Ann. Phys. (Leipzig)15,No.10–11,701–845(2006)/DOI10.1002/andp.200610212 From primordial quantum fluctuations to the anisotropies ∗ of the cosmic microwave background radiation NorbertStraumann∗∗ InstituteforTheoreticalPhysics,UniversityofZurich,8057Zurich,Switzerland Received25May2005,accepted17January2006byA.Wipf Publishedonline22May2006 Keywords Cosmology,inflation,cosmologicalperturbations,CMBR,darkenergy. PACS 98.80-k,98.70.Vc,98.80.Cq,95.36+x,95.35+d These lecture notes cover mainly three connected topics. In the first part we give a detailed treatment of cosmologicalperturbationtheory.Thesecondpartisdevotedtocosmologicalinflationandthegeneration ofprimordialfluctuations.Inpartthreeitwillbeshownhowtheseinitialperturbationevolveandproduce the temperature anisotropies of the cosmic microwave background radiation. Comparing the theoretical predictionfortheangularpowerspectrumwiththeincreasinglyaccurateobservationsprovidesimportant cosmologicalinformation(cosmologicalparameters,initialconditions). (cid:1)c 2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim Contents 0 EssentialsofFriedmann-Lemaˆıtremodels 702 0.1 Friedmann-Lemaˆıtrespacetimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 702 0.1.1 Spacesofconstantcurvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703 0.1.2 CurvatureofFriedmannspacetimes . . . . . . . . . . . . . . . . . . . . . . . . . . . 703 0.1.3 EinsteinequationsforFriedmannspacetimes . . . . . . . . . . . . . . . . . . . . . . 704 0.1.4 Redshift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705 0.1.5 Cosmicdistancemeasures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 706 0.2 Luminosity-redshiftrelationforTypeIasupernovas . . . . . . . . . . . . . . . . . . . . . . 708 0.2.1 Theoreticalredshift-luminosityrelation . . . . . . . . . . . . . . . . . . . . . . . . . 708 0.2.2 TypeIasupernovasasstandardcandles . . . . . . . . . . . . . . . . . . . . . . . . . 712 0.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713 0.2.4 Systematicuncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714 0.3 Thermalhistorybelow100MeV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715 PartI:Cosmologicalperturbationtheory 719 1 Basicequations 720 1.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 720 1.1.1 Decompositionintoscalar,vector,andtensorcontributions . . . . . . . . . . . . . . . 720 1.1.2 Decompositionintosphericalharmonics . . . . . . . . . . . . . . . . . . . . . . . . . 721 1.1.3 Gaugetransformations,gaugeinvariant amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 722 1.1.4 Parametrizationofthemetricperturbations . . . . . . . . . . . . . . . . . . . . . . . 722 ∗ BasedonlecturesgivenatthePhysik-Combo,inHalle,LeipzigandJena,wintersemester2004/5. ∗∗ E-mail:[email protected] (cid:1)c 2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim 702 N.Straumann:Cosmologicalperturbationtheory 1.1.5 Geometricalinterpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 723 1.1.6 Scalarperturbationsoftheenergy- momentumtensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725 1.2 Explicitformoftheenergy-momentumconservation . . . . . . . . . . . . . . . . . . . . . 727 1.3 Einsteinequations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 728 1.4 Extensiontomulti-componentsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 736 1.5 AppendixtoChapter1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 744 2 Someapplicationsofcosmologicalperturbationtheory 750 2.1 Non-relativisticlimit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 751 2.2 Largescalesolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 752 2.3 Solutionof(2.6)fordust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 754 2.4 Asimplerelativisticexample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 754 PartII:Inflationandgenerationoffluctuations 756 3 Inflationaryscenario 756 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 756 3.2 Thehorizonproblemandthegeneralideaofinflation . . . . . . . . . . . . . . . . . . . . . 756 3.3 Scalarfieldmodels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 760 3.3.1 Power-lawinflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762 3.3.2 Slow-rollapproximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763 3.4 Whydidinflationstart? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764 4 Cosmologicalperturbationtheoryforscalarfieldmodels 764 4.1 Basicperturbationequations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765 4.2 Consequencesandreformulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 768 5 Quantization,primordialpowerspectra 772 5.1 Powerspectrumoftheinflatonfield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 772 5.1.1 Powerspectrumforpowerlawinflation . . . . . . . . . . . . . . . . . . . . . . . . . 774 5.1.2 Powerspectrumintheslow-rollapproximation . . . . . . . . . . . . . . . . . . . . . 776 5.1.3 Powerspectrumfordensityfluctuations . . . . . . . . . . . . . . . . . . . . . . . . . 778 5.2 Generationofgravitationalwaves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 779 5.2.1 Powerspectrumforpower-lawinflation . . . . . . . . . . . . . . . . . . . . . . . . . 782 5.2.2 Slow-rollapproximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 782 5.2.3 Stochasticgravitationalbackgroundradiation . . . . . . . . . . . . . . . . . . . . . . 783 5.2.4 Numericalresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 786 5.3 AppendixtoChapter5: Einsteintensorfortensorperturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 786 PartIII:Microwavebackgroundanisotropies 788 6 Tightcouplingphase 790 6.1 Basicequations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 791 6.2 Analyticalandnumericalanalysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 795 6.2.1 Solutionsforsuper-horizonscales . . . . . . . . . . . . . . . . . . . . . . . . . . . . 796 6.2.2 Horizoncrossing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 796 6.2.3 Sub-horizonevolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 799 6.2.4 Transferfunction,numericalresults . . . . . . . . . . . . . . . . . . . . . . . . . . . 800 (cid:1)c 2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim www.ann-phys.org Ann. Phys. (Leipzig)15,No.10–11(2006) 703 7 BoltzmannequationinGR 801 7.1 One-particlephasespace,Liouvilleoperatorforgeodesicspray . . . . . . . . . . . . . . . . 802 7.2 ThegeneralrelativisticBoltzmannequation . . . . . . . . . . . . . . . . . . . . . . . . . . 805 7.3 Perturbationtheory(generalities) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 806 7.4 Liouvilleoperatorinthelongitudinalgauge . . . . . . . . . . . . . . . . . . . . . . . . . . 808 7.5 Boltzmannequationforphotons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 811 7.6 TensorcontributionstotheBoltzmannequation . . . . . . . . . . . . . . . . . . . . . . . . 815 8 ThephysicsofCMBanisotropies 816 8.1 Thecompletesystemofperturbationequations. . . . . . . . . . . . . . . . . . . . . . . . . 816 8.2 Acousticoscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 817 8.3 Formalsolutionforthemomentsθ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 822 l 8.4 Angularcorrelationsoftemperature fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 823 8.5 Angularpowerspectrumforlargescales . . . . . . . . . . . . . . . . . . . . . . . . . . . . 824 8.6 InfluenceofgravitywavesonCMBanisotropies . . . . . . . . . . . . . . . . . . . . . . . . 827 8.7 Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831 8.8 Observationalresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 834 8.9 Concludingremarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 837 Appendices 837 A Randomfields,powerspectra,filtering 837 B CollisionintegralforThomsonscattering 839 C Ergodicityfor(generalized)randomfields 841 Introduction Cosmologyisgoingthroughafruitfulandexcitingperiod.Someofthedevelopmentsaredefinitelyalsoof interesttophysicistsoutsidethefieldsofastrophysicsandcosmology. These lectures cover some particularly fascinating and topical subjects. A central theme will be the current evidence that the recent ( z < 1) Universe is dominated by an exotic nearly homogeneous dark energydensitywithnegativepressure.Thesimplestcandidateforthisunknownso-calledDarkEnergyisa cosmologicalterminEinstein’sfieldequations,apossibilitythathasbeenconsideredduringallthehistory ofrelativisticcosmology.Independentlyofwhatthisexoticenergydensityis,onethingiscertainsincea longtime:Theenergydensitybelongingtothecosmologicalconstantisnotlargerthanthecosmological criticaldensity,andthusincrediblysmallbyparticlephysicsstandards.Thisisaprofoundmystery,since weexpectthatallsortsofvacuumenergiescontributetotheeffectivecosmologicalconstant. Sincethisissuchanimportantissueitshouldbeofinteresttoseehowconvincingtheevidenceforthis findingreallyis,orwhetheroneshouldremainsceptical.Muchofthisisbasedontheobservedtemperature fluctuationsofthecosmicmicrowavebackgroundradiation(CMB).Adetailedanalysisofthedatarequires aconsiderableamountoftheoreticalmachinery,thedevelopmentofwhichfillsmostspaceofthesenotes. Sincethisaudienceconsistsmostlyofdiplomaandgraduatestudents,whosemaininterestsareoutside astrophysicsandcosmology,Idonotpresupposethatyouhadalreadysomeserioustrