ebook img

Furstenberg transformations on Cartesian products of infinite-dimensional tori PDF

0.13 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Furstenberg transformations on Cartesian products of infinite-dimensional tori

Furstenberg transformations on Cartesian products of infinite-dimensional tori 5 1 P. A. Cecchi1 and R. Tiedra de Aldecoa2∗ 0 2 n a 1 Departamento de Matem´aticas, Universidad de Santiago de Chile, J Av. Alameda Libertador Bernardo O’Higgins 3363, Estaci´on Central, Santiago, Chile 6 2 2 Facultad de Matem´aticas, Pontificia Universidad Cat´olica de Chile, Av. Vicu˜na Mackenna 4860, Santiago, Chile ] S E-mails: [email protected],[email protected] D Abstract . h WeconsiderinthisnoteFurstenbergtransformationsonCartesianproductsofinfinite-dimensional t a tori. Under some appropriateassumptions, we show that these transformations are uniquely ergodic m withrespecttotheHaarmeasureandhavecountableLebesguespectruminasuitablesubspace.These [ resultsgeneralisetotheinfinite-dimensionalsettingpreviousresultsofH.Furstenberg,A.Iwanik,M. Lema´nzyk,D.Rudolphandthesecondauthorintheone-dimensionalsetting.Ourproofsrelyon the 1 use of commutator methods for unitary operators and Bruhat functions on the infinite-dimensional v 5 torus. 4 2010 Mathematics Subject Classification: 28D10, 37A30, 37C40, 58J51. 2 6 Keywords: Furstenberg transformations, infinite-dimensional torus, commutator methods. 0 . 1 1 Introduction 0 5 1 We consider in this note the generalisation of Furstenberg transformations on Cartesian products Td : v (d ≥2)ofone-dimensionaltori[8,Sec.2]tothecaseofCartesianproducts(T∞)d ofinfinite-dimensional Xi tori. Using recent results on commutator methods for unitary operators [14, 15], we show under a C1 regularity assumption on the perturbations that these transformations are uniquely ergodic with respect r a to the Haar measure on (T∞)d and are strongly mixing in the orthocomplement of functions depending only on variables in the first torus T∞ (see Assumption 3.2 and Theorem 3.3). Under a slightly stronger regularity assumption (C1 + Dini continuous derivative), we also show that these transformations have countable Lebesgue spectrum in that orthocomplement (see Theorem 3.4). These results generalise to the infinite-dimensional setting previous results of H. Furstenberg, A. Iwanik, M. Lema´nzyk, D. Rudolph and the second author [8, 10, 15] in the one-dimensional setting. Apartfromcommutatormethods,ourproofsrelyontheuseofBruhattestfunctions[5]whichprovide a natural analog to the usual C∞-functions which do not exist in our infinite-dimensional setting (see Section3fordetails).WealsomentionthatalltheresultsofthisnoteapplytoFurstenbergtransformations onCartesianproducts(Tn)d offinite-dimensionaltoriTn ofanydimensionn ≥1.Onejusthastoconsider the particular case where the functions defining the Furstenberg transformations on (T∞)d depend only on a finite number of variables. ∗SupportedbytheChileanFondecytGrant1130168andbytheIniciativaCientificaMilenioICMRC120002“Mathematical Physics” fromtheChileanMinistryofEconomy. 