ebook img

From Primordial Quantum Fluctuations to the Anisotropies of CMBR PDF

147 Pages·2006·0.815 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview From Primordial Quantum Fluctuations to the Anisotropies of CMBR

Ann. Phys. (Leipzig)15,No.10–11,701–845(2006)/DOI10.1002/andp.200610212 From primordial quantum fluctuations to the anisotropies ∗ of the cosmic microwave background radiation NorbertStraumann∗∗ InstituteforTheoreticalPhysics,UniversityofZurich,8057Zurich,Switzerland Received25May2005,accepted17January2006byA.Wipf Publishedonline22May2006 Keywords Cosmology,inflation,cosmologicalperturbations,CMBR,darkenergy. PACS 98.80-k,98.70.Vc,98.80.Cq,95.36+x,95.35+d These lecture notes cover mainly three connected topics. In the first part we give a detailed treatment of cosmologicalperturbationtheory.Thesecondpartisdevotedtocosmologicalinflationandthegeneration ofprimordialfluctuations.Inpartthreeitwillbeshownhowtheseinitialperturbationevolveandproduce the temperature anisotropies of the cosmic microwave background radiation. Comparing the theoretical predictionfortheangularpowerspectrumwiththeincreasinglyaccurateobservationsprovidesimportant cosmologicalinformation(cosmologicalparameters,initialconditions). (cid:1)c 2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim Contents 0 EssentialsofFriedmann-Lemaˆıtremodels 702 0.1 Friedmann-Lemaˆıtrespacetimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 702 0.1.1 Spacesofconstantcurvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703 0.1.2 CurvatureofFriedmannspacetimes . . . . . . . . . . . . . . . . . . . . . . . . . . . 703 0.1.3 EinsteinequationsforFriedmannspacetimes . . . . . . . . . . . . . . . . . . . . . . 704 0.1.4 Redshift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705 0.1.5 Cosmicdistancemeasures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 706 0.2 Luminosity-redshiftrelationforTypeIasupernovas . . . . . . . . . . . . . . . . . . . . . . 708 0.2.1 Theoreticalredshift-luminosityrelation . . . . . . . . . . . . . . . . . . . . . . . . . 708 0.2.2 TypeIasupernovasasstandardcandles . . . . . . . . . . . . . . . . . . . . . . . . . 712 0.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713 0.2.4 Systematicuncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714 0.3 Thermalhistorybelow100MeV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715 PartI:Cosmologicalperturbationtheory 719 1 Basicequations 720 1.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 720 1.1.1 Decompositionintoscalar,vector,andtensorcontributions . . . . . . . . . . . . . . . 720 1.1.2 Decompositionintosphericalharmonics . . . . . . . . . . . . . . . . . . . . . . . . . 721 1.1.3 Gaugetransformations,gaugeinvariant amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 722 1.1.4 Parametrizationofthemetricperturbations . . . . . . . . . . . . . . . . . . . . . . . 722 ∗ BasedonlecturesgivenatthePhysik-Combo,inHalle,LeipzigandJena,wintersemester2004/5. ∗∗ E-mail:[email protected] (cid:1)c 2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim 702 N.Straumann:Cosmologicalperturbationtheory 1.1.5 Geometricalinterpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 723 1.1.6 Scalarperturbationsoftheenergy- momentumtensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725 1.2 Explicitformoftheenergy-momentumconservation . . . . . . . . . . . . . . . . . . . . . 727 1.3 Einsteinequations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 728 1.4 Extensiontomulti-componentsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 736 1.5 AppendixtoChapter1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 744 2 Someapplicationsofcosmologicalperturbationtheory 750 2.1 Non-relativisticlimit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 751 2.2 Largescalesolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 752 2.3 Solutionof(2.6)fordust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 754 2.4 Asimplerelativisticexample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 754 PartII:Inflationandgenerationoffluctuations 756 3 Inflationaryscenario 756 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 756 3.2 Thehorizonproblemandthegeneralideaofinflation . . . . . . . . . . . . . . . . . . . . . 756 3.3 Scalarfieldmodels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 760 3.3.1 Power-lawinflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762 3.3.2 Slow-rollapproximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763 3.4 Whydidinflationstart? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764 4 Cosmologicalperturbationtheoryforscalarfieldmodels 764 4.1 Basicperturbationequations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765 4.2 Consequencesandreformulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 768 5 Quantization,primordialpowerspectra 772 5.1 Powerspectrumoftheinflatonfield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 772 5.1.1 Powerspectrumforpowerlawinflation . . . . . . . . . . . . . . . . . . . . . . . . . 774 5.1.2 Powerspectrumintheslow-rollapproximation . . . . . . . . . . . . . . . . . . . . . 776 5.1.3 Powerspectrumfordensityfluctuations . . . . . . . . . . . . . . . . . . . . . . . . . 778 5.2 Generationofgravitationalwaves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 779 5.2.1 Powerspectrumforpower-lawinflation . . . . . . . . . . . . . . . . . . . . . . . . . 782 5.2.2 Slow-rollapproximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 782 5.2.3 Stochasticgravitationalbackgroundradiation . . . . . . . . . . . . . . . . . . . . . . 783 5.2.4 Numericalresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 786 5.3 AppendixtoChapter5: Einsteintensorfortensorperturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 786 PartIII:Microwavebackgroundanisotropies 788 6 Tightcouplingphase 790 6.1 Basicequations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 791 6.2 Analyticalandnumericalanalysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 795 6.2.1 Solutionsforsuper-horizonscales . . . . . . . . . . . . . . . . . . . . . . . . . . . . 796 6.2.2 Horizoncrossing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 796 6.2.3 Sub-horizonevolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 799 6.2.4 Transferfunction,numericalresults . . . . . . . . . . . . . . . . . . . . . . . . . . . 800 (cid:1)c 2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim www.ann-phys.org Ann. Phys. (Leipzig)15,No.10–11(2006) 703 7 BoltzmannequationinGR 801 7.1 One-particlephasespace,Liouvilleoperatorforgeodesicspray . . . . . . . . . . . . . . . . 802 7.2 ThegeneralrelativisticBoltzmannequation . . . . . . . . . . . . . . . . . . . . . . . . . . 805 7.3 Perturbationtheory(generalities) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 806 7.4 Liouvilleoperatorinthelongitudinalgauge . . . . . . . . . . . . . . . . . . . . . . . . . . 808 7.5 Boltzmannequationforphotons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 811 7.6 TensorcontributionstotheBoltzmannequation . . . . . . . . . . . . . . . . . . . . . . . . 815 8 ThephysicsofCMBanisotropies 816 8.1 Thecompletesystemofperturbationequations. . . . . . . . . . . . . . . . . . . . . . . . . 816 8.2 Acousticoscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 817 8.3 Formalsolutionforthemomentsθ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 822 l 8.4 Angularcorrelationsoftemperature fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 823 8.5 Angularpowerspectrumforlargescales . . . . . . . . . . . . . . . . . . . . . . . . . . . . 824 8.6 InfluenceofgravitywavesonCMBanisotropies . . . . . . . . . . . . . . . . . . . . . . . . 827 8.7 Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831 8.8 Observationalresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 834 8.9 Concludingremarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 837 Appendices 837 A Randomfields,powerspectra,filtering 837 B CollisionintegralforThomsonscattering 839 C Ergodicityfor(generalized)randomfields 841 Introduction Cosmologyisgoingthroughafruitfulandexcitingperiod.Someofthedevelopmentsaredefinitelyalsoof interesttophysicistsoutsidethefieldsofastrophysicsandcosmology. These lectures cover some particularly fascinating and topical subjects. A central theme will be the current evidence that the recent ( z < 1) Universe is dominated by an exotic nearly homogeneous dark energydensitywithnegativepressure.Thesimplestcandidateforthisunknownso-calledDarkEnergyisa cosmologicalterminEinstein’sfieldequations,apossibilitythathasbeenconsideredduringallthehistory ofrelativisticcosmology.Independentlyofwhatthisexoticenergydensityis,onethingiscertainsincea longtime:Theenergydensitybelongingtothecosmologicalconstantisnotlargerthanthecosmological criticaldensity,andthusincrediblysmallbyparticlephysicsstandards.Thisisaprofoundmystery,since weexpectthatallsortsofvacuumenergiescontributetotheeffectivecosmologicalconstant. Sincethisissuchanimportantissueitshouldbeofinteresttoseehowconvincingtheevidenceforthis findingreallyis,orwhetheroneshouldremainsceptical.Muchofthisisbasedontheobservedtemperature fluctuationsofthecosmicmicrowavebackgroundradiation(CMB).Adetailedanalysisofthedatarequires aconsiderableamountoftheoreticalmachinery,thedevelopmentofwhichfillsmostspaceofthesenotes. Sincethisaudienceconsistsmostlyofdiplomaandgraduatestudents,whosemaininterestsareoutside astrophysicsandcosmology,Idonotpresupposethatyouhadalreadysomeserioustrainingincosmology. However,Idoassumethatyouhavesomeworkingknowledgeofgeneralrelativity(GR).Asasource,and forreferences,Iusuallyquotemyrecenttextbook[1]. InanopeningchapterthosepartsoftheStandardModelofcosmologywillbetreatedthatareneededfor themainpartsofthelectures.Moreonthiscanbefoundatmanyplaces,forinstanceintherecenttextbooks oncosmology[2–6]. www.ann-phys.org (cid:1)c 2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim 704 N.Straumann:Cosmologicalperturbationtheory InPartIwewilldevelopthesomewhatinvolvedcosmologicalperturbationtheory.Theformalismwill laterbeappliedtotwomaintopics:(1)Thegenerationofprimordialfluctuationsduringaninflationaryera. (2)Theevolutionoftheseperturbationsduringthelinearregime.AmaingoalwillbetodeterminetheCMB powerspectrum. 0 EssentialsofFriedmann-Lemaˆıtremodels ForreasonsexplainedintheIntroductionItreatinthisopeningchaptersomestandardmaterialthatwillbe neededinthemainpartsofthesenotes.Inaddition,animportanttopicalsubjectwillbediscussedinsome detail, namely the Hubble diagram forType Ia supernovas that gave the first evidence for an accelerated expansionofthe‘recent’andfutureuniverse.MostreaderscandirectlygotoSect.0.2,wherethisistreated. 0.1 Friedmann-Lemaˆıtrespacetimes Thereisnowgoodevidencethatthe(recentaswellastheearly)Universe1is–onlargescales–surprisingly homogeneousandisotropic.Themostimpressivesupportforthiscomesfromextendedredshiftsurveysof galaxiesandfromthetrulyremarkableisotropyofthecosmicmicrowavebackground(CMB).IntheTwo DegreeField(2dF)GalaxyRedshiftSurvey,2completedin2003,theredshiftsofabout250’000galaxies have been measured. The distribution of galaxies out to 4 billion light years shows that there are huge clusters,longfilaments,andemptyvoidsmeasuringover100millionlightyearsacross.Butthemapalso showsthattherearenolargerstructures.ThemoreextendedSloanDigitalSkySurvey(SDSS)hasalready producedverysimilarresults,andwillintheendhavespectraofaboutamilliongalaxies3. OnearrivesattheFriedmann(Lemaˆıtre-Robertson-Walker)spacetimesbypostulatingthatforeachob- server,movingalonganintegralcurveofadistinguishedfour-velocityfieldu,theUniverselooksspatially isotropic. Mathematically, this means the following: Let Iso (M) be the group of local isometries of a x Lorentzmanifold(M,g),withfixedpointx∈M,andletSO3(ux)bethegroupofalllineartransforma- tions of the tangent space T (M) which leave the 4-velocity u invariant and induce special orthogonal x x transformationsinthesubspaceorthogonaltou ,then x {Txφ: φ∈Isox(M), φ(cid:1)u=u}⊇SO3(ux) (φ denotesthepush-forwardbelongingtoφ;see[1,p.550]).In[7]itisshownthatthisrequirementimplies (cid:1) that(M,g)isaFriedmannspacetime,whosestructurewenowrecall.Notethat(M,g)isthenautomatically homogeneous. AFriedmannspacetime(M,g)isawarpedproductoftheformM = I ×Σ,whereI isanintervalof R,andthemetricgisoftheform g =−dt2+a2(t)γ, (1) such that (Σ,γ) is a Riemannian space of constant curvature k = 0,±1.The distinguished time t is the cosmictime,anda(t)isthescalefactor(itplaystheroleofthewarpfactor(seeAppendixBof[1])).Instead oftweoftenusetheconformaltimeη,definedbydη =dt/a(t).Thevelocityfieldisperpendiculartothe slicesofconstantcosmictime,u=∂/∂t. 1 ByUniverseIalwaysmeanthatpartoftheworldarounduswhichisinprincipleaccessibletoobservations.Inmyopinionthe ‘Universeasawhole’isnotascientificconcept.Whentalkingaboutmodeluniverses,wedeveloponpaperorwiththehelp ofcomputers,Itendtouselowercaseletters.Inthisdomainweare,ofcourse,freetomakeextrapolationsandventureinto speculations,butoneshouldalwaysbeawarethatthereisthedangertobedriftedintoakindof‘cosmo-mythology’. 2 ConsulttheHomePage:http://www.mso.anu.edu.au/2dFGRS. 3 Foradescriptionandpictures,seetheHomePage:http://www.sdss.org/sdss.html. (cid:1)c 2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim www.ann-phys.org Ann. Phys. (Leipzig)15,No.10–11(2006) 705 0.1.1 Spacesofconstantcurvature Forthespace(Σ,γ)ofconstantcurvature4thecurvatureisgivenby R(3)(X,Y)Z =k[γ(Z,Y)X −γ(Z,X)Y]; (2) incomponents: R(3) =k(γ γ −γ γ ). (3) ijkl ik jl il jk Hence,theRiccitensorandthescalarcurvatureare (3) (3) R =2kγ , R =6k. (4) jl jl Forthecurvaturetwo-formsweobtainfrom(3)relativetoanorthonormaltriad{θi} Ω(3) = 1R(3) θk∧θl =kθ ∧θ (5) ij 2 ijkl i j (θ =γ θk).Thesimplyconnectedconstantcurvaturespacesareinndimensionsthe(n+1)-sphereSn+1 i ik (k = 1),theEuclideanspace(k = 0),andthepseudo-sphere(k = −1).Non-simplyconnectedconstant curvature spaces are obtained from these by forming quotients with respect to discrete isometry groups. (Fordetailedderivations,see[8].) 0.1.2 CurvatureofFriedmannspacetimes Let{θ¯i}beanyorthonormaltriadon(Σ,γ).OnthisRiemannianspacethefirststructureequationsread (weusethenotationin[1];quantitiesreferringtothis3-dim.spaceareindicatedbybars) dθ¯i+ω¯i ∧θ¯j =0. (6) j On(M,g)weintroducethefollowingorthonormaltetrad: θ0 =dt, θi =a(t)θ¯i. (7) Fromthisand(6)weget a˙ dθ0 =0, dθi = θ0∧θi−aω¯i ∧θ¯j. (8) a j ComparingthiswiththefirststructureequationfortheFriedmannmanifoldimplies a˙ ω0i∧θi =0, ωi0∧θ0+ωij ∧θj = aθi∧θ0+aω¯ij ∧θ¯j, (9) whence a˙ ω0 = θi, ωi =ω¯i . (10) i a j j The worldlines of comoving observers are integral curves of the four-velocity field u = ∂ .We claim t thatthesearegeodesics,i.e.,that ∇ u=0. (11) u Toshowthis(andforotherpurposes)weintroducethebasis{eµ}ofvectorfieldsdualto(7).Sinceu=e0 wehave,usingtheconnectionforms(10), ∇uu=∇e0e0 =ωλ0(e0)eλ =ωi0(e0)ei =0. 4 ForadetaileddiscussionofthesespacesIrefer–forreadersknowingGerman–to[8]or[9]. www.ann-phys.org (cid:1)c 2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim 706 N.Straumann:Cosmologicalperturbationtheory 0.1.3 EinsteinequationsforFriedmannspacetimes Inserting the connection forms (10) into the second structure equations we readily find for the curvature 2-formsΩµ : ν a¨ k+a˙2 Ω0 = θ0∧θi, Ωi = θi∧θj. (12) i a j a2 AroutinecalculationleadstothefollowingcomponentsoftheEinsteintensorrelativetothebasis(7) (cid:1) (cid:2) a˙2 k G00 =3 a2 + a2 , (13) a¨ a˙2 k G11 =G22 =G33 =−2a − a2 − a2, (14) G =0(µ(cid:6)=ν). (15) µν Inordertosatisfythefieldequations,thesymmetriesofG implythattheenergy-momentumtensor µν musthavetheperfectfluidform(see[1,Sect.1.4.2]): Tµν =(ρ+p)uµuν +pgµν, (16) whereuisthecomovingvelocityfieldintroducedabove. Now,wecanwritedownthefieldequations(includingthecosmologicalterm): (cid:1) (cid:2) a˙2 k 3 + =8πGρ+Λ, (17) a2 a2 a¨ a˙2 k −2 − − =8πGp−Λ. (18) a a2 a2 Although the ‘energy-momentum conservation’does not provide an independent equation, it is useful to work this out. As expected, the momentum ‘conservation’is automatically satisfied. For the ‘energy conservation’weusethegeneralform(see(1.37)in[1]) ∇ ρ=−(ρ+p)∇·u. (19) u Inourcasewehavefortheexpansionrate ∇·u=ωλ0(eλ)u0 =ωi0(ei), thuswith(10) a˙ ∇·u=3 . (20) a Therefore,Eq.(19)becomes a˙ ρ˙+3 (ρ+p)=0. (21) a Foragivenequationofstate,p=p(ρ),wecanuse(21)intheform d (ρa3)=−3pa2 (22) da todetermineρasafunctionofthescalefactora.Examples:1.Forfreemasslessparticles(radiation)we havep=ρ/3,thusρ∝a−4.2.Fordust(p=0)wegetρ∝a−3. (cid:1)c 2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim www.ann-phys.org Ann. Phys. (Leipzig)15,No.10–11(2006) 707 WiththisknowledgetheFriedmannequation(17)determinesthetimeevolutionofa(t). Exercise.Showthat(18)followsfrom(17)and(21). Asanimportantconsequenceof(17)and(18)weobtainfortheaccelerationoftheexpansion 4πG 1 a¨=− (ρ+3p)a+ Λa. (23) 3 3 Thisshowsthataslongasρ+3pispositive,thefirsttermin(23)isdecelerating,whileapositivecosmological constantisrepulsive.Thisbecomesunderstandableifonewritesthefieldequationas Λ G =κ(T +T ) (κ=8πG), (24) µν µν µν with Λ TΛ =− g . (25) µν 8πG µν Thisvacuumcontributionhastheformoftheenergy-momentumtensorofanidealfluid,withenergydensity ρΛ = Λ/8πG and pressure pΛ = −ρΛ. Hence the combination ρΛ +3pΛ is equal to −2ρΛ, and is thus negative.Inwhatfollowsweshalloftenincludeinρandpthevacuumpieces. 0.1.4 Redshift AsaresultoftheexpansionoftheUniversethelightofdistantsourcesappearsredshifted.Theamountof redshiftcanbesimplyexpressedintermsofthescalefactora(t). Considertwointegralcurvesoftheaveragevelocityfieldu.Weimaginethatonedescribestheworldline of a distant comoving source and the other that of an observer at a telescope (see Fig. 1). Since light is propagatingalongnullgeodesics,weconcludefrom(1)thatalongtheworldlineofalightraydt=a(t)dσ, wheredσisthelineelementonthe3-dimensionalspace(Σ,γ)ofconstantcurvaturek =0,±1.Hencethe integralontheleftof (cid:3) (cid:3) to dt obs. = dσ, (26) a(t) te source between the time of emission (t ) and the arrival time at the observer (t ), is independent of t and t . e o e o Therefore,ifweconsiderasecondlightraythatisemittedatthetimet +∆t andisreceivedatthetime e e t +∆t ,weobtainfromthelastequation o o (cid:3) (cid:3) to+∆to dt to dt = . (27) a(t) a(t) te+∆te te Forasmall∆t thisgives e ∆t ∆t o = e . a(t ) a(t ) o e Theobservedandtheemittedfrequencesν andν ,respectively,arethusrelatedaccordingto o e ν ∆t a(t ) o = e = e . (28) ν ∆t a(t ) e o o Theredshiftparameterzisdefinedby ν −ν z := e o, (29) ν o www.ann-phys.org (cid:1)c 2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim 708 N.Straumann:Cosmologicalperturbationtheory Observer (t ) o σ d a(t) = dt Integral curve of uµ Source (t ) e Fig.1 RedshiftforFriedmannmodels. andisgivenbythekeyequation a(t ) 1+z = o . (30) a(t ) e Onecanalsoexpressthisbytheequationν·a=constalonganullgeodesic. 