ebook img

Frustrated Bose condensates in optical lattices PDF

10 Pages·0.24 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Frustrated Bose condensates in optical lattices

Frustrated Bosecondensates inopticallattices T. Ðuric´ and D.K.K. Lee BlackettLaboratory, ImperialCollegeLondon, PrinceConsortRoad, LondonSW72AZ,UnitedKingdom (Dated:January13,2010) WestudytheBose-condensed ground statesof bosons inatwo-dimensional optical latticeinthepresence offrustrationduetoaneffectivevectorpotential,forexample, duetolatticerotation. Weuseamappingtoa large-S frustratedmagnettostudyquantumfluctuationsinthecondensedstate.Quantumeffectsareintroduced 0 by considering a 1/S expansion around the classical ground state. The large-S regime should be relevant 1 tosystemswithmanyparticlespersite. Asthesystemapproaches theMottinsulatingstate,theholedensity 0 becomessmall.Ourlarge-S resultsshowthat,evenwhenthesystemisverydilute,theholesremaina(partially) 2 condensedsystem. Moreover, thesuperfluiddensityiscomparabletothecondensatedensity. Inotherwords, the large-S regime does not display an instability to noncondensed phases. However, for cases with fewer n than 1/3 flux quantum per latticeplaquette, we find that the fractional condensate depletion increases as the a J systemapproachestheMottphase,givingrisetothepossibilityofanoncondensedstatebeforetheMottphase isreachedforsystemswithsmallerS. 3 1 PACSnumbers:03.75.Lm,03.75.Mn,75.10.Jm,75.10.-b,75.45.+j ] s a I. INTRODUCTION ationsaroundtheclassicalstate. Inotherwords,weworkun- g derthe assumptionthat quantumeffectsdo notchangequal- - t itatively the nature of the ordering obtained for the classical n Bosonicatomsinopticallatticescandisplaysuperfluidand groundstates. Mathematically,thismeansthatwewillwork a Mott insulating phases. If the system is rotated, then, in the u corotatingframe,thisisequivalenttointroducinganeffective inalarge-S generalizationofthespinmodelandperforman q magneticfieldproportionaltotherotationfrequency1,2. This expansionin1/S toobtainthequantumeffects. Althoughour . originalmodelcorrespondsto smallS, the large-S approach t isnottheonlymeanstointroduceavectorpotentialtoasys- a canbejustifiediftheperturbativeseriesin1/S converges13–17. tem of neutral atoms. This can also be achieved3–6 through m Inthosecases, aspinwavecalculationmaygiveaccuratere- theinteractionofatomicelectricandmagneticmomentswith - sults. d an externalelectromagnetic field (Aharonov-Casherand dif- n ferential Aharonov-Bohm effects). For atoms trapped in an o opticallatticeintwo distinctinternalstates, a scheme7 using We will study how quantum fluctuations affect the order c twoadditionalRamanlaserscombinedwiththelatticeaccel- parameter, off-diagonal long-range order (ODLRO) and the [ eration or inhomogeneous static electric field has also been superfluidfractionfor differentdegreesof frustrationfor the 2 proposed. whole range of incommensurate filling. In the spin analog, v Bosonic atoms in an optical lattice can be modeled by theincommensuratefillingcorrespondstoarangeofZeeman 0 a Bose-Hubbard model. A vector potential introduces an field h up to some frustration-dependentcritical field h (α). 0 c Aharonov-Bohmphaseforthebosonhoppingfromsitetosite. Ourcalculationsweremadeforα=0,1/4,1/3,and1/2. 6 The wave function is “frustrated” if the phase twists around 1 . each plaquette add up to 2πα for some non-integerα. For a 6 OurresultsshowthatthedegreeofBosecondensationde- Bose condensateata low effectivemagneticfield, thisintro- 0 creasesashincreasestowardh . However,itdoesnotvanish ducesvorticesintothecondensate.Thepresenceoftheoptical c 9 at the limit of h = h (α). This applies to several quantities 0 lattice2,8interfereswiththeformationofanAbrikosovvortex c that we have calculated: the reduction in the order parame- : lattice1,9andquantumfluctuationsmaybeenhanced.Further, v ter,thereductioninthelargesteigenvalueofthedensityma- if the number of vortices becomes comparable to the num- i trix, and the sum of the non-macroscopiceigenvaluesof the X berofbosons,thesystemmayenterintoafractionalquantum density matrix. We also find similar conclusions for the su- r Hallstate1,2,8,10–12.However,thisrequiresaveryhighrotation a frequency or a low atomic density which is hard to achieve perfluidfraction—frustrationreducesthesuperfluidfraction in the comparison with the unfrustrated case but there is no experimentally. vanishingofthesuperfluidfractionatanyh≤h . In thiswork, we will focuson theexperimentallyaccessi- c bleregimewhereacondensatestillexiststoexaminewhether there are any precursors to such states in a frustrated Bose The paper is organized as follows. We will outline the condensate.Westudyatwo-dimensional(2D)Bose-Hubbard model and the mapping to the quantum spin model in Sec. modelonasquarelatticeforarangeofincommensuratefill- II. We describe the classical ground states (S → ∞) of the ing. In the regimeof strongon-site interaction, the modelis spin analog in Sec. III. We introduce the excitations above analogoustoaquantumeasy-planeferromagnetandthefrus- the groundstate in a 1/S expansionin Sec. IV. In Secs. V tration encouragesspin twists, i.e., the formationof vortices andVI,wecalculatethedegreeofcondensationandsuperflu- inthegroundstate. Wefindtheclassicalgroundstatesusing idityinthesystem. We makeconclusionsaboutourstudyin MonteCarlomethodsandthenwestudythequantumfluctu- thefinalsection. 2 II. MODELHAMILTONIAN The spin raising and loweringoperatorscorrespondto the creation and annihilation of hard-core bosons, respectively. Foratomstrappedinatwo-dimensionalopticallattice, we This mappingis possible because hard-corebosonshave the canfocusonasingle-bandlatticemodelifthetunnelingtbe- samecommutationrelationsasS = 1/2operators: operators tween wells within the lattice is weak comparedto the level ondifferentsitescommutebutoperatorsonthesamesitean- spacings in each well. If the tunneling is also weak com- ticommute. Themotionoftheatomstranslatestopseudospin pared to the repulsive energy U for two atoms in one well, exchange.TheeffectiveHamiltonianis thenstronglycorrelatedgroundstates,suchastheMottinsu- J latoMr,aanpypdeiaffrearsewntemlleatshaodsusphearvfleuibdesetnatpe.roposed to introduce Heff =−2Xhiji (cid:16)eiφijSˆi+Sˆ−j +H.c.(cid:17)−hXj Sˆzj (4) frustration in the atomic motion. This can be done through rotating the system1 or through the interaction of the atoms where J = 2t, Sˆ± = Sˆx ±Sˆy are thespin-1/2operators,and withanexternalelectromagneticfield3–6. Ifthereisonlyone h= µrepresentsianeffeictiveiZeemanfield. Notethatthisisa species of bosonic atoms, then the system is described by a ferromagnetintheabsenceoffrustration(φ =0). ij Bose-Hubbardmodelonasquarelatticewithacomplexhop- Itisnotsimpletoattacktheinfinite-U limitoftheproblem pingmatrixelement: HHubbard = H(0)+V with of hard-coreboson directly. Instead, we will relax the hard- coreconditionandallowformorethanonebosononeachsite. U H(0) = aˆ†aˆ (aˆ†aˆ −1)− µaˆ†aˆ , Wewillallow2S atomsoneachsitesothateachsitehas2S+1 2 X i i i i X i i possiblestates. Thiscorrespondstoa spin-S modelwith the i i T = −tXhiji (cid:16)eiφijaˆ†jaˆi+H.c.(cid:17), (1) Horaigminilatolnbioasnognisv,eaˆn,iannEdqt.hi(s4s).piTn-hSe mreoladtieolnissheipstabbeltiwsheeedn vthiae theHolstein-Primakoffrepresentation: where µ is the chemical potential and hiji denotes nearest- neighborsites iand j. The complextunnelingcouplingsap- Sˆi+ =cˆ†i(2S −cˆ†icˆi)1/2, Sˆiz =cˆ†icˆi−S. (5) pearintheHubbardHamiltonianduetothepresenceoftheef- fectivevectorpotentialA~.Whenanatommovesfromalattice wherecˆiareoperatorswithbosoniccommutationsandarees- siteatR~ toaneighboringsiteatR~ ,itwillgainanAharonov- sentially the original bosons aˆi of the Bose-Hubbard model. i j ThelimitofS → ∞ correspondstotheclassicallimitofthe Bohmphase model.Morespecifically,weneedS →∞whileJS andhre- R~j mainconstantsothatexchangeandZeemanenergiesremain φ = A~·d~r, (2) comparable. ij Z R~i Mathematically, the large-S limit provides a systematic way to control the quantum fluctuations in this problem. For neutral atoms with electric moments d~ and a magnetic e Quantum fluctuations can be introduced (see later) in a 1/S momentsd~m in an externalelectromagneticfield (E~,B~), A~ = expansionundertheassumptionthatthoseeffectsdonotalter (d~m×E~+d~e×B~)/~c3–6. Forarotatinglattice,A~=mΩ~ ×~r/~, significantlythenatureoftheorderingobtainedfortheclassi- where Ω~ is the rotation frequency and m is the mass of the calgroundstates. We willpresentresultstoleadingorderin atom. Inthiswork,westudythecaseoftheuniformeffective 1/S (i.e., we do not set S = 1/2 afterward). Physically, the magneticfield B~ = ∇~ ×A~ = Bzˆ. Results will dependon the leading-orderresultsinS shouldberelevanttoopticallattices frustration parameter α, defined as the flux per plaquette in withmanyatomspersiteonaverage. unitsof2π, Therelaxationofthemaximumsiteoccupancyto2S from a model of hard-core bosons is not the only way to control α= 1 B~·dS~ = 1 φ (3) correlationsintheBose-Hubbardmodelatweaktunneling.A 2πZ plaq 2πX ij similarmethodologyis toconsidera densebutweaklyinter- plaq actinglimitoftheBose-Hubbardmodel.Withn¯ beingtheav- wheretheintegrationisoverthesurfaceofalatticeplaquette eragebosondensitypersite,thislimitisgivenbyU →0and andthesumisperformedanticlockwiseovertheedgesofthe n¯ →∞whileUn¯remainsconstant18. Then,onecandevelopa squareplaquette. Thisparameterisonlymeaningfulbetween theoryasanexpansionin1/n¯. Thisapproachproducesresults 0and1becauseafluxof2πthroughaplaquettehasnoeffect veryclosetothe1/S expansionconsideredhere. onthesystem. Frustrationismaximalatα=1/2. NotethatourHamiltonianhaslocalgaugeinvariance.Ifwe Inthispaper,wewilluseamagneticanalogyastheframe- changethe gauge, A~ → A~+∇~χ, then the Hamiltonian stays worktostudytheBose-Hubbardproblem.Thisismosteasily unchanged if the boson and spin operators pick up a phase motivatedinthelimitofU/t→∞,eventhoughwewillnotbe change. workingdirectlyinthislimit. Insuchalimit,thesiteoccupa- tioncanberestrictedtozeroandoneboson.Then,theHilbert φij →ei(χj−χi)φij, aˆi →eiχiaˆi, Sˆi− →eiχiSˆi−. (6) space of possible states can be mapped onto a spin-half XY model. The two S states of the pseudospin correspond to Inthespinlanguage,thiscorrespondstoarotationofχ inthe z i whetheralatticecontainsabosonornot. xyplaneinspinspace. 3 Beforeproceedingtodiscussthepropertiesofthissystem, ism = [1−(h/h )2]1/2. This xymagnetizationcorresponds xy c wepointthatwemaygeneralizethistoanopticallatticecon- tosuperfluidityintheoriginalsingle-speciesHubbardmodel. taining two species of bosonic atoms, such as two hyperfine ThezmagnetizationintheSz directionM = NhSzi= Nh/h z i c states. Letusdenotethetwospeciesbyσ =↑,↓. Thisallows correspondstothenumberofatomsintheopticallatticemea- formoredegreesoffreedominthemodelHamiltonian. Two sured from half filling. For higher Zeeman fields (h > h ), c atomicspeciesmay,ingeneral,seedifferentlatticepotentials M becomessaturated and there is no xy magnetization: the z sothatthetunnelingmatrixelementsandchemicalpotentials lattice is a Mott insulator at one atom per site (or empty for couldbedifferentforthetwospecies. TheHubbardmodelfor h<−h ). c thetwospecieswouldbeoftheformH = H(0)+T with Inthepresenceofthevectorpotential,theorderingpattern Hubbard oftheclassicalgroundstatedependsontheeffectivemagnetic H(0) = 1 U aˆ† aˆ† aˆ aˆ − µ aˆ† aˆ , fluxthrougheachplaquette. Thisintroducesvorticesintothe 2iX,σ,σ′ σσ′ iσ iσ′ iσ′ iσ Xi,σ σ iσ iσ spinpattern. Italso reducesthecriticalfield hc belowwhich the xymagnetizationisnonzero. AsshownbyPázmándiand T = − tσ eiφσijaˆ†jσaˆiσ+H.c. , (7) Domanski19, hc is givenbyis the maximaleigenvalueof the σXhiji (cid:16) (cid:17) matrix JSeiφij. Thisis shownin Fig. 1. Note that this result for h is not restricted to the classical limit but applies for where the on-site interaction U , the exchange interaction c σσ′ allvaluesof thespin S. The spectrumof allthe eigenvalues t ,thetunnelingphaseφ ,andthechemicalpotentialµ have σ ij σ of this matrix as a function of the frustration parameter α is allacquiredadependenceontheinternalstatesofthebosons. theHofstadterspectrum20 asdiscussedoriginallyintermsof If we specialize to the case of one atom per site with strong two-dimensionaltight-bindingelectronsin the quantumHall on-site interactions, we can rule out zero or double occupa- regime. tion of each lattice site. In other words, the system should be a Mott insulator but the atom occupyingeach site can be of either internal state. Thus, each site has a spin-half de- 4.0æ æ gree of freedom: Sˆ+ = aˆ†aˆ would create a ↑ state and æ æ i i↑ i↓ æ æ Sˆi− = aˆ†i↓aˆi↑ would create a ↓ state. In this phase, the rela- 3.5 ææ ææ tive motion of the two species of atoms is still possible: the h æ æ motionofonespeciesinonedirectionmustbeaccompanied €€€€c€€ æ æ by the motion of the other species in the opposite direction. JS 3.0 ææ ææ Tsihtei.sIcnotuhneteprsfleouwdoskpeienplsanthgeuaogcec,utphaistiiosnsiamtpolnyespaitnomexcahtaenagceh. æææææææææææææææææææææææ 2.5 Therefore,inthisMottphasefortheoveralldensity,wehave again an easy-plane magnet. If we tune the interactions so that U = U = 2U , then a perturbation theory in t/U 2.0 ↑↑ ↓↓ ↑↓ 0.0 0.2 0.4 0.6 0.8 1.0 bringsustotheeffectivepseudospinHamiltonian4,6described Α byEq. (4)with J = 4t t /U,h = 2 µ −µ +8(t2−t2)/U, ↑ ↓ ↑ ↓ ↑ ↓ andφij =φ↓ij−φ↑ij. (cid:0) (cid:1) FIG.1:CriticalvalueoftheeffectiveZeemanfield,hc(α),asafunc- We can translate the phasesofthe single-speciesHubbard tionof the parameter αbeing theflux per plaquette inunits of 2π. model to this two-species system at unit filling. Superfluid- Forh>h (α)thelatticeisaMottinsulatoratoneatompersite. c ity in the single-species Hamiltonian at an incommensurate fillingcorrespondstosuperfluidityforcounterflowinthetwo- Let us now turn to the classical ground states for h < h . c speciesproblematthecommensuratefillingofoneatomper Writing the local magnetization in spherical polars, hS~ i = i site but with different relative densities of the two species. S(sinθ cosφ,sinθ sinφ,cosθ),theclassicalenergyisgiven i i i i i The advantage of considering this two-species Mott insula- by: toristhattheremaybemoredegreesoffreedomintuningthe parametersofpseudospinHamiltonian,includingtheexplicit Eclass ≃−JS2 sinθisinθjcos φi−φj+φij −hS cosθi. breakingofSz →−Szspinsymmetry. Xhiji (cid:16) (cid:17) Xi (8) Minimizingthis energy, we find that the ground-statevalues forφ andθ,Φ andΘ,mustsatisfy,foreachsitei, III. CLASSICALGROUNDSTATES i i i i JS sinΘ sinΘ sin Φ −Φ +φ = 0 i j i j ij TodeterminethegroundstatesofthepseudospinHamilto- jX=i+δ (cid:16) (cid:17) nian(4),weconsiderfirsttheS → ∞classicalgroundstates JS cosΘ sinΘ cos Φ −Φ +φ = hsinΘ (9) for the spin system. We assume that h > 0 without loss of i j i j ij i generality. In theabsenceofthe vectorpotential, the system jX=i+δ (cid:16) (cid:17) isaneasy-planeferromagnet. Forh < h = 4JS,theground wherethesummationistakenoverthefourneighboringsites c state has a uniform magnetization in the xy plane in spin of i: j = i + δ. The first equation conserves the spin cur- space. The xy component of the magnetization at each site rent(oratomiccurrentintheoriginalHubbardmodel)ateach 4 node. ThesecondspecifiesthatthereisnoneteffectiveZee- manfieldcausingprecessionaroundthezaxisinspinspace. In the original boson language, this ensures a uniform local chemicalpotentialthroughoutthe system (in the Hartreeap- proximation).Thesystemhasalocalgaugeinvarianceandwe needtofixagaugetoperformournumericalcalculations.We choosetheLandaugaugeA~= B(0,x,0)sothattheAharonov- Bohmphaseφ iszeroonallhorizontalbondsofthelattice. ij TheclassicalgroundstatesareobtainedbyusingtheMetropo- -1.0 æ æ FIG.3: Vortexpatternsfor(a)α = 1/3and(b)α = 1/2(chequer- ass2(cid:144)HLNJS--21..05ìæà ìæàòôìæàòôìæàòô ìæàòô ìæàòô ìàòô ììææààòòôô ìàòô ìæàòô ìæàòô ìæàòôìæàòôìæàòô ìæà oαo2bntπoh=a.etrhFrd1rode/crie2oaαngdtfiohi=ffnegraeu1elrr./eaa3ntriteoth3nte)w×r,eow3adirtesehug2beαqnlabet=retaiicnt6eegsdstetahagnetedenflseauwrlxaoitntpehgesrvtbaopotrletathsiqcu(devesiaottagrettoicnioneansleuscn)o.airtnsFthbooeefr cl ò ò 0 E -2.5ô ççç ç ç ç çç ç ç ç ççç ô ç ç -3.0 0.0 0.2 0.4 0.6 0.8 1.0 Α FIG.2:Groundstateenergyoftheclassicalspinsystemasafunction ofthefrustrationparameterα(fluxperplaquettedividedby2π)for differentZeemanfieldsh/JS = 0,0.5,1,1.5,2and2.5(fromtopto bottom).Theenergyissymmetricaroundthepointα=1/2. lisalgorithm. Forrationalvaluesofthefrustrationparameter FIG.4: Vortexpatternsfortwogroundstatesatα=1/4andh=0. α = p/q, the Monte Carlo simulations are done on nq×nq (a)Currentpatternperiodicon4×4square, phasepatternperiodic latticeswithperiodicboundaryconditions. Inmostcases,we on 8×8 square. (b) Current and phase patterns periodic on 4×4 find that the periodicity of the ground state is q ×q. How- squares. ever, we also find groundstates with the periodicity2q×2q in somecases. Theground-stateenergiesasfunctionsofthe fluxthroughaplaquetteareshowninFig.2. TheHalseyanalysisdoesnotcovercaseswhenα<1/3.At We can also examine the vortex pattern in these ground α = 1/4andh = 0 wefindtwo distinctgroundstate config- states. The currenton the bondjoiningsites i and j is given urations(Fig.4)withthesameenergyintheagreementwith by: I = (JS2/~)sinΘ sinΘ sin Φ −Φ +φ . Thecircu- previousresults22–24. Forbothconfigurations,thecurrentpat- ij i j i j ij lationofthesecurrentsaroundeach(cid:16) plaquettegiv(cid:17)esthevortex ternsareperiodicon4×4square.However,thephasepatterns patterns. Theseareshownforα = 1/2,1/3,and1/4inFigs. donothavethesameperiodicity:itis8×8periodicinthecon- 3and4. figurationshowninFig.4(a)but4×4inFig.4(b). Wefind IncaseofazeroZeemanfieldh=0,theclassicalHamilto- statesoftheform[Fig.4(b)]forgeneralhwhensimulations nian(8)hasbeenstudiedextensivelyinthecontextofJoseph- aredoneon4×4latticeswithperiodicboundaryconditions. son junction arrays in the presence of a perpendicular mag- Simulationsdoneonlarger4n×4nlatticesatnonzerohgive neticfield21–23. Halsey21 showedthat,forsimplefractionsin states that contain elements of both structures separated by the range 1/3 ≤ α ≤ 1/2 (e.g., α = 1/2,1/3,2/5,3/7,3/8), domainwalls. SimilarresultswerefoundbyKasamatsu24. thegroundstateshaveaconstantcurrentalongdiagonalstair- cases. Our results for h = 0 agree with these previousstud- ies. ForageneralnonzeroZeemanfield,thegroundstateswe IV. EXCITATIONSPECTRUM foundforα=1/2and1/3alsohavecurrentsindiagonalstair- cases. WecannotobtainanalyticgeneralizationoftheHalsey In this section, we compute the excitations of the system solutionforthecaseoffiniteh. Wefindthegroundstatesby usingthespin-wavetheory.Quantumeffectsareincorporated usingtheMetropolisalgorithm.Atfiniteh,thephasepatterns intheproblembyconsideringfinitevaluesofS. Wewillper- forα = 1/2andα = 1/3aresimilartothephasepatternsfor formanexpansionin powersof the parameter1/S andkeep theHalseystatesath = 0butSz hasspatialvariationaround onlythetermsofthelowestorderin1/S intheHamiltonian. afiniteaverage. Even though we are interested in S ∼ O(1), the large-S ap- 5 proachisinsomecasesjustifiedduetothegoodconvergence ThisisdiagonalizedbytheHofstadtersolution20. Theexcita- of the perturbative series13–17. Spin-wave approximationre- tionspectrumhasanenergygapofh−h andthegroundstate c lies on an assumption that the introduction of the quantum correspondstoavacuumoftheseexcitations,i.e.,thereareno fluctuationsdoesnotqualitativelychangethenatureoftheor- zero-pointfluctuationsinthegroundstate. dering obtained for classical ground state. We use this ap- For lower Zeeman fields (h < h ), Hamiltonian (12) con- c proach to investigate whether the Bose condensate becomes tainingtheanomaloustermswillhavezero-pointfluctuations unstableinanyparameterregime. which reduce the magnetizationfrom the classical value. In Starting from the classical ordered state, we use the the language of the original bosons, the fluctuations would Holstein-Primakofftransformationto representthe spin flips depletethecondensate.TheHamiltoniancanbediagonalized away fromthe classical groundstate in termsof the bosonic byageneralizedBogoliubovtransformation, operators. We willkeeponlythequadratictermsinthe final bosonic Hamiltonian. It is convenientto introducethe oper- bˆ = u αˆ +v∗ αˆ† , bˆ† = v αˆ +u∗ αˆ† i im m im m i im m im m ators~Sˆ suchthatSˆx directionisparallelto theclassicalspin Xm (cid:16) (cid:17) Xm (cid:16) (cid:17) i i (15) directionateachsite form = 1,...,I foralatticeofI sites. Toensurethatthenew Sˆx sinΘ cosΦ sinΘ sinΦ cosΘ Sˆx operatorsαˆm obeybosoniccommutationrelations,werequire i i i i i i i thematricesuandvtoobey:uu†−vv† =1anduvT−vuT =  SSˆˆyizi =−co−ssΘinicΦoisΦi −cocsoΘsiΦsiinΦi sin0Θi  SSˆˆiiyz(1,0) 0nq.euwadToroaptoeicrbatitanoinrtsh,aewbdeoiascgoaonnnicwalorizipteeedrtahHteoarpmsaairlsttooHnˆfita=hnecˆiH†nMatmecˆr,imlwtoshneoirafentMh(1es2ies) and use the Holstein-Primakoff representation of these new a 2I ×2I matrix andcˆ = (b,b†) with bˆ = (bˆ ,bˆ ,...). Then, spinoperatorsintermsofthebosonicoperators,bˆ , 1 2 i itcanbeshownthatHamiltonian(12)isdiagonalizedintothe form Sˆ+ ≡Sˆy+iSˆz =(2S −bˆ†bˆ )1/2bˆ , Sˆx =S −bˆ†bˆ . (11) i i i i i i i i i Hˆ = E + ǫ αˆ†αˆ (16) Notethatagaugetransformationcorrespondstoarotationof 0 X m m m m the spin S~ aroundthe z axis. Since these new spin variables arealignedwiththeclassicalspinconfiguration(whateverthe witheigenenergiesǫm ifwesolvetheeigenvalueproblem, choiceofgauge),thenewspin~Sisinvariantundersuchrota- ǫ tion.Therefore,thebosonicoperators,bˆi,aregaugeinvariant. (cid:18)M− 2Σz(cid:19)q=0. (17) Underassumptionthatthezero-pointfluctuationsaresmall so that the average numberof spin flips at each site is small where qm = (u1m,...,uNm,v∗1m,...,v∗Nm) contains the co- comparedtoS,wecanapproximate[1−bˆ†ibˆi/(2S)]1/2asunity. efficients of the Bogoliubov transformation and Σz = TheresultingHamiltonian,toorderO(S0),is {{1,0},{0,−1}}. We computed the spectrum for 60 × 60, 120 × 120 and Hˆ ≃ Eclass+ A−bˆ bˆ −A+bˆ bˆ†+H.c. + Cbˆ†bˆ , (12) 240×240 lattices with periodic boundary conditions, using 0 Xhiji (cid:16) ij i j ij i j (cid:17) Xi i i i theclassicalgroundstatesfromourMonteCarlosimulations discussedintheprevioussection. Ourresultsfor60×60lat- with tices and the frustration parameters α = 0, 1/2, 1/3, and 1/4 areshowninFig.5. Ourresultforα=1/4iscalculatedusing A± = JS (cosΘ cosΘ ±1)c ±i(cosΘ ±cosΘ )s , the4×4periodicclassicalgroundstatepresentedinFig.4(b). ij 2 i j ij i j ij As can be seen in Fig. 5 at h < h (α), the spectrum is h i c C = JS sinΘ sinΘ c +hcosΘ (13) gapless. Thelow-energyexcitationsaretheGoldstonemodes i i j ij i X relatedtothespontaneoussymmetrybreakingoftheglobalro- j=i+δ tationsymmetryinthexy-planeinspinspace.Inotherwords, wherec =cos(Φ−Φ +φ ),s =sin(Φ −Φ +φ )andEclass thespinsystemhaslong-rangemagnetizationinthe xyplane is the girjound-statie valjue iojf thiej classicail enjergyij[Eq. (08)]. inspinspace. WecanusehS+iastheorderparameter. Inthe i Note that all the coefficients in this Hamiltonian are gauge languageofthe originalbosonicmodel, thiscorrespondsthe invariant, confirming our above conclusion that the bosonic breakingofU(1)symmetryduetoBosecondensation.Above operators,bˆi,aregaugeinvariant. hc, thereis nosymmetrybreakingandwe see an energygap ThisHamiltonianalsoreducescorrectlytothecaseofh > inthesystemproportionaltoh−hcasdiscussedabove. hc(i.e.,Θi =0)whenthereisnoneedforrealigningtheaxisof The ground-state energy E0 [Eq. (16)] can be written as quantization[Eq. (10)]. Inthatcase, the“anomalous”terms E0class+∆E0,where∆E0 =∆+ mǫm/2isaquantumcorrec- bˆbˆ and bˆ†bˆ† in the Hamiltonianvanish. Then, the spin exci- tion to the classical ground-statPe energy [Eq. (8)] with ∆ = tationsaredescribedbyatight-bindingmodelwithmagnetic −JS hijicos(Φi−Φj+φij)forh = 0and−h i1/(2cosΘi) fluxthroughtheplaquettes: for hP, 0. This quantumcorrectionis of ordePrS0 while the classicalenergyis oforderS andso the fractionalchangeis Hˆh≥hc ≃−hNS −JS Xhiji (cid:16)eiφijbˆibˆ†j +H.c.(cid:17)+hXi bˆ†ibˆi. (14) stimonasll∆inE0th/Ee0cllaasrsgfeo-Srsleivmeirta.llWateticcealsciuzleaste(6t0he×r6e0la,t1iv2e0c×or1r2ec0-, 6 ourbosonproblem.Sinceweareconsideringalatticesystem abovehalffilling, itismoremeaningfultoconsiderthe con- densation of vacancies because this is the most appropriate description as h approaches h . (For the two-species model c with counterflow superfluidity, we are considering the con- densationoftheminorityspecies.) Theholedensitymatrixis definedasρh =haa†i. Theexistenceofamacroscopiceigen- ji i j value, N , corresponds to Bose-Einstein condensation. The 0 sumofallnon-macroscopiceigenvaluesgivesthenumberof holesnotincondensateandwecandefinethefractionalcon- densatedepletionastheratioofthenon-macroscopicsumto thetotalnumberofholesN whichisthetraceofthedensity h matrix. Intheanalogoftheeasy-planemagnet,weshouldstudythe spin-spincorrelationfunctionforthespincomponentsin the xy plane: ρ = hSˆ−Sˆ+i. ODLRO correspondsto a non-zero ji i j xy magnetization which is the analog of Bose condensation. Inthe large-S limit, ρ /2S is the analogofthe bosonichole FIG.5:LowenergyexcitationspectrumasafunctionoftheZeeman ji field h for 60× 60 lattices with periodic boundary conditions for densitymatrixρhjiforhclosetohc. frustrationα = 0,1/4,1/3and 1/2. Criticalvaluesh are: h (α = The macroscopic eigenvalue for our spin-spin correlation c c 0) = 4, h (α = 1/4) = 2.828, h (α = 1/3) = 2.732 and h (α = function is, to the leading order in S, given by the classical c c c 1/2) = 2.828. Abovehc,thespectrumhasafiniteenergygap. The valueN0class = i(mixy)2,wherem~ixyistheclassicalvalueofthe spectrum is gapless for h < hc indicating long-range order in the magnetizationPatsitei. Wepresentbelowourresultsforcon- system. densate and the depletion of the condensate, i.e., zero-point fluctuations which decrease the magnetization in the ground state. 240×240)andextrapolateresultstothethermodynamiclimit Theabovediscussionneedstobemodifiedinthepresence showninFig. 6. Ascanbeseen,thequantumcorrectionde- of a vector potential because the density matrices, ρ and ρh, creases to zero as the Zeeman field h approachesthe critical value h . Above h , the ground state is the classical ground arenotgauge-invariantquantities: ρji → ei(χi−χj)ρji underthe c c gauge transformation [Eq. (6)]. However, we can construct statecontainingnozero-pointfluctuations. gauge-invariantanalogs. Moreover,the eigenvaluesofρand ρh are gaugeinvarianteven thoughthe correspondingeigen- 0.06 vectorsarenot. Considerfirstthespin-spincorrelationfunc- tioninthegroundstate 0.05 ss 0.04 ρji = hSˆi−Sˆ+ji=ρcjilass+δρji a cl00.03 ρcjilass = ψ∗iψj with ψi =SeiΦisinΘi (18) E (cid:144) Α=0 E D 0.02 Α=1(cid:144)4 whereρclass istheclassicalvalueofthedensitymatrix(ofor- S ji Α=1(cid:144)3 der S2) and ψ is the classical value of the order parameter 0.01 i Α=1(cid:144)2 (of order S) hSˆ+i. The order parameter itself is reduced by i 0 quantumfluctuations, 0 0.2 0.4 0.6 0.8 1 h(cid:144)hcHΑL 1 hSˆ+i=ψ(1−∆), ∆ = |v |2. (19) i i i i S X im m FIG.6:Quantumcorrectiontotheground-stateenergyasafunction ofh/h (α)forα = 0,1/2,1/3and1/4. h (α)isthecriticalvalueof Thecorrectionδρtothedensitymatrixisgivenby: c c theZeemanfieldhforagivenfrustrationparameterα. S δρji ≃−ρcjilass(∆i+∆j)+ 2ei(Φj−Φi)Xq∗jnqin (20) n V. DENSITYMATRIX whereq =u +v +cosΘ(v −u ),withu andv being in in in i in in in in thecoefficientsfortheBogoliubovtransformation[Eq. (15)]. In this section, we will examine ODLRO in the density Thisdensitymatrixisnotinvariantunderagaugetransforma- matrix25,26. Consider first the case without a vector poten- tion. We obtaina gauge-invariantversionofthe densityma- tial. A macroscopically large eigenvalue of the density ma- trix by expressing it with respect to a gauge-covariantbasis. trixρ signalstheexistenceofBose-Einsteincondensationfor Themostnaturalbasisisthebasisformedbytheeigenvectors ji 7 of the classical density matrix ρclass. The eigenvector corre- correctionandpresentresultsintermsofthecorrectiontothe spondingtothelargesteigenvalueissimplyψ, classicallimitsasfractionsoftheclassicalsolution. i Wecanexploitthelarge-S expansiontocomputetheeigen- ρclassψ = Nclassψ with values of the density matrix. We start with calculating the ji i 0 j Xi quantumcorrectiontothenon-degeneratemacroscopiceigen- N0class =X|ψ∗iψi|2 = S2Xsin2Θi (21) vwaelucea,nNc0a.lcuSliantceethρecjileasisgeisnvlaalrugeesrothfaρnbδyρtjriebatyinagnδoρridnerpeinrtuSr-, i i bation theory. The first-order correction to N is then given 0 where Nclass is simply the classical value of the sum of the by 0 squareofthe xymagnetization(m2 )oneachsite. Itisonthe 1 xy ∆N = ψ∗δρ ψ =δρ˜ (23) orderofNS2ath=0andtendstozeroashreacheshc.Allthe 0 Nclass X i ij j 11 othereigevectorsofρclass haveeigenvaluesofzero. Usingan 0 ij orthonormalsetoftheseeigenvectorsascolumnsforaunitary if the first basis vector for δρ˜ is chosen to be the one corre- matrix U, we can construct a unitary transformation for the