1 Hereisabriefdescriptionofthecontentofthenote.First,werecallinSection2theneededfactson commutators of unitary operators and regularity classes associated to them. Then, we define in Section 3 the Furstenberg transformations on (T∞)d, and prove Theorems 3.3 and 3.4 on the unique ergodicity, strong mixing propertyand countable Lebesgue spectrum of these transformations. We refer to [9, 11, 12, 13] and references therein for other works building on Furstenberg transfor- mations. Acknowledgements. The authors thank M. M˘antoiu and J. Rivera-Letelier for discussions which partly motivated this note. 2 Commutator methods for unitary operators We recallin this section some facts borrowedfrom[7, 14] on commutator methods forunitary operators and regularity classes associated to them. Let H be a Hilbertspace with scalar producth·,·i antilinearin the first argument,denote by B(H) thesetofboundedlinearoperatorsonH,andwritek·kbothforthenormonHandthenormonB(H). Let A be a self-adjoint operator in H with domain D(A), and take S ∈ B(H). For any k ∈ N, we say that S belongs to Ck(A), with notation S ∈Ck(A), if the map R∋t 7→e−itASeitA ∈B(H) (2.1) is strongly of class Ck. In the case k =1, one has S ∈C1(A) if and only if the quadratic form D(A)∋ϕ7→ ϕ,SAϕ − Aϕ,Sϕ ∈C (cid:10) (cid:11) (cid:10) (cid:11) iscontinuousforthetopologyinducedbyHonD(A).Wedenoteby[S,A]theboundedoperatorassociated with the continuousextension of this form,or equivalently −i times the strong derivative of the function (2.1) at t =0. A condition slightly stronger than the inclusion S ∈ C1(A) is provided by the following definition: S belongs to C1+0(A), with notation S ∈ C1+0(A), if S ∈ C1(A) and if [A,S] satisfies the Dini-type condition 1 dt e−itA[A,S]eitA−[A,S] <∞. t Z0 (cid:13) (cid:13) As banachisable topological vector spac(cid:13)es, the sets C2(A), C1+0(cid:13)(A), C1(A) and C0(A) ≡ B(H) satisfy the continuous inclusions [2, Sec. 5.2.4] C2(A)⊂C1+0(A)⊂C1(A)⊂C0(A). Now, let U ∈ C1(A) be a unitary operator with (complex) spectral measure EU(·) and spectrum σ(U) ⊂ S1 := {z ∈ C | |z| = 1}. If there exist a Borel set Θ ⊂ S1, a number a > 0 and a compact operator K ∈B(H) such that EU(Θ)U∗[A,U]EU(Θ)≥aEU(Θ)+K, (2.2) then one says that U satisfies a Mourre estimate on Θ and that A is a conjugate operator for U on Θ. Also, one says that U satisfies a strict Mourre estimate on Θ if (2.2) holds with K = 0. One of the consequences of a Mourre estimate is to imply spectral properties for U on Θ. We recall here these spectral results in the case U ∈ C1+0(A). We also recall a result on the strong mixing property of U in the case U ∈C1(A) (see [7, Thm. 2.7 & Rem. 2.8] and [14, Thm. 3.1] for more details). 2 Theorem 2.1 (Absolutely continuous spectrum). Let U and A be respectively a unitary and a self-ajoint operator in a Hilbert space H, with U ∈ C1+0(A). Suppose there exist an open set Θ ⊂ S1, a number a>0 and a compact operator K ∈B(H) such that EU(Θ)U∗[A,U]EU(Θ)≥aEU(Θ)+K. (2.3) Then, U has at most finitelymany eigenvaluesin Θ, each one of finite multiplicity,and U has no singular continuous spectrum in Θ. Furthermore, if (2.3) holds with K = 0, then U has only purely absolutely continuous spectrum in Θ (no singular spectrum). Theorem 2.2 (Strong mixing). Let U and A be respectively a unitary and a self-adjoint operator in a Hilbert space H, with U ∈C1(A). Assume that the strong limit N−1 1 D :=s-lim Uℓ [A,U]U−1 U−ℓ N→∞ N ℓ=0 X (cid:0) (cid:1) exists, and suppose that η(D)D(A)⊂D(A) for each η ∈C∞(R\{0}). Then, c (a) lim ϕ,UNψ =0 for each ϕ∈ker(D)⊥ and ψ ∈H, N→∞ (b) U| (cid:10)has pure(cid:11)ly continuous spectrum. ker(D)⊥ 3 Furstenberg transformations on Cartesian products of infinite- dimensional tori Let T∞ ≃ R∞/Z∞ be the infinite-dimensional torus with elements x ≡ {x }∞ , and let T∞ be the k k=1 dual group of T∞. For each n ∈ N , let µ be the normalised Haar measure on (T∞)n, and let H := ≥1 n n L2 (T∞)n,µ bethecorrespondingHilbertspace.InanalogytoFurstenbergtransformationsondCartesian n productsofone-dimensionaltori(see[8,Sec.2.3]),weconsiderFurstenbergtransformationsonCartesian (cid:0) (cid:1) products of infinite-dimensional tori T :(T∞)d →(T∞)d, d ∈N , given by d ≥2 T (x ,x ,...,x ):= x +α,x +φ (x ),...,x +φ (x ,x ,...,x ) , d 1 2 d 1 2 1 1 d d−1 1 2 d−1 with α ∈ T∞ such that {nα}n∈Z is(cid:0)dense in T∞ and φj ∈ C (T∞)j;T∞ for each j ∈(cid:1){1,...,d −1}. Since T is invertible and preserves the measure µ , the Koopman operator d d (cid:0) (cid:1) W :H →H , ϕ7→ϕ◦T , d d d d is a unitary operator. Furthermore, W is reduced by the orthogonal decompositions d H =H H ⊖H =H H , H := η⊗χ|η ∈H , d 1 j j−1 1 j,χ j,χ j−1 j∈{M2,...,d}(cid:0) (cid:1) j∈{2,...,dM},χ∈Tc∞\{1} (cid:8) (cid:9) and the restriction W | is unitarily equivalent to the unitary operator d Hj,χ U η := χ◦φ W η, η ∈H . j,χ j−1 j−1 j−1 In order to define later a conjugate o(cid:0)perator fo(cid:1)r U , we first define a suitable group of translations j,χ on(T∞)j−1.Forthis,wechoose{yt}t∈R anergodiccontinuousone-parametersubgroupofT∞ suchthat each map R∋t 7→ (y ) ,...,(y ) ∈Tn, n ∈N , (3.1) t 1 t n ≥1 is of class C1. An example of such a su(cid:0)bgroup {yt}t∈R i(cid:1)s for instance given by the formula (y ) =ykt mod Z, t ∈R, k ∈N , t k ≥1 3 with y ∈ R a transcendental number (see [6, Ex. 4.1.1]). Then, we associate to {yt}t∈R the translation flow F (x ,...,x ):=(x ,...,x +y ), t ∈R, (x ,...,x )∈(T∞)j−1, j−1,t 1 j−1 1 j−1 t 1 j−1 and the translation operators V :H →H given by V η := η◦F . Due to the continuity j−1,t j−1 j−1 j−1,t j−1,t of the map R ∋ t 7→ yt ∈ T∞ and of the group operation, the family {Vj−1,t}t∈R defines a strongly continuous unitary group in H with self-adjoint generator j−1 H η :=s-limit−1 V −1 η, η ∈D(H ):= η ∈H | lim|t|−1 V −1 η <∞ . j−1 j−1,t j−1 j−1 j−1,t t→0 t→0 (cid:0) (cid:1) n (cid:13)(cid:0) (cid:1) (cid:13) o When dealing with differential operatorson compact manifolds,one typically d(cid:13)oes the calcul(cid:13)ationson an appropriatecoreofthe operatorssuchasthesetofC∞-functions.Buthere,the arenosuchfunctionson (T∞)j−1, since T∞ is not a manifold (T∞ does not admit any differentiable structure modeled on locally convex spaces, see [4, Sec. 10.2] for details). So, we use instead the set B of Bruhat test functions j−1 on (T∞)j−1, whose definition is the following(see [3, Sec. 2.2] or [5] for details). Set T0 :={0},and for each n ∈N let π :(T∞)j−1 →(Tn)j−1 be the projection given by n (0,...,0) if n =0 π (x ,...,x ):= n 1 j−1 ( (x1)1,...,(x1)n,...,(xj−1)1,...,(xj−1)n if n ≥1. (cid:0) (cid:1) Then, B := ζ◦π |ζ ∈C∞ (Tn)j−1 , j−1 n n∈N [ (cid:8) (cid:0) (cid:1)(cid:9) thatis,B isthesetofallfunctionson(T∞)j−1thatareobtainedbyliftingto(T∞)j−1anyC∞-function j−1 ononeoftheLiegroups(Tn)j−1.ThesetBj−1isdenseinHj−1,itisleftinvariantbythegroup{Vj−1,t}t∈R, and satisfies the inclusionB ⊂D(H ) (to showthe latter, one hasto use the C1-assumption (3.1)). j−1 j−1 Therefore,it follows from Nelson’s theorem [1, Prop. 5.3] that H is essentially self-adjoint on B . j−1 j−1 Now, if the (multiplicationoperatorvalued) map R∋t 7→χ◦φ ◦F ∈B(H ) is strongly of j−1 j−1,t j−1 class C1, then χ◦φ ∈C1(H ) since j−1 j−1 χ◦φj−1◦Fj−1,t =Vj−1,t χ◦φj−1 Vj−1,−t =e−itHj−1 χ◦φj−1 eitHj−1. (cid:0) (cid:1) (cid:0) (cid:1) Thus, the operator d g := H ,(χ◦φ χ◦φ ≡s- iχ◦φ ◦F χ◦φ j,χ j−1 j−1 j−1 dt j−1 j−1,t j−1 t=0 (cid:2) (cid:1)(cid:3)(cid:0) (cid:1)≡s-ddt (cid:0)iχ◦ φj−1◦Fj−1,t(cid:1)−(cid:0) φj−1 t=(cid:1)0(cid:12)(cid:12)(cid:12) (cid:12) (cid:0) (cid:1)(cid:12) is a bounded self-adjoint multiplication operator in Hj−1. (cid:12) Lemma3.1. Takej ∈{2,...,d}andχ∈T∞\{1},andassumethatthemapR∋t 7→χ◦φ ◦F ∈ j−1 j−1,t B(H ) is strongly of class C1. Then, U ∈C1(H ) with [H ,U ]=g U . j−1 j,χ j−1 j−1 j,χ j,χ j,χ d Proof. Take η ∈ B . Then, the commutation of V and W and the differentiability assumption j−1 j−1,t j−1 4 imply that H η,U η − η,U H η j−1 j,χ Hj−1 j,χ j−1 Hj−1 (cid:10) d (cid:11) (cid:10) (cid:11) =i − V η, χ◦φ W η − η, χ◦φ W V η dt j−1,t j−1 j−1 Hj−1 j−1 j−1 j−1,t Hj−1 t=0 =i ddt nη,(cid:10)χ◦φj−1(cid:0)◦Fj−1,t −(cid:1)χ◦φj−(cid:11)1 Wj−1(cid:10)Vj−(cid:0)1,tη Hj−1 (cid:1)t=0 (cid:11) o(cid:12)(cid:12)(cid:12) = ddt (cid:10)η, (cid:0)iχ◦φj−1◦Fj−1,t χ◦φj−1(cid:1) −1 Uj,χVj(cid:11)−1,tη(cid:12)(cid:12)(cid:12)Hj−1 t=0 = d (cid:10)η,(cid:8)i(cid:0)χ◦ φ ◦F (cid:1)−(cid:0)φ −(cid:1)1 U(cid:9) V η (cid:11) (cid:12)(cid:12) dt j−1 j−1,t j−1 j,χ j−1,t Hj−1 t=0(cid:12) (cid:12) = η,(cid:10)gj,χ(cid:8)Uj,χη(cid:0)Hj−1, (cid:1) (cid:9) (cid:11) (cid:12)(cid:12) and thus the cl(cid:10)aim follows f(cid:11)rom the boundedness of g and the density of B in D(H ). j,χ j−1 j−1 Assumption3.2. Foreachj ∈{2,...,d},themap φ ∈C (T∞)j−1;T∞ satisfies φ =ξ +η , j−1 j−1 j−1 j−1 where (cid:0) (cid:1) (i) ξ ∈C (T∞)j−1;T∞ is a group homomorphism such that j−1 (cid:0) (cid:1) T∞ ∋x 7→(χ◦ξ )(0,...,0+x )∈S1 j−1 j−1 j−1 is nontrivial for each χ∈T∞\{1}, (ii) η ∈C (T∞)j−1;T∞ is such that there exists η ∈C (T∞)j−1;R∞ with j−1 d j−1 η (cid:0)(x ,...,x )(cid:1)= η (x ,...,x ) (mod Z∞) (cid:0)for each (x ,(cid:1)...,x )∈(T∞)j−1, j−1 1 j−1 j−1 1 j−1 e 1 j−1 and with R∋t 7→η ◦(cid:0)F ∈B(H ) strongly of(cid:1)class C1 for each k ∈N . j−1,k ej−1,t j−1 ≥1 In the next theorem, we use the fact that the map e R∋t 7→ χ◦ξ (0,...,0+y )∈S1 j−1 t is a character on R, and thus of class C∞.(cid:0)We also(cid:1)use the notation d ξ(χ) := χ◦ξ (0,...,0+y ) ∈iR. j−1 dt j−1 t t=0 (cid:12) (cid:0) (cid:1) (cid:12) Theorem 3.3 (Strong mixing and unique ergodicity). Suppose t(cid:12)hat Assumption 3.2 is satisfied. Then, W is strongly mixing in H ⊖H and T is uniquely ergodic with respect to µ . d d 1 d d These results of strong mixing and unique ergodicity are an extension to the case of infinite- dimensional tori of results previously obtained in the case of one-dimensional tori (see [8, Thm. 2.1] for the unique ergodicity and [10, Rem. 1] for the strong mixing property). For instance, if the functions η in Assumption 3.2wereto dependonlyona finitenumberofvariables,then the strong C1 regularity j−1 condition on η in Assumption 3.2(ii) would reduce to a uniform Lipschitz condition of η along the j−1 j−1 flow {Fj−1,t}t∈R, as in the one-dimensional case treated by Furstenberg in [8, Thm. 2.1]. Proof. (i)Take j ∈{2,...,d},χ∈T∞\{1}and t ∈R.Then,there existk ∈N andn ,...,n ∈Z χ ≥1 1 kχ such that dχ(xj−1)=e2πiPkkχ=1nkxj−1,k, 5 withx ∈T∞andx ∈[0,1)thek-thcycliccomponentofx .Therefore,weinferfromAssumption j−1 j−1,k j−1 3.2 that χ◦ φ ◦F −φ =χ◦ ξ ◦F −ξ ·χ◦ η ◦F −η j−1 j−1,t j−1 j−1 j−1,t j−1 j−1 j−1,t j−1 (cid:0) (cid:1)= χ◦(cid:0)ξj−1 (0,...,0+yt)(cid:1)·e2πi(cid:0)Pkkχ=1nk(ηej−1◦Fj−1,t−ηej−1)(cid:1)k, and Lemma 3.1 implies that U ∈C1(H(cid:0) ) with(cid:1)[H ,U ]=g U and j,χ j−1 j−1 j,χ j,χ j,χ d kχ d g =s- iχ◦(φ ◦F −φ ) =iξ(χ) −2π n s- η ◦F j,χ dt j−1 j−1,t j−1 t=0 j−1 k dt j−1,k j−1,t t=0 (cid:12) Xk=1 (cid:18) (cid:12) (cid:19) (cid:12) (cid:12) (cid:12) kχ e (cid:12) =iξ(χ) +2πi n (H η ). (3.2) j−1 k j−1 j−1,k k=1 X (ii)Wenowproceedbyinductionond toprovetheclaims.Forthecasede=2,wetakeχ∈T∞\{1} and note that point (i) implies d N−1 1 D :=s-lim (U )ℓ [H ,U ](U )−1 (U )−ℓ 2,χ N→∞ N 2,χ 1 2,χ 2,χ 2,χ ℓ=0 X (cid:0) (cid:1) N−1 1 =s-lim g ◦(T )ℓ N→∞ N 2,χ 1 ℓ=0 X kχ 1 N−1 =iξ(χ)+2πi n s-lim (H η )◦(T )ℓ . 1 k N→∞ N 1 1,k 1 ! k=1 ℓ=0 X X SinceT isergodicandH η ∈L∞(T∞),itfollowsbyBirkhoff’spoeintwiseergodictheoremandLebesgue 1 1 1,k dominated convergence theorem that keχ kχ D =iξ(χ)+2πi n dµ (H η )=iξ(χ)+2πi n dµ 1,H η =iξ(χ). 2,χ 1 k=1 kZT∞ 1 1 1,k 1 k=1 kZT∞ 1 1 1,k H1 1 X X (cid:10) (cid:11) Now, since the character T∞ ∋ x 7→ (χe ◦ξ )(0,...,0+x ) ∈ S1 is nontrivieal and the subgroup j−1 1 j−1 {yt}t∈R ergodic,we have ξ1(χ) 6=0 (see [6, Thm. 4.1.1’]). Thus, D2,χ 6=0, and we deduce fromTheorem 2.2(a) that U is strongly mixing. Since this is true for each χ ∈ T∞ \{1}, and since U is unitarily 2,χ 2,χ equivalent to W | , we infer that W is strongly mixing in ⊕ H =H ⊖H . 