0.1.5 Cosmicdistancemeasures Wenowintroduceafurtherimportanttool,namelyoperationaldefinitionsofthreedifferentdistancemea- sures,andshowthattheyarerelatedbysimpleredshiftfactors. IfDisthephysical(proper)extensionofadistantobject,andδisitsanglesubtended,thentheangular diameterdistanceD isdefinedby A D :=D/δ. (31) A IftheobjectismovingwiththepropertransversalvelocityV⊥andwithanapparentangularmotiondδ/dt0, thentheproper-motiondistanceisbydefinition V⊥ D := . (32) M dδ/dt0 Finally,iftheobjecthastheintrinsicluminosityLandF isthereceivedenergyfluxthentheluminosity distanceisnaturallydefinedas D :=(L/4πF)1/2. (33) L Belowweshowthatthesethreedistancesarerelatedasfollows D =(1+z)D =(1+z)2D . (34) L M A Itwillbeusefultointroduceon(Σ,γ)‘polar’coordinates(r,ϑ,ϕ),suchthat dr2 2 2 2 2 2 2 γ = +r dΩ , dΩ =dϑ +sin ϑdϕ . (35) 1−kr2 (cid:1)c 2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim www.ann-phys.org Ann. Phys. (Leipzig)15,No.10–11(2006) 709 r a(t ) t e o o 0 re = = r e r = r r dt e D Fig.2 Spacetimediagramforcosmicdistancemeasures. Oneeasilyverifiesthatthecurvatureformsofthismetricsatisfy(5).(Thisfollowswithoutdoinganywork byusingin[1]thecurvatureforms(3.9)intheansatz(3.3)fortheSchwarzschildmetric.) Toprove(34)weshowthatthethreedistancescanbeexpressedasfollows,ifr denotesthecomoving e radialcoordinate(in(35))ofthedistantobjectandtheobserveris(withoutlossofgenerality)atr =0. a(t0) DA =rea(te), DM =rea(t0), DL =rea(t0)a(t ). (36) e Oncethisisestablished,(34)followsfrom(30). FromFig.2and(35)weseethat D =a(t )r δ, (37) e e hencethefirstequationin(36)holds. Toprovethesecondonewenotethatthesourcemovesinatimedt0apropertransversaldistance a(t ) dD =V⊥dte =V⊥dt0a(t0e). Usingagainthemetric(35)weseethattheapparentangularmotionis dD V⊥dt0 dδ = = . a(te)re a(t0)re Insertingthisintothedefinition(32)showsthatthesecondequationin(36)holds.Forthethirdequation wehavetoconsidertheobservedenergyflux.Inatimedt thesourceemitsanenergyLdt .Thisenergyis e e redshiftedtothepresentbyafactora(te)/a(t0),andisnowdistributedby(35)overaspherewithproper area4π(rea(t0))2(seeFig.2).Hencethereceivedflux(apparentluminosity)is a(t ) 1 1 F =Ldt e , ea(t0) 4π(rea(t0))2 dt0 thus La2(t ) F = e . 4πa4(t0)re2 www.ann-phys.org (cid:1)c 2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim 710 N.Straumann:Cosmologicalperturbationtheory 4 Ω0 = 1, ΩΛ = 0 Ω0 = 0.2, ΩΛ = 0.8 D 3 prop D com z) D 0, ang D( 2 Dlum ) c /0 H Fig. 3 Cosmological distance measures as a ( 1 function of source redshift for two cosmological models. The angular diameter distance D ≡ ang D andtheluminositydistanceD ≡D have A lum L beenintroducedinthissection.Theothertwowill 0 beintroducedlater. 0 0.5 1.0 1.5 2.00 0.5 1.0 1.5 2.0 z Insertingthisintothedefinition(33)establishesthethirdequationin(36).Forlaterapplicationswewrite thelastequationinthemoretransparentform L 1 F = . (38) 4π(rea(t0))2 (1+z)2 Thelastfactorisduetoredshifteffects. Twoofthediscusseddistancesasafunctionofz areshowninFig.3fortwoFriedmannmodelswith differentcosmologicalparameters.Theothertwodistancemeasureswillbeintroducedlater(Sect.3.2). 0.2 Luminosity-redshiftrelationforTypeIasupernovas AfewyearsagotheHubblediagramforTypeIasupernovasgave,asabigsurprise,thefirstseriousevidence foracurrentlyacceleratingUniverse.Beforepresentinganddiscussingcriticallytheseexcitingresults,we developonthebasisoftheprevioussectionsometheoreticalbackground.(Forthebenefitofreaderswho startwiththissectionwerepeatafewthings.) 0.2.1 Theoreticalredshift-luminosityrelation We have seen that in cosmology several different distance measures are in use, which are all related by simpleredshiftfactors.TheonewhichisrelevantinthissectionistheluminositydistanceD .Werecall L thatthisisdefinedby D =(L/4πF)1/2, (39) L whereListheintrinsicluminosityofthesourceandF theobservedenergyflux. Wewanttoexpressthisintermsoftheredshiftzofthesourceandsomeofthecosmologicalparameters. IfthecomovingradialcoordinaterischosensuchthattheFriedmann-Lemaˆıtremetrictakestheform (cid:4) (cid:5) dr2 g =−dt2+a2(t) +r2dΩ2 , k =0,±1, (40) 1−kr2 thenwehave 1 1 Fdt0 =Ldte· 1+z · 4π(rea(t0))2. (cid:1)c 2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim www.ann-phys.org

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.