Functional Biodegradable Nanocomposites Edited by Daniel López, Coro Echeverría and Águeda Sonseca Printed Edition of the Special Issue Published in Nanomaterials www.mdpi.com/journal/nanomaterials Functional Biodegradable Nanocomposites Functional Biodegradable Nanocomposites Editors DanielLo´pez CoroEcheverr´ıa A´guedaSonseca MDPI•Basel•Beijing•Wuhan•Barcelona•Belgrade•Manchester•Tokyo•Cluj•Tianjin Editors DanielLo´pez CoroEcheverr´ıa A´guedaSonseca CSIC—InstitutodeCienciay InstitutodeCienciay UniversitatPolite`cnicade Tecnolog´ıadePol´ımeros Tecnolog´ıadePol´ımeros Vale`ncia (ICTP) (ICTP-CSIC)& Spain Spain InterdisciplinaryPlatformfor SustainablePlasticstowardsa CircularEconomy, SusPlast-CSIC Spain EditorialOffice MDPI St.Alban-Anlage66 4052Basel,Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Nanomaterials (ISSN 2079-4991) (available at: https://www.mdpi.com/journal/nanomaterials/ specialissues/funcbiodegnano). Forcitationpurposes,citeeacharticleindependentlyasindicatedonthearticlepageonlineandas indicatedbelow: LastName,A.A.;LastName,B.B.;LastName,C.C.ArticleTitle. JournalNameYear,VolumeNumber, PageRange. ISBN978-3-0365-5697-0(Hbk) ISBN978-3-0365-5698-7(PDF) ©2022bytheauthors. ArticlesinthisbookareOpenAccessanddistributedundertheCreative Commons Attribution (CC BY) license, which allows users to download, copy and build upon publishedarticles,aslongastheauthorandpublisherareproperlycredited,whichensuresmaximum disseminationandawiderimpactofourpublications. ThebookasawholeisdistributedbyMDPIunderthetermsandconditionsoftheCreativeCommons licenseCCBY-NC-ND. Contents Prefaceto”FunctionalBiodegradableNanocomposites”. . . . . . . . . . . . . . . . . . . . . . . vii AguedaSonseca,CoroEcheverrı´aandDanielLo´pez FunctionalBiodegradableNanocomposites Reprintedfrom:Nanomaterials2022,12,2500,doi:10.3390/nano12142500 . . . . . . . . . . . . . . 1 Tiphaine Messin, Nade`ge Follain, Quentin Lozay, Alain Guinault, Nicolas Delpouve, Je´re´mieSoulestin,CyrilleSollogoubandSte´phaneMarais BiodegradablePLA/PBSAMultinanolayerNanocomposites:EffectofNanoclaysIncorporation inMultinanolayeredStructureonMechanicalandWaterBarrierProperties Reprintedfrom:Nanomaterials2020,10,2561,doi:10.3390/nano10122561 . . . . . . . . . . . . . . 5 AguedaSonseca, SalimMadani, GemaRodrı´guez, V´ıctorHevilla, CoroEcheverr´ıa, Marta Ferna´ndez-Garc´ıa,AlexandraMun˜oz-Bonilla,NoureddineCharefandDanielLo´pez Multifunctional PLA Blends Containing Chitosan Mediated Silver Nanoparticles: Thermal, Mechanical,Antibacterial,andDegradationProperties Reprintedfrom:Nanomaterials2020,10,22,doi:10.3390/nano10010022 . . . . . . . . . . . . . . . 31 AguedaSonseca,SalimMadani,AlexandraMun˜oz-Bonilla,MartaFerna´ndez-Garc´ıa,Laura Peponi,Adria´nLeone´s,GemaRodr´ıguez,CoroEcheverr´ıaandDanielLo´pez Biodegradable and Antimicrobial PLA–OLA Blends Containing Chitosan-Mediated Silver NanoparticleswithShapeMemoryPropertiesforPotentialMedicalApplications Reprintedfrom:Nanomaterials2020,10,1065,doi:10.3390/nano10061065 . . . . . . . . . . . . . . 49 G.M.NazmulIslam,StewartCollie,MohammadQasimandM.AzamAli HighlyStretchableandFlexibleMeltSpunThermoplasticConductiveYarnsforSmartTextiles Reprintedfrom:Nanomaterials2020,10,2324,doi:10.3390/nano10122324 . . . . . . . . . . . . . . 