2 H2,χ 2 χ∈T∞\{1} 2,χ 2 1 ToshowthatT isuniquelyergodicwithrespecttoµ ,wetakceadneigenvectorofW witheigenvalue 2 2 2 1, that is, a vector ϕ∈H such that W ϕ=ϕ. Since W is strongly mixing in H ⊖H , W has purely 2 2 2 2 1 2 continuous spectrum in H ⊖H (see Theorem 2.2(b)), and thus ϕ=η⊗1 for some η ∈H . So, 2 1 1 W ϕ=ϕ ⇐⇒ W (η⊗1)=η⊗1 ⇐⇒ W η =η, 2 2 1 and thus η is an eigenvector of W with eigenvalue1. It followsthat η is constant µ -almost everywhere 1 1 duetotheergodicityofT .Therefore,ϕisconstantµ -almosteverywhere,andT isergodic.Thisimplies 1 2 2 that T is uniquely ergodic because ergodicity implies unique ergodicity for transformations such as T 2 2 (see [6, Thm. 4.2.1]). Now, assume the claims are true for d − 1 ≥ 1. Then, W is strongly mixing in H ⊖H . d−1 d−1 1 Furthermore, a calculation as in the case d = 2 shows that W is strongly mixing in ⊕ H = d χ∈T∞\{1} d,χ H ⊖H . This implies that W is strongly mixing in c d d−1 d H ⊖H ⊕ H ⊖H =H ⊖H . d−1 1 d d−1 d 1 This, together with the unique(cid:0)ergodicityof(cid:1)T (cid:0) , allowsus(cid:1)to showthat T is uniquelyergodicas in the d−1 d case d =2. 6 We know from the proof of Theorem 3.3 that if Assumption 3.2 is satisfied, then U ∈ C1(H ) j,χ j−1 with [H ,U ]=g U . So, it follows from [7, Sec. 4] that the operator j−1 j,χ j,χ j,χ N−1 1 A(N)η := (U )ℓH (U )−ℓη, N ∈N , η ∈D A(N) :=D(H ), j,χ N j,χ j−1 j,χ ≥1 j,χ j−1 ℓ=0 X (cid:0) (cid:1) is self-adjoint, and that U ∈C1 A(N) with j,χ j,χ (cid:0) (cid:1) N−1 1 A(N),U =g(N)U and g(N) := g ◦(T )ℓ. j,χ j,χ j,χ j,χ j,χ N j,χ j−1 ℓ=0 (cid:2) (cid:3) X Theorem 3.4 (CountableLebesguespectrum). SupposethatAssumption3.2issatisfied,andassume for each j ∈{2,...,d} and k ∈N that H η ∈C (T∞)j−1 and that ≥1 j−1 j−1,k 1 dt (cid:0) (cid:1) (H η )◦eF −(H η ) <∞. (3.3) t j−1 j−1,k j−1,t j−1 j−1,k L∞((T∞)j−1) Z0 (cid:13) (cid:13) Then, Wd has countable Leb(cid:13)esgue sepectrum in Hd ⊖H1. e (cid:13) Proof. Take j ∈ {2,...,d} and χ ∈ T∞ \{1}. Then, we know from Lemma 3.1 that U ∈ C1(H ) j,χ j−1 with [H ,U ]=g U . Furthermore, (3.2) and (3.3) imply that j−1 j,χ j,χ j,χ d 1 dt Z0 t e−itHj−1gj,χeitHj−1−gj,χ B(Hj−1) 1 d(cid:13)t (cid:13) (cid:13) (cid:13) = g ◦F −g t j,χ j−1,t j,χ L∞((T∞)j−1) Z0 kχ (cid:13)(cid:13) 1 dt (cid:13)(cid:13) ≤2π |n | (H η )◦F −(H η ) k t j−1 j−1,k j−1,t j−1 j−1,k L∞((T∞)j−1) k=1 Z0 X (cid:13) (cid:13) <∞. (cid:13) e e (cid:13) So, we obtain that U ∈C1+0(H ) with [H ,U ]=g U , and thus deduce from[7, Sec. 4] that j,χ j−1 j−1 j,χ j,χ j,χ U ∈ C1+0 A(N) with A(N),U = g(N)U . Now, H η ∈ C (T∞)j−1 and T is uniquely j,χ j,χ j,χ j,χ j,χ j,χ j−1 j−1,k j−1 ergodic with respect to µ due to Theorem 3.3. Thus, we infer from (3.2) that (cid:0) (cid:1) j(cid:2)−1 (cid:3) (cid:0) (cid:1) e kχ 1 N−1 lim g(N) =iξ(χ) +2πi n (H η )◦(T )ℓ N→∞ j,χ j−1 k N j−1 j−1,k j−1 k=1 ℓ=0 X X kχ e =iξ(χ) +2πi n dµ 1,H η j−1 k=1 kZ(T∞)j−1 j−1 j−1 j−1,k Hj−1 X (cid:10) (cid:11) =iξ(χ) e j−1 uniformly on (T∞)j−1. Since ξ(χ) 6= 0 by the proof of Theorem 3.3, one has g(N) > 0 if N is large j−1 j,χ enough. So, gj(,Nχ) ≥a with a:=infx∈(T∞)j−1 gj(,Nχ)(x) >0, and Uj,χ satisfies the(cid:12)follo(cid:12)wing strict Mourre estimate on S1: (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (U )∗ sgn g(N) A((cid:12)N),U (cid:12)=(U )∗ g(N) U ≥a. j,χ j,χ j,χ j,χ j,χ j,χ j,χ Therefore,alltheassumptionsof(cid:2)The(cid:0)orem(cid:1)2.1aresat(cid:3)isfied,andt(cid:12)husU(cid:12)j,χhaspurelyabsolutelycontinuous (cid:12) (cid:12) spectrum.Sincethisoccursforeachj ∈{2,...,d}andχ∈T∞\{1},andsinceU isunitarilyequivalent j,χ to W | , one infers that W has purely absolutely continuous spectrum in H = d Hj,χ d j∈{2,...,d},χ∈T∞\{1} j,χ H ⊖H . Finally, the fact that W has has countable Lebesdgue spectrum in H ⊖H can bce shown in a d 1 d d 1 L similar way as in [10, Lemmas 3 & 4]. 7 TheresultofTheorem3.4isanextensiontothecaseofinfinite-dimensionaltoriofresultspreviously obtained in the case of one-dimensional tori (see [10, Cor. 3] or [15, Thm. 5.3]). References [1] W. O. Amrein. Hilbert space methods in quantum mechanics. Fundamental Sciences. EPFL Press, Lausanne, 2009. [2] W. O. Amrein, A. Boutet de Monvel, and V. Georgescu. C -groups, commutator methods and 0 spectraltheoryofN-bodyHamiltonians,volume135ofProgressinMathematics. Birkh¨auserVerlag, Basel, 1996. [3] A. Bendikov and L. Saloff-Coste. On the sample paths of Brownian motions on compact infinite dimensional groups. Ann. Probab., 31(3):1464–1493,2003. [4] V. I. Bogachev. Differentiable measures and the Malliavin calculus. J. Math. Sci. (New York), 87(4):3577–3731,1997. Analysis, 9. [5] F. Bruhat. Distributions sur un groupe localement compact et applications `a l’´etude des repr´esentationsdes groupes ℘-adiques. Bull. Soc. Math. France, 89:43–75,1961. [6] I. P. Cornfeld,S. V. Fomin, and Y. G. Sina˘ı. Ergodic theory, volume 245 of Grundlehren der Math- ematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, New York, 1982. Translated from the Russian by A. B. Sosinski˘ı. [7] C. Fern´andez, S. Richard, and R. Tiedra de Aldecoa. Commutator methods for unitary operators. J. Spectr. Theory, 3(3):271–292,2013. [8] H. Furstenberg. Strict ergodicity and transformation of the torus. Amer. J. Math., 83:573–601, 1961. [9] G. Greschonig. Nilpotent extensions of Furstenberg transformations. Israel J. Math., 183:381–397, 2011. [10] A.Iwanik,M. Lema´nczyk,and D.Rudolph. Absolutelycontinuouscocyclesoverirrationalrotations. Israel J. Math., 83(1-2):73–95,1993. [11] R. Ji. ON THE CROSSED PRODUCT C*-ALGEBRAS ASSOCIATED WITH FURSTENBERG TRANSFORMATIONS ON TORI. ProQuest LLC, Ann Arbor, MI, 1986. Thesis (Ph.D.)–State University of New York at Stony Brook. [12] H. Osaka and N. C. Phillips. Furstenberg transformations on irrational rotation algebras. Ergodic Theory Dynam. Systems, 26(5):1623–1651,2006. [13] K. Reihani. K-theory of Furstenberg transformation group C∗-algebras. Canad. J. Math., 65(6):1287–1319,2013. [14] R. Tiedra de Aldecoa. Commutator criteriafor strong mixing. to appear in Ergodic TheoryDynam. Systems, preprint on http://arxiv.org/abs/1406.5777. [15] R. Tiedra de Aldecoa. Commutator methods for the spectral analysis of uniquely ergodicdynamical systems. Ergodic Theory and Dynamical Systems, FirstView:1–24, 10 2014. 8

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.