spondingtotheclassicalsolutionψ.Thiscorrectionisoforder densitymatrix(ρ→ρ˜,etc.), S,asopposedtoorderS2 fortheclassicalvalue. Ourresults for∆N asafractionofNclassareshowninFig.8. Weseethat 0 0 ρ˜ =U†ρU =ρ˜class+δρ˜. (22) thereductioninN islargestath=0anddecreasestozeroat 0 thecriticalfieldsh (α).Thevanishingofquantumcorrections c whereρ˜class =diag(Nclass,0,...,0).Underthegaugetransfor- ash→h (Θ →0)canbeseendirectlyfromthecoefficients 0 c i mation [Eq. (6)], all the eigenvectorsof ρji pick up a phase A− oftheanomaloustermsinHamiltonian(12)whicharere- change,e.g.,ψi →e−iχiψi sothatUij →e−iχiUij. Itiseasyto sponsible for the zero-point fluctuations in the ground state. checkthatthiscompensatesforthephasechangeinρ sothat ji ρ˜ → ρ˜ . Consequently,allthequantitiesobtainedfromthe ij ij matrix ρ˜ are gauge-invariantand therefore physically mean- 0 ingful.Inthissection,wecalculatetheeffectofquantumfluc- -0.025 Α=0 tuationsonthe density matrix. Thisrequiresonly the eigen- Α=1(cid:144)4 values of ρ˜. They are in fact the same as the eigenvaluesof ss -0.05 Α=1(cid:144)3 ρtrabnescfaourmseattihoen.two density matrices are related by a unitary Ncla0-0.075 Α=1(cid:144)2 (cid:144) Wewillnowpresentournumericalresults. Firstofall,we N0 -0.1 presentthe classical solution for the number of atoms in the D S condensate, Nclass, as given by Eq. (21). This is shown in -0.125 0 Fig.7. We seethatthisdecreasestozeroashisincreasedto -0.15 h (α). c 0 0.2 0.4 0.6 0.8 1 h(cid:144)hcHΑL 1 FIG.8: Quantumcorrection∆N tothethemacroscopiceigenvalue 2L 0.8 of the density matrix as a funct0ion of h/hc(α) for α = 0,1/4,1/3 S I and1/2. Resultshavebeenextrapolatedtothethermodynamiclimit (cid:144)H 0.6 (L→∞).hc(α)isthecriticalvalueoftheZeemanfieldhforagiven lass 0.4 Α=0 frustrationparameterα. c0 Α=1(cid:144)4 N 0.2 Α=1(cid:144)3 We can also calculate the sum of the non-macroscopic Α=1(cid:144)2 eigenvalues, Nout. Thiscorrespondsto thecondensatedeple- tion in the original boson problem. In the S → ∞ limit for 0.2 0.4 0.6 0.8 1 a lattice with I sites, the I −1 non-macroscopiceigenvalues h(cid:144)hcHΑL are all zero. The first-order quantum correctionscan be ob- tainedusingdegenerateperturbationtheory—wecanobtain theeigenvaluesastheeigenvaluesofthe(I −1)-dimensional FIG.7: Thecondensate densityper site, Nclassical/I,intheclassical 0 submatrix δρ˜ for i, j = 2,...,I which excludes the macro- limitforα = 0,1/4,1/3,1/2. (I =numberoflatticesites.) h (α)is ji c scopically occupied state. The sum of these eigenvalues is thecriticalvalueoftheZeemanfieldhforagivenfrustrationparam- eterα. simplythetraceofthesubmatrix: N = δρ˜ , (24) Next, we compute the quantum corrections to the classi- out ii Xi,1 cal solution. In the large-S expansion, these corrections are smallandtheleadingcorrectionsareoforder1/S compared Again,Nout ∝S isoneordersmallerinS thanN0class. Wefind to the classical limit. We have computed this leading-order that,justasclassicalcondensatedensity(Nclass/I)vanishesas 0 8 h→h (α),theout-of-condensatenumber,N ,alsovanishes large-S generalization of the model. In the above, we have c out ash→h (α).However,theratioofthetwoquantitiesremains comparedN with themacroscopiceigenvalueN ≃ Nclass. c out 0 0 finite. Thisratio,N /Nclass,isthefractionaldepletionofthe Strictlyspeaking,inordertodiscussthedepletionofthehole out 0 condensate. This quantity is one of interest in experiments condensate in the original boson model, we should use the which measure the degree of Bose-Einstein condensationby analoguefortheholedensitymatrixandthendividethenum- observing the time of flight of expanding condensates. Our berofholesinthesystem. Asdiscussedabove,thecorrespon- resultsforthisfractionaldepletionN /Nclass,rescaledbyS, dence is simple near h : we should consider N /2S com- out 0 c out areshowninFig.9.Theoccupationofthesenon-macroscopic paredto (S −hSˆzi)=S (1−cosΘ). Thisisqualitatively i i i i similartoPtheresultsplottePdinFig.9. 0.8 VI. SUPERFLUIDDENSITY 0.6 s s a l Bose-Einsteincondensationcanbedefinedinequilibrium. c N00.4 On the other hand, superfluidity is related to the transport (cid:144) t Α=0 properties of the system. Those two phenomena are related u o N Α=1(cid:144)4 through the phase of the macroscopic wave function (order S 0.2 Α=1(cid:144)3 parameter).Thesuperflowoccurswhenthephaseofthewave Α=1(cid:144)2 functionvariesinspace. Inthissection,we calculatethesu- perfluid density for our system as a response to an external 0 0.2 0.4 0.6 0.8 1 phase twist. The superfluiddensity, a characteristic quantity h(cid:144)hcHΑL thatdescribesthesuperfluid,measuresthephasestiffnessun- deran imposedphasevariationanddiffersfromzeroonlyin FIG.9: Fractionaldepletion N /Nclass forα = 0,1/4,1/3and1/2 the presence of the phase ordering. We find the superfluid andasafunctionofh/h (α). hout(α)0isthecriticalvalueoftheZee- fractionfollowingthecalculationsofRothandBurnett28 and c c manfieldhfor agiven frustrationparameter α. Resultshavebeen Reyetal.29 wherethesuperfluiddensityiscalculatedforthe extrapolatedtothethermodynamiclimit(L→∞). Bose-Hubbard model with real couplings. Our results show that the superfluid fraction is reduced in the presence of the modesisalsoduetotheanomaloustermsintheHamiltonian. frustration. Thisagainshouldvanishash → h . However,Fig.9 shows Thesuperfluiddensityintroducedbyconsideringachange c that the occupationremains a finite fractionof Nclass even at in the free energy of the system under imposed phase 0 the critical field h . In terms of the original boson model, variations28–30 is equivalent to the helicity modulus30 which c thisresultsuggeststhatcondensatedepletionremainsafinite differs from zero only for ordered-phase configurations and fractionofthetotalnumberofholesevenastheholedensity is consequently an indicator of the long-range