65 CoroEcheverr´ıaandCarmenMijangos A Way to Predict Gold Nanoparticles/Polymer Hybrid Microgel Agglomeration Based on RheologicalStudies Reprintedfrom:Nanomaterials2019,9,1499,doi:10.3390/nano9101499 . . . . . . . . . . . . . . . 89 ShiSuandPeterM.Kang SystemicReviewofBiodegradableNanomaterialsinNanomedicine Reprintedfrom:Nanomaterials2020,10,656,doi:10.3390/nano10040656 . . . . . . . . . . . . . . . 103 Haichao Liu, Ranran Jian, Hongbo Chen, Xiaolong Tian, Changlong Sun, Jing Zhu, ZhaogangYang,JingyaoSunandChuanshengWang Application of Biodegradable and Biocompatible Nanocomposites in Electronics: Current StatusandFutureDirections Reprintedfrom:Nanomaterials2019,9,950,doi:10.3390/nano9070950 . . . . . . . . . . . . . . . . 125 MadisonBardotandMichaelD.Schulz BiodegradablePoly(LacticAcid)NanocompositesforFusedDepositionModeling3DPrinting Reprintedfrom:Nanomaterials2020,10,2567,doi:10.3390/nano10122567 . . . . . . . . . . . . . . 157 v Preface to ”Functional Biodegradable Nanocomposites” ThisSpecialIssuepresentsseveralexamplesofthelatestadvancesinfunctionalbiodegradable nanocompositesfordifferentpropertiesandapplications,namelypackaging,electronic,conductive, andbiomedicalapplications.Itisaimedatscientistsinallapplicationareasinterestedindeveloping environmentally friendly materials while improving their properties and functionalities. Authors contributingtothisSpecialIssueareacknowledged. Wetrustthatreaderswillfindthiscontentof interest. DanielLo´pez,CoroEcheverr´ıa,andA´guedaSonseca Editors vi nanomaterials Editorial Functional Biodegradable Nanocomposites AguedaSonseca1,*,†,CoroEcheverría1,2,*andDanielLópez1,2,* 1 MacroEngGroup,InstitutodeCienciayTecnologíadePolímeros(ICTP-CSIC),C/JuandelaCierva3, 28006Madrid,Spain 2 InterdisciplinaryPlataformfor“SustainablePlasticstowardsaCircularEconomy”(SUSPLAST-CSIC), Madrid,Spain * Correspondence:[email protected](A.S.);[email protected](C.E.);[email protected](D.L.) † Currentaddress:InstitutodeTecnologíadeMateriales,UniversitatPolitècnicadeValència(UPV), CaminodeVeras/n,46022Valencia,Spain. Over367milliontonsofplasticsareproducedannuallyworldwide,andthegrowth ofplasticpollutionhasbecomeaglobalconcern[1].Environmentalissuesrelatedtothe persistenceofplasticwastehaveurgedthedevelopmentofmoresustainablebiodegradable alternatives.Consequently,in2018,theEuropeanCommissionadoptedacirculareconomy planforthemanagementofplasticsbasedoninnovativeresearchonpolymersderived fromnaturalresources[2].Thus,biodegradablepolymershavebeeneffectivelydeveloped overthelastfewyearsaspromisingalternativestomostlynon-degradablecommodity polymers,meetingthedemandsofabroadrangeoffields,includingthemedical,packaging, agricultural,personalcare,andautomotiveindustries[3]. Individually,biodegradablepolymersdonotpossessphysicalpropertiesormechani- calstrengthscomparabletotheirnon-degradablecounterparts,limitingtheirapplication. Significantresearcheffortshavebeenmadeforthedevelopmentofbiodegradablepoly- mericformulationswithmechanicalandphysicalpropertiescomparabletothoseofnon- biodegradableones[4].Asaresult,biodegradablenanocompositesenteredtheresearch scene,offeringthepossibilityofnew,enhancedpropertiesandfieldsofapplication[5]. OneofthereviewsinthisSpecialIssuefocusesontheapplicationofbiodegradableand Citation:Sonseca,A.;Echeverría,C.; biocompatiblenanocompositesinelectronics,highlightingtheneedfordegradablefunc- López,D.FunctionalBiodegradable