetested,possiblywiththehelpofHerschel domfactorcorrespondingtoa10%relativeerror.Thissimulates observations,toconfirmwhetherthedustbehaviouristhisdiffer- mapping artifacts, σ , whose effect is fundamentally different entinapparentlysimilarcloudsorwhethertheresultscouldbe M from both σ (affecting each pixel independently)and σ (af- explainedbythedifficultyofreachinganaccuracyofmeasure- S C fectingallpixelssimultaneously).Whileσ canshiftallthe(T, mentsthatis neededfora reliabledeterminationofdustopaci- C β) points along almost a fixed trajectory, without a noticeable ties. change in the best fitting β(T) relation, the mapping artifacts willincreasethedispersionofthe(T,β)valuesalongthenoise- 1 http://www.astro.princeton.edu/draine/dust/dust.html inducedβ(T) curve. Thiscould be misinterpretedas a stronger 8 M.Juvelaetal.:GalacticcoldcoresII.HerschelstudyoftheextendeddustemissionaroundthefirstPlanckdetections Table4.Parametersoftheβ(T)fits. spectralindexincreasesfrom∼2.2attheboundariesto∼2.5in thecentralclumpbeforedecreasingto∼1.5atthelocationofthe β(T)=A(T/20K)−α β(T)=(δ+ωT)−1 strongestwarmsourceatthecentreofthemap.InPCC249the Target A α δ ω warm sourcesaresimilarly associated with spectralindexmin- PCC288 1.89(0.02) 0.62(0.03) 0.18(0.02) 0.018(0.001) ima,β ∼1.0nearPCC249-P1and∼1.3nearPCC249-P2,while PCC550 1.90(0.02) 0.44(0.02) 0.26(0.02) 0.014(0.001) thevaluesinthecentralmapotherwisearebetween1.8and2.2. PCC249 1.77(0.01) 0.97(0.02) 0.02(0.01) 0.027(0.001) It is clear that warm sources are associated with significantly lowerβ.Theevidenceforhighβvalues(>>2)towardsthecold- est clumps is somewhat weaker because it comes from larger evidenceofaninverserelationbetweenβandT. Thecompari- scalesthatmightbe affectedbymappingartifacts. However,in sonbetweenthe SED fits andthesurfacebrightnessmapssug- PCC288andPCC550,T andβareclearlyanticorrelatedalsoin gestedthepresenceofsomesuchartifacts(seeAppendixB).In theregionswithT <15K.InPCC249thesituationissimilarat PCC249,thesewerebelow∼5%apartfromthenorthernendof large scales but not in the cores PCC249-P1 and PCC249-P2. the160µmmapwhere,withinanarealessthan5%ofthewhole Theseareveryneartostrongradiationsourceswhichmayhave map, the residual rises between 10% and 20%. In PCC288 the affectedthespectralindexestimates. artifactsremainbelow 10%whenthe northerncornerhas been We conclude that there is strong evidence of spatial varia- maskedout.ThesameappliestoPCC550exceptforthe160µm tions in the apparent dust spectral index and the magnitude of mapwherethedifferencetotheSEDfitisabove10%overabout these changes is likely to be at least ∆ ∼ 0.2 and can be up one third of the map and reaches values 20–30% over an area to ∆ ∼ 1 towards warm, internally heated sources. The simple less than 10% of the full map. By introducing a 10% error in modelofthePCC288fieldshowedthattheseapparentvariations the quarter of the mapped area and in all the frequencybands, do not necessarily indicate an equalchange in the dust proper- wearecertaintoobtainaconservativeestimateofthemapping ties.Inthemodel,thespectralindexofthegrainscouldbe0.2– artifacts,especiallyinPCC288andPCC249. 0.3 units higher than what is observed (Sect. 4). This applies Figure 9 shows the distribution of the parameters α in this toregionsofhighcolumndensityandwithoutinternalheating. Monte Carlo study, each resulting from the simulation of 500 The effect is opposite to the observed correlation between the sets of synthetic surface brightness maps. For each set of fre- columndensityand β andfurthersupportsthe idea ofhigherβ quency maps, the colour temperatures and the spectral indices values for the dust grains in the cold cores. This behaviour is wereestimatedpixelbypixel,andtheanalyticalβ(T)formulas expected on the basis of laboratory measurements and can be werefittedtotheresults.ThedistributionS1correspondstothe explained by the properties of the grain materials at low tem- observedmaps with added noise, σ . The distributions R1 and perature(Mennellaetal. 1998;Boudetetal. 2005; Me´nyetal. S R2 correspond to simulations with a constant value of β = 2, 2007).Ontheotherhand,thelowvaluesofβthatwereobserved R1 containing σ and σ and R2 additionally the mapping er- towardsthewarmsourcesinPCC288canbefullyexplainedby S C rorsσ . Theverticallinesshowtheparametervaluesobtained line-of-sighttemperaturevariations.Itwillbedifficulttodeter- M directlyfromtheobservations. mine whether also the intrinsic spectral index of the grains is Becauseofthenoise-inducedanticorrelationbetweenT and lowerinsuchregions(seealsoMalinenetal.,2011). β,theαvaluesarepositiveevenwhentheinputdatacorrespond Theexactrelationbetweentheobservedandrealβdepends to a constant value of β = 2.0. For the same reason, the dis- on the properties of the object in question (density structure, tributionsS1areshiftedrelativetotheobservedvaluesandare strength of the external radiation field, nature of the internal narrow only because the effect is almost identicalin all Monte sourcesetc.)andtheresultsofourradiativetransfermodelcan- Carlo realizations. In the fields PCC288 and PCC249, the ob- notbegeneralizedveryfar.We havestarteddetailedmodelling servedα valuesare higherthanmost valuesin the R1 distribu- oftheobservationsofPCC550.Theresultsofthatstudywillgive tion. If mapping artifacts can be ignored, this indicates a real usabetterideaonhowtheobservedspectralindexvariations,if anticorrelation between temperature and the observed spectral real,arerelatedtotheactualdustproperties.Thismayalsoshed index.Thehypothesisα > 0getsprobabilities97%and99%in new light on the reliability of the mass estimates derived from the case of PCC288 and PCC249, respectively. However, with Herschelobservations(Ysardetal.,inpreparation). thesimulatedmappingartifactsthereferencedistributionsR2is Thepossiblepresenceofmappingartifactswasfoundtobe much wider and the correspondingprobabilitiesare reducedto themainproblemintheevaluationoftheobservationalT–βre- 69%and66%.Thedetectionsarenolongerstatisticallysignifi- lation. In new observations larger map sizes and increased re- cantbutthenumbersdependcriticallyontheactuallevelofσ . dundancywouldhelptoreducesuchartifactsandmakeiteasier M Webelievethatthenoisevaluesusedinthesimulationwerecon- to evaluate their impact. The situation may be improved with servativeandthetruthliessomewherebetweenthecasesR1and betterdatareductionmethodsand,inthefuture,onecouldalso R2.Therefore,theMonteCarlostudygivessome,althoughweak usePlanckdatatocheckforlowresolutionartifactsinthelong evidenceforanon-flatβ(T)relation.InthecaseofPCC550,the wavelength Herschel data. When combined with far-infrared valuesofαwerehigherinthesimulationsthaninobservations. data,thePlanckobservationsthemselvesareverysuitableforthe Thisispossibleif themappingartifactsconspiredtoproducea studyofthespectralindexvariationsandwillbeusedtoexamine lowαvalueormayindicateoverestimationoftheerrors. thesituationalsoincoldcoresandclumps(PlanckCollaboration The Monte Carlo study showed that the global analysis of 2011a,2011b). (T, β) points does not give a conclusive proof of spectral in- dex variations. That analysis is not sensitive to very localized 6. Conclusions β variations while it may be significantly affected by artifacts thataremorelikelytoexistclosetomapedgesandfarfromour We have studied Herschel surface brightness measurements of dense sources. In Fig. 4, many of the spectral index variations three areas where the Planck satellite data indicated the pres- areclearlycorrelatedwithactualcloudstructuresand,therefore, ence of significant amounts of cold dust. By analysing surface are unlikely to be caused by mappingartifacts. In PCC288 the brightnessmapsatwavelengthsbetween100µmand500µmwe M.Juvelaetal.:GalacticcoldcoresII.HerschelstudyoftheextendeddustemissionaroundthefirstPlanckdetections 9 mapthedustcolourtemperature,dustopacity,anddustspectral thePACSbeam.Nevertheless,theresidualscouldbeassociated indexvariationsoverthefields.Theresultsleadtothefollowing withanimperfectdeconvolutionofthedetectortimeconstants. conclusions: – ThecolourtemperaturemapsconfirmthePlanckdetections B.1.Mapsofthespectralindexuncertainty ofcolddust.Theanalysisofthetotalintensityleadstomin- The derivedspectralindexvaluesare affectedby observational imumcolourtemperatureof13–15Kinthethreefields. noise,errorsinthezeropointoftheadoptedsurfacebrightness – The results show an increase in the dust opacity towards scale,anderrorsinthegaincalibration.FigureB.4showsmaps colder and denser cloud regions. The range of values for thatcanbeusedtoassesstheimportanceofgaincalibrationand the dust absorption cross section was estimated to be zero point errors. As discussed in Sect. 3.3, we modified the κ(250µm) ∼ 0.05–0.2cm2g−1, in agreement with previous 250µm and 500µm surface brightnessmapsby addingor sub- studies. tractingthezeropointuncertaintiesfromTable2andbyscaling – Themedianvaluesoftheobservedspectralindiceswerebe- themapsbyanamountcorrespondingtoa10%gainuncertainty. tween1.9and2.2.Wewitnessedaninverserelationbetween Thechangesatthetwo wavelengthsweremadein oppositedi- thecolourtemperatureandthespectralindex.AMonteCarlo rections in order to have the maximum effect in the β value. studyindicatedbutdidnotconclusivelyproveatemperature By applying 1σ shifts in the gain and in the offset and at both dependenceof β beyondwhatcouldbe producedby obser- wavelengthscriticalfor the determinationof the spectralindex vationalerrors.However,becausethechangesarewellcor- we should get conservative limits for the spectral indices. The relatedwithcolumndensity,webelievethevariationstobe mapsofminimumandmaximumspectralindicesareshownin real.Verylowvaluesdowntoβ∼1.0wereobservedtowards Fig.B.4. warm sources but these are likely to be caused mainly by temperaturevariationsratherthanchangesinthegrainchar- acteristics. B.2.Temperatureandspectralindexmapswithout100µm – Withthehelpofasimpleradiativetransfermodel,weexam- data inedtherelationbetweentheobservedandintrinsicspectral Thesubtractionofthe VSG emission fromthe 100µm datare- indices.Theresultsshowthattheintrinsicβvalueofthedust lied on the ratio of the VSG and BG grainsin the De´sert et al. grains is underestimatedin regionsof high column density (1990)dustmodel.Thisalsoaffectsthe160µmdatabutonlyas and,therefore,the observationsmayalso underestimatethe anuncertaintyofthezeropointoftheintensityscale.Tocheckto realvariationofthespectralindex.Ontheotherhand,theflat whatextentthecolourtemperatureandthespectralindexmaps spectrum nearinternalheatingsourcescan be explainedby are influenced by the 100µm data, we recomputed the param- the line-of-sighttemperaturevariationswithoutany change eters using the 160µm–500µm data only. The resulting maps inthedustproperties. of