phase coher- decreasestozeroath . Ourresultsatzerofrustrationagrees ence of the system. The definition is also equivalent to the c withpreviouswork17,27. definition of the superfluid density in terms of the wind- Weobservethatthisfractionaldepletiondecreasesmonot- ing numberswhich is used in the path-integralMonte Carlo ically as we increase the Zeeman field h from zero to h for methods31–33 and to Drude weight or charge stiffness which c α = 0and1/2. Forα = 1/3,thefractionaldepletionappears describesd.c.conductivity34–38. to have zero slope as a function of h near h . Interestingly, Letusconsiderasystemofsize L inthe xdirection. One c x forα = 1/4,therelativedepletionbecomesanon-monotonic waytoachievethephasetwististoimposethetwistedbound- function of the Zeeman field — the fractional depletion in- aryconditionsonthewavefunctiondescribingthesystem. If creases when h is approached. In fact, if we formally set weassumethatthephasetwistisimposedalongthe x direc- c S = 1/2,thecondensatedepletionevenreachesunitybefore tionthetwistedboundaryconditionsare h reachesh . Aswe will see inthe nextsection, thischange c inbehaviorforα=1/4isalsoseeninthesuperfluidfraction. ΨΦ¯ ~r ,...,~r +L xˆ,... =eiΦ¯ΨΦ¯ ~r ,...,~r,... (25) 1 i x 1 i Wediscussthisfurtherinourconcludingremarks. (cid:0) (cid:1) (cid:0) (cid:1) We note that N , −∆N . In other words, the trace of with respect to all coordinates of the wave function. Let us out 0 thedensitymatrixchangesduetoquantumfluctuations. This introduceaunitarytransformation means that, in the quantum magnet, there is more than one possiblemeasureof“condensation”inthegroundstate. The UΦ¯ =ePiiχ(~ri) with Φ¯ =χ ~r+Lxxˆ −χ ~r . (26) discrepancycanbe tracedto the quantumfluctuationsforSz (cid:0) (cid:1) (cid:0) (cid:1) ateachsite:Trρ= hSˆ+Sˆ−i= [S(S+1)−h(Sˆz)2i+hSˆzi]. The untwisted wave function which satisfies the periodic i i i i i i ForS = 1/2,thisisPsimply (1P/2+hSˆzi),correspondingto boundary conditions Ψ(~r1,...,~ri + Lxxˆ,...) = Ψ(~r1,...,~ri,...) i i is related to the twisted wave function via the unitary trans- thetotalbosonnumberinthPeoriginalmodelwhichisacon- servedquantity. However,foranyS > 1/2,themean-square formation UΦ¯ as |ΨΦ¯i = UΦ¯|Ψi. The Schrödinger equation fluctuation in the local z-componentwill alter the total trace for the system with twisted boundary conditions, Hˆ|ΨΦ¯i = ofthedensitymatrix. Inotherwords,thisisanartifactofour EΦ¯|ΨΦ¯i, can then be rewritten as Hˆ |Ψi = EΦ¯|Ψi where the Ψ¯ 9 twistedHamiltonianis VΦ¯ = Φ¯Jˆ/I −Φ¯2Tˆ /2I2. Calculating the ground-state en- x x x x ergyforthesystem withimposedsmalltwist withinthesec- HˆΦ¯ =UΦ†¯HˆUΦ¯. (27) ondorderperturbationtheoryandusing Eq. (28), we obtain the followingexpressionforthe superfluiddensity as a frac- In other words, the eigenvalues of the twisted Hamiltonian tionofthecondensatedensity, f = I I n /N : withperiodicboundaryconditionsarethesameaseigenvalues s x y s 0 oftheoriginalHamiltonianwithtwistedboundaryconditions. 1 |hψ |Jˆ|ψ i|2 1 fs =−N0J hψ0|Tˆx|ψ0i+2Xν,0 Eνν−x E00  , Φ¯ ≪π(,30) whereN ≃ Nclassinthelarge-S limitandψ areeigenstatesof 0.8 0 0 ν originaluntwistedHamiltonianwithν=0labelingtheground state. In terms of the original boson model, N corresponds 0.6 0 s to the number of condensed particles or holes (for h < 0 or f 0.4 Α=0 h>0).Thefirsttermcorrespondstothediamagneticresponse Α=1(cid:144)4 of the condensate while the second term corresponds to the 0.2 Α=1(cid:144)3 paramagneticresponseinvolvingexcitedstates. Α=1(cid:144)2 The results obtained for the superfluid fraction within the Bogoliubov approximation are shown in Fig. 10. The lead- 0 0.2 0.4 0.6 0.8 1 ingtermduetoquantumeffectscomesfromtheparamagnetic h(cid:144)hcHΑL terminEq.(30).ThisisoforderS0. Intheabsenceoffrustra- tion(α = 0), thesystemishomogenousandthesystem con- FIG.10: Superfluiddensityasafractionoftheclassicalcondensate servesmomentum. ThismeansthattheeigenstatesareBloch density Nclass/I as a function h/h (α) for the frustration parameter states corresponding to different momenta. As a result, the 0 c α = 0,1/4,1/3 and 1/2. h (α) is thecritical value of the Zeeman currentmatrixelementinEq. (30),whichcannotcoupledif- c fieldhforagivenfrustrationparameterα. ferentmomenta,vanishes.Moreover,thekineticenergyinthe groundstateisinitselfproportionaltoN .Inthebosonmodel, 0 The superfluid velocity is proportional to the order- thismeansthatthe superfluidfractioncorrespondssimply to parameter phase gradient and an additional phase variation the kinetic energy per hole. This is a quantity which is in- χ(~r) will change the superfluid velocity by ∆~v = ~∇~χ(~r)/m dependent of h and so the superfluid density is the same as s in the continuous system. When the imposed phase gradi- thecondensatedensityinthelarge-S limitatzerofrustration. ent is small so that other excitations except increase in the (However,1/S correctionswillchangetheresult,givingasu- velocity of the superflow can be neglected the change in the perfluiddensitylargerthanthecondensatedensityforgeneral ground-stateenergycanbeapproximatedby∆E =−P~·∆~v + h, but fs → 1 as h → hc.) Similarly, the currentmatrix ele- g s M (∆~v )2/2,withM =mN beingthetotalmassofthesuper- mentvanishesforthefullyfrustratedcase (α = 1/2). Inthis s s s s case, frustration reduces the superfluid fraction in α = 1/2 fluidpartofthesystem. Herewe choosealinearphasevari- ationalongthe xˆ direction, χ(~r) = Φ¯x/L . Replacing~2/2m case to around 70%. For α = 1/3 and 1/4, an increase in x theZeemanfieldhresultsinalargerreductioninthefraction forthecontinuoussystembyJ/2forour2Ddiscretelatticewe obtainthefollowingexpressionforthesuperfluiddensity28 fs atvaluesofh closerto hc(α). Thatcanbeseen in Fig.10 fortheinhomogeneouscasesofα = 1/3and1/4. Asforthe I ∂2E (Φ¯) condensatedepletion,wenotethatthesuperfluiddensityasa ns = IxJ ∂Φ¯g2 Φ¯=0 , (28) fractionofthecondensatedensitydoesnotvanishash→hc. y (cid:12) (cid:12) Wealsonotethatthesuperfluiddensitybehavesdifferently (cid:12) where Ix,y = Lx,y/a with a being the lattice spacing. The forα = 1/3and1/4comparedtoα = 0and1/2. The same twistedHamiltonianisofthesameformastheuntwistedone qualitative change in behavior was observedfor the conden- onlywithφij replacedbyφij−Φ¯. Underassumptionthatthe satedepletioncalculatedinSec. V. phasetwist Φ¯ ≪ π we can calculatethe groundstate energy of the twisted Hamiltonian perturbatively. Expanding eiΦ¯/Lx uptothesecondorderinΦ¯ thetwistedspinHamiltonianbe- VII. CONCLUSION comes HΦ¯ = H+ Φ¯ Jˆ − Φ¯2Tˆ , (29) We have studied the ground state for bosonic atoms in a I x 2I2 x frustrated optical lattice by mapping the problem to a frus- x x trated easy-plane magnet. Using a large-S approach, we where Jˆx = iJ i(eiφii+xSˆi+Sˆi−+x −H.c.)/2 is the paramagnetic further introduce quantum effects under the assumption that currentoperatoPrand Tˆx = −J i(eiφii+xSˆi+Sˆi−+x +H.c.)/2 cor- thoseeffectsdonotchangequalitativelythenatureoftheor- respondstothekinetic-energyoPperatorforthehoppinginthe deringobtainedfortheclassicalgroundstates. Weexamined x direction. The terms in the Hamiltonian above that con- our results for any precursorto the non-superfluidor uncon- tain the twist angle can be treated as a small perturbation densedstates. 10 Wehavefoundthatfrustrationcandecreasethedepletionof intriguingto note that this case does not have a Halsey-type thecondensateandthesuperfluidfraction.However,thefrac- classical groundstate and in fact has two degenerateground tionaldepletionofthecondensateandthesuperfluidfraction stateswithdifferentphasepatterns.Onecanspeculatethatthe remainfiniteforallincommensuratefilling[h < h (α)]. The motionofdomainwallsbetweenthetwodifferentphasepat- c behaviorofthefractionalcondensatedepletionandsuperfluid ternsmaycontributetoaroutetodecondensationand/orloss fraction as a functionof filling has interesting behavior. We ofsuperfluidity. find that the cases of α = 0 and 1/2 behave differently from the cases of α = 1/3 and 1/4. Surprisingly, for the cases of Finally,wenotethatfractionalquantumHallstatesareex- smallerα,thefractionalcondensatedepletionbecomesanon- pected when the numberof vortices becomes comparable to monotonic function of the filling, decreasing as we increase thenumberofatomsorholesintheBose-Hubbardmodel. In h from zero but eventually increases as h → h . In fact, if ourlarge-S theory,thebosonnumberisproportionaltoS and c weformallysetS =1/2,thenthecomputedfractionaldeple- sothequantumHallregime,ifitexistsinsuchatheory,exists tion exceeds100%forthe α = 1/4case as h approachesh . only when h − h ∼ 1/S. Therefore, one might expect the c c We also have some evidence that the same behavior occurs condensate depletion or the reduction in the superfluid frac- in the α = 1/6 case for small system sizes. In other words, tiontobelargeash → h . Wedonotfindthisdirectlyinour c ourresultsraisethepossibility,forα<1/4,ofasecond-order perturbativetheoryin1/S. However,ourresultsforthefluc- phasetransitiontoanon-condensedstatewherequantumfluc- tuationsaroundnon-Halsey-typegroundstatessuggestthatan tuationsarelargeenoughtodestroyBosecondensation. Itis instabilitytoanon-condensedstatemaybepossible. 1 N.R.Cooper,Adv.Phys.57,539(2008). (1990). 2 R.Bhat,M.Krämer,J.Cooper,andM.J.Holland,Phys.Rev.A 19 F.Pázmándi,andZ.Domanski,J.Phys.A26,L689(1993). 76,043601(2007). 20 D.R.Hofstadter,Phys.Rev.B14,2239(1976). 3 C. Furtado, J. R. Nascimento, and L. R. Ribeiro, Phys. Lett. A 21 T.C.Halsey,Phys.Rev.B31,5728(1985). 358,336(2006). 22 J.P.StraleyandG.M.Barnett,Phys.Rev.B48,3309(1993). 4 J.K.Pachos,Phys.Lett.A344,441(2005). 23 S.TeitelandC.Jayaprakash,Phys.Rev.Lett.51,1999(1983). 5 J.K.PachosandE.Rico,Phys.Rev.A70,053620(2004). 24 K.Kasamatsu,Phys.Rev.A79,021604(R)(2009). 6 A.Kay,D.K.K.Lee,J.K.Pachos,M.B.Plenio,M.E.Reuter, 25 C.N.Yang,Rev.Mod.Phys.34,694(1962). andE.Rico,Opt.Spectrosc.99,339(2005). 26 O.PenroseandL.Onsager,Phys.Rev.104,576(1956). 7 D.Jaksch,andP.Zoller,NewJ.Phys.5,56(2003). 27 I.HenandM.Rigol,Phys.Rev.B80,134508(2009). 8 A.S.Sørensen,E.Demler,andM.D.Lukin,Phys.Rev.Lett.94, 28 R.Roth,andK.Burnett,Phys.Rev.A68,023604(2003). 086803(2005). 29 A.M.Rey,K.Burnett,R.Roth,M.Edwards,C.J.Williams,and 9 J. E. Williams and M. J. Holland, Nature (London) 401, 568 C.W.Clark,J.Phys.B36,825(2003). (1999). 30 M.E.Fisher,M.N.Barber,andD.Jasnow,Phys.Rev.A8,1111 10 N.K.WilkinandJ.M.F.Gunn,Phys.Rev.Lett.84,6(2000). (1973). 11 N.R.Cooper,N.K.Wilkin,andJ.M.F.Gunn,Phys.Rev.Lett. 31 E.L.PollockandD.M.Ceperley,Phys.Rev.B36,8343(1987). 87,120405(2001). 32 A. Paramekanti, N. Trivedi, and M. Randeria, Phys. Rev. B 57, 12 E. H. Rezayi, N. Read, and N. R. Cooper, Phys. Rev. Lett. 95, 11639(1998). 160404(2005). 33 R. T. Scalettar, G. Batrouni, P. Denteneer, F. Hebert, A. Mura- 13 C.M.Canali,S.M.Girvin,andM.Wallin,Phys.Rev.B45,10131 matsu,M.Rigol,V.Rousseau,andM.Troyer,J.LowTemp.Phys. (1992). 140,315(2005). 14 J.I.Igarashi,Phys.Rev.B46,10763(1992). 34 D.Poilblanc,Phys.Rev.B44,9562(1991). 15 A. V. Chubukov, S. Sahdev, and T. Senthil, J. Phys.: Condens. 35 W.Kohn,Phys.Rev.133,A171(1964). Matter6,8891(1994). 36 D.J.Scalapino,S.R.White,andS.C.Zhang,Phys.Rev.Lett.68, 16 M. Kollar, I. Spremo, and P. Kopietz, Phys. Rev. B 67, 104427 2830 (1992); D. J.Scalapino, S.R.White, and S.Zhang, Phys. (2003). Rev.B47,7995(1993). 17 K. Bernardet, G. G. Batrouni, J.–L. Meunier, G. Schmid, M. 37 P.J.H.Denteneer,Phys.Rev.B49,6364(1994). Troyer,andA.Dorneich,Phys.Rev.B65,104519(2002). 38 B.S.ShastryandB.Sutherland,Phys.Rev.Lett.65,243(1990). 18 D.K.K.LeeandJ.M.F.Gunn,J.Phys.:Condens.Matter2,7753

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.