tionalsystemsbasedonnanocompositestodealwiththeproblemofelectronicwaste[6]. Nanocomposites.Nanomaterials2022, Nanoparticleshavealsofoundapplicationsinnanomedicine,providinguniqueproperties 12,2500. https://doi.org/10.3390/ andgreatadvantagesthankstotheirsmallsizethatisfavorablefromatherapeuticpointof nano12142500 view.However,theirsafetyhasbeenquestionedmanytimes.Inthiscontext,biodegrad- Received:29June2022 ablenanomaterials,degradableunderbiologicalconditions,holdgreatpromiseinthe Accepted:30June2022 biomedicalfield,andthelatestadvancesarereviewedinthisSpecialIssuebySuetal.[7]. Published:21July2022 Thepropertiesofnanocompositesdependnotonlyonthepropertiesofindividual Publisher’sNote:MDPIstaysneutral materials,butalsoontheirinterfacialinteractionsandmorphology,whicharesignificantly withregardtojurisdictionalclaimsin affectedbyprocessingmethods.Inthiscontext,Echeverríaetal.presentadetailedrheo- publishedmapsandinstitutionalaffil- logicalstudythatinvestigateshowgoldnanoparticles(AuNP)affectthepropertiesofa iations. hybridpoly(acrylamide-co-acrylicacid)P(AAm-co-AAc)microgelmatrix.Theknowledge presentedthroughthisworkfacilitatesthepredictionofsystembehavior,consequently allowingthepreparationofreproduciblesystems,forinstance,asinjectablesystems[8]. Bardotetal.reviewthedevelopmentofnanocompositesbasedonpolylacticacid(PLA),a Copyright: © 2022 by the authors. biodegradablebiopolymerobtainedfromagriculturalproducts,bymeansoffuseddepo- Licensee MDPI, Basel, Switzerland. sitionmodelling(3Dprinting).Theydemonstratethepossibilityofobtainingbiodegrad- Thisarticleisanopenaccessarticle ablesystemswithoutcompromisingmechanicalrobustness,whichiskeyinindustrial distributed under the terms and applications[9]. conditionsoftheCreativeCommons Asevidencedinthereviewdescribedabove,polylacticacid(PLA)representsapromis- Attribution(CCBY)license(https:// ingalternativetomostlynon-degradablecommoditypolymers;moreover,themodulation creativecommons.org/licenses/by/ 4.0/). Nanomaterials2022,12,2500.https://doi.org/10.3390/nano12142500 1 https://www.mdpi.com/journal/nanomaterials Nanomaterials2022,12,2500 ofitsmechanicalperformancecanbecontrolledwithnanocompositesformationandspe- cificprocessingmethods.Messinetal.developedmulti-nanolayerednanocompositesvia thecoextrusionofpolylacticacidandpoly(butylenesuccinate-co-butyleneadipate)filled withnanoclaysinordertoobtainenhancedwaterbarrierproperties[10].Sonsecaetal.de- velopedplasticizedPLAnanocompositeswithpotentialapplicationforuseasantibacterial foodpackagingdegradablematerials,incorporatingsilvernanoparticlesobtainedfroma greensynthesisprocedure.Thesamematerialsweredemonstratedtobeusefulasshape memorynanocompositesforpotentialmedicalapplication,thankstothesynergisticeffect oflacticacidoligomer(OLA)andsilvernanoparticles.TheincorporationofOLAasaplasti- cizerlocatedtheglasstransitionofthesystemneartothephysiologicalone,whilethesilver nanoparticlesfastenedtherecoveryprocessandimpartedantimicrobialactivity[11,12]. Nazmuletal. producedscalableenvironmentallyfriendlysmartinteractivetextilesby meansofmeltspunthermoplasticconductiveyarnsbasedonPLA,polypropylene(PP), andtheirmixtures(PLA/PP)[13]. Insummary,thisSpecialIssuepresentsseveralexamplesofthelatestadvancesin functionalbiodegradablenanocompositesfordifferentapplications. Wewouldliketo thankallauthorsforcontributingtothiscollection,andwehopereaderswillfindthe