the colour temperature and the spectral index are shown in Fig.B.5. AppendixA: Frequencymaps The maps are morphologically similar to those shown in Fig.4.ThelargestdifferencesareinPCC550where,withoutthe FiguresA.1–A.3showthe100µm,160µm,250µm,and350µm 100µmdata,thespectralindexmapcloselyfollowstheshapeof surfacebrightnessmapsforthethreeSDP fields.Themapsfor thedensefilament.TheappearanceofSWpartofthatmapagain 500µm are not included but their appearance, apart from the suggests the presence of some artifact, the β values decreasing lower intensity and lower spatial resolution,is almostidentical close to one. Compared to Fig. 4, PCC249 exhibits somewhat withthe350µmmaps. lowervaluesofβandahigherrangeoftemperatures. Acknowledgements. MJandJMacknowledge thesupport oftheAcademy of AppendixB: Residualmapsat160µm–500µm Finland Grant No.127015. JMacknowledges the support fromVa¨isa¨la¨ foun- Thequalityofthe B (T)νβ fitsandthemapsthemselvescanbe dation.Thispublication makesuseofdataproductsfromtheTwoMicronAll ν Sky Survey, which is a joint project of the University of Massachusetts and evaluatedbyexaminingtheresidualmapsatthefivewavelengths theInfraredProcessingandAnalysisCenter/CaliforniaInstituteofTechnology, usedintheSEDfit.ThesemapsareshowninFigs.B.1–B.3. fundedbytheNationalAeronauticsandSpaceAdministrationandtheNational In PCC288 the average residuals are −4.0, 16.9, 6.7, −6.3, ScienceFoundation. and 1.4MJysr−1 in the five bands in the order of increasing wavelength.Thecorrespondingvaluesare−0.35,2.4,2.4,−1.9, References and0.4MJysr−1inthefieldPCC550and−3.8,17.3,−0.7,−1.6, and0.47MJysr−1inthefieldPCC249.Allowingsomeerrorsin Anderson,L.D.,Zavagno,A.,Rodo´n,J.A.,etal.2010,A&A518,L99 the gain, the estimated accuracies of the offsets (see Table 2) Andre´,P.,Men’shchikov,A.,Bontemps,S.,etal.2010,A&A518,L102 deAvillez,M.,Breitschwerdt,D.,2007,ApJ665,L35 appeartohavebeenrealistic. Bally,J.,Reipurth,B.,Walawender,J.,Armond,T.2002,AJ124,2152 In PCC288 the largestresiduals, ∼ 100MJysr−1, are found Bergin,E.A.,Tafalla,M.2007,ARA&A45,339 at the centre of the 160µm map. This is associated with the BohlinR.C.,SavageB.D.,DrakeJ.F.,1978,ApJ224,132 brightest point source and is still less than 10% of the surface Bonnor,W.B.1956,MNRAS,116,351 brightness. In Fig. B.3 the residual images are strongly satu- Boudet,N.,Mutschke,H.,Nayral,C.,etal.,2005,ApJ633,272 Boulanger,F.,Abergel,A.,BernardJ.-P.,etal.,1996,A&A312,256 rated and one can see both negative and positive values on the Compie`gne,M.,Verstraete,L.,Jones,A.,etal.2011,A&A525,103 twosidesofasource.Althoughtheresidualsreachseveralhun- Crampton,D.,Fisher,W.A.1974,Pub.Dom.Astrophys.Obs.,4,283 dredMJysr−1theseareonlyata∼5%level.Thepositionsofthe Crapsi,A.,Caselli,P.,Walmsley,C.M.,Tafalla,M.2007,A&A470,221 sourcesthemselvesagreeinallfrequencymapssothatastromet- Crutcher,R.M.,Hakobian,N.,Troland,T.H.2009,ApJ692,844 De´sert,F.-X.,Boulanger,F.,Puget,J.L.1990,A&A237,215 ricerrorsshouldnotbeasignificantfactor.Unlikeinthecaseof De´sert,F.-X.,Mac´ıas-Pe´rez,J.F.,Mayet,F.,etal.2008,A&A481,411 thefastscanningspeed,theintermediatescanningspeedusedin Dobashi,K.,Uehara,H.,Kandori,R.,etal.2005,PASJ57,S1 our observations should not result in a significant smearing of Draine,B.,2003,ApJ598,1017 10 M.Juvelaetal.:GalacticcoldcoresII.HerschelstudyoftheextendeddustemissionaroundthefirstPlanckdetections Dupac,X.,Bernard,J.-P.,Boudet,N.,etal.2003,A&A,404,L11 Enoch,M.L.,Evans,N.J.,Sargent,A.I.,etal.2008,ApJ,684,1240 PCC288 Evans,N.J.II.,Dunham,M.M.,Jørgensen,J.K.,etal.2009,ApJS181,321 +62°40′ Goodman,A.,Rosolowsky,E.W.,Borkin,M.A.,etal.2009,Nature457,63 Griffin,M.,Abergel,A.,Abreu,A.,etal.2010,A&A518,3 HarjuJ.,JuvelaM.,SchlemmerS.,etal.,2008,A&A482,535 Hill,T.,Thompson,M.A.,Burton,M.G.,etal.2006,MNRAS,368,1223 0) +62°35′ Hirota,T.,Ando,K.,Bushimata,T.,etal.2008,PASJ60,961 0 0 Johnstone,D.,Wilson,C.D.,Moriarty-Schieven,G.,etal.2000,ApJ,545,327 2 J JJourvdeil,aC,M.,T.,rPualldoolsa,nE,P.,.,G2a0l0ad3i,-AEn&rAiqu3e9z7,,D2.011996A&A312,499 c. ( +62°30′ e Juvela,M.,Pelkonen,V.-M.,Porceddu,S.2009,A&A505,663 D Juvela,M.,Ristorcelli,I.,Montier,L.A.etal.2010,A&A518,L93 Kramer,C.,Richer,J.,Mookerjea,B.,AlvesJ.,LadaC.,etal.,2003,A&A399, +62°25′ 1073 Kramer,C.,Alves,J.,Lada,C.J.,etal.1999,A&A342,257 Kru¨gel,E.,Siebenmorgen,R.,1994,A&A288,929 Lombardi,M.&Alves,J.,2001,A&A377,1023 +62°20′ Malinen, J.,Juvela, M., Collins, D., Lunttila, T.,Padoan, P.2011, submitted, 22h54m 22h52m arXiv:1009.4580 Mathis,J.S.,Mezger,P.G.,Panagia,N.,1983,A&A,128,212 McKee,C.F.,Ostriker,E.C.2007,ARA&A45,565 -71°35′ PCC550 Mennella,V.,Brucato,J.R.,Colangeli,L.,etal.,1998,ApJ496,1058 Me´ny,C.,Gromov,V.,Boudet,N.,etal.2007,A&A,468,171 Miville-Deschnˆes,M.-A.,Lagache,G.2005,ApJS157,302 -71°40′ Montier,L.,PelkonenV.-M.,Juvela,M.,Ristorcelli,I.,Marshall,D.2010,A&A 522,83 ) Motte,F.,Andre,P.,&Neri,R.1998,A&A,336,150 00 Motte,F.,Andre,P.,Ward-Thompson,D.,etal.2001,A&A,372,41 0 -71°45′ 2 Nutter,D.,Ward-Thompson,D-,Andree´,P.2006,MNRAS368,1833 J Nutter,D.,Kirk,J.M.,Stamatellos,D.,Ward-Thompson,D.,2008,MNRAS384, c. ( 755 e Ossenkopf,V.,&Henning,Th.1994,A&A,291,943 D -71°50′ Padoan,P.,Jimenez,R.,Nordlund,Å.,Boldyrev,S.2004,Phys.Rev.Lett.,92, 1102 Palla,F.,Brand,J.,Comoretto,G.,Felli,M.,Cesaroni,R.1991,A&A,246,249 -71°55′ Piat,M.,Lagache,G.,Bernard,J.P.,etal.2002,A&A393,359 Pilbratt,G.,Riedinger,J.,Passvogel,T.,etal.2010,A&A518,L1 PlanckCollaboration2011a,submitted,arXiv:1101.2035 PlanckCollaboration2011b,submitted,arXiv:1101.2034 12h26m 12h24m Poglitsch,A.,Waelkens,C.,Geis,N.,etal.2010,A&A518,2 Reipurth,B.,Aspin,C.,Beck,T.etal.2007,AJ1331000 Rodo´n,J.A.,Zavagno,A.,Baluteau,J.-P.,etal.2010,A&A518,80 PCC249 Sargent,A.I.1977,ApJ218,736 +64°00′ Schwartz,P.R.1982,ApJ252,589 Sharpless,S.1959,ApJS4,257 Schlegel,D.J.,Finkbeiner,D.P.,Davis,M.,1998,ApJ500,525 Shetty,R.,Kauffmann,J.,Schnee,S.,&Goodman,A.A.2009a,ApJ,696,676 0) Shetty,R.,Kauffmann,J.,Schnee,S.,Goodman,A.A.,&Ercolano,B.2009b, 00 +63°45′ ApJ,696,2234 2 J Shetty,R.,Collins,D.C.,Kauffmann,J.,Goodman,A.A.,Rosolowsky,E.W., ( &Norman,M.2010,TheAstrophysicalJournal,712,1049 c. e Skrutskie,M.F.,Cutri,R.M.,Stiening,R.,etal.2006,AJ131,1163 D Steinacker,J.,Pagani,L.,Backmann,A.,Guieu,S.2010,A&A511,9 Stepnik,B.,Abergel,A.,Bernard,J.-P.etal.,2003,A&A398,551 +63°30′ Tafalla,M.,Bachiller,R.,Martn´-Pintado,J.1993,ApJ403,175 Tauber,J.,Mandolesi,N.,Puget,J.-L.,etal.2010(accepted) Veneziani,M.,Ade,P.A.R.,Bock,J.J.,etal.ApJ,2010,713,959 Vilas-Boas,J.W.S.,Myers,P.C.,Fuller,G.A.1993,ApJ433,96 Ward-Thompson, D., Andre´, P., Crutcher, R., et al. 2007, in Protostars and PlanetsV,ed.B.Reipurth,D.Jewitt,K.Keil,33 22h24m 22h20m Wang,k.,Wu,Y.F.,Ran,L.,Yu,W.T.,Miller,M.2009,A&A507,369 R.A. (J2000) Zhang,Q.,Hunter,T.R.,Brand,J.2005,ApJ625,864 Zinnecker,H.,Yorke,H.W.2007,ARA&A45,481 Fig.1. Three-colour figures of the three SDP fields. The red, green, and blue colours correspond to the 250µm, 160µm, and 100µm intensities (PCC288 and PCC249) or the 350µm, 250µm, and 160µm intensities (PCC550). Only the area cov- ered by both the PACS and SPIRE instruments is shown. See AppendixAforimagesoftheindividualbands.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.