contentinteresting,enjoyable,anduseful. Funding:ThisresearchwasfundedbySpanishMinistryofScienceandInnovation(AEIMICINN/ FEDER);ProjectsMAT2016-78437-R,MAT2017-88123-PandPCIN-2017-036andbytheValencian AutonomousGovernment,GeneralitatValenciana,GVA(GV/2021/182). Acknowledgments:A.S.acknowledgesher“APOSTD/2018/228”and“PAID-10-19”postdoctoral contractsfromtheEducation,Research,CultureandSportCouncilfromtheGovernmentofValencia andfromthePolytechnicUniversityofValencia,respectively.C.E.acknowledgesIJCI-2015-26432 contractfromMICINN. ConflictsofInterest:Theauthorsdeclarenoconflictofinterest. References 1. PlasticsEuropeMarketResearchGroup(PEMRG)andConversionMarket&StrategyGmbH.PlasticsEuropePlasticstheFact 2021.2021.Availableonline:https://plasticseurope.org/knowledge-hub/plastics-the-facts-2021/(accessedon20June2022). 2. EuropeanCommission,Directorate-GeneralforResearchandInnovation.ACircularEconomyforPlastics:ResearchandInnovation forSystemicChange;PublicationsOfficeoftheEuropeanUnion:LuxembourgCity,Luxembourg,2020;Availableonline:https: //data.europa.eu/doi/10.2777/192216(accessedon20June2022). 3. Rai,P.;Mehrotra,S.;Priya,S.;Gnansounou,E.;Sharma,S.K.RecentAdvancesintheSustainableDesignandApplicationsof BiodegradablePolymers.Bioresour.Technol.2021,325,124739.[CrossRef][PubMed] 4. Abioye,A.A.;Fasanmi,O.O.;Rotimi,D.O.;Abioye,O.P.;Obuekwe,C.C.;Afolalu,S.A.;Okokpujie,I.P.ReviewoftheDevelopment ofBiodegradablePlasticfromSyntheticPolymersandSelectedSynthesizedNanoparticleStarches. J.Phys. Conf. Ser. 2019, 1378,42064.[CrossRef] 5. Hwang,S.Y.;Yoo,E.S.;Im,S.S.TheSynthesisofCopolymers,BlendsandCompositesBasedonPoly(ButyleneSuccinate).Polym. J.2012,44,1179–1190.[CrossRef] 6. Liu,H.;Jian,R.;Chen,H.;Tian,X.;Sun,C.;Zhu,J.;Yang,Z.;Sun,J.;Wang,C.ApplicationofBiodegradableandBiocompatible NanocompositesinElectronics:CurrentStatusandFutureDirections.Nanomaterials2019,9,950.[CrossRef][PubMed] 7. Su,S.;Kang,P.M.SystemicReviewofBiodegradableNanomaterialsinNanomedicine.Nanomaterials2020,10,656.[CrossRef] [PubMed] 8. Echeverría,C.;Mijangos,C.AWaytoPredictGoldNanoparticles/PolymerHybridMicrogelAgglomerationBasedonRheological Studies.Nanomaterials2019,9,1499.[CrossRef][PubMed] 9. Bardot,M.;Schulz,M.D.BiodegradablePoly(LacticAcid)NanocompositesforFusedDepositionModeling3dPrinting.Nanoma- terials2020,10,2567.[CrossRef][PubMed] 10. Messin,T.;Follain,N.;Lozay,Q.;Guinault,A.;Delpouve,N.;Soulestin,J.;Sollogoub,C.;Marais,S.BiodegradablePla/Pbsa MultinanolayerNanocomposites:EffectofNanoclaysIncorporationinMultinanolayeredStructureonMechanicalandWater BarrierProperties.Nanomaterials2020,10,2561.[CrossRef][PubMed] 11. Sonseca,A.;Madani,S.;Rodríguez,G.;Hevilla,V.;Echeverría,C.;Fernández-García,M.;Muñoz-Bonilla,A.;Charef,N.;López, D.MultifunctionalPLABlendsContainingChitosanMediatedSilverNanoparticles:Thermal,Mechanical,Antibacterial,and DegradationProperties.Nanomaterials2020,10,22.[CrossRef] 2 Nanomaterials2022,12,2500 12. Sonseca,A.;Madani,S.;Muñoz-Bonilla,A.;Fernández-García,M.;Peponi,L.;Leonés,A.;Rodríguez,G.;Echeverría,C.;López, D.BiodegradableandAntimicrobialPla–OlaBlendsContainingChitosan-MediatedSilverNanoparticleswithShapeMemory PropertiesforPotentialMedicalApplications.Nanomaterials2020,10,1065.[CrossRef] 13. NazmulIslam,G.M.;Collie,S.;Qasim,M.;AzamAli,M.HighlyStretchableandFlexibleMeltSpunThermoplasticConductive YarnsforSmartTextiles.Nanomaterials2020,10,2324.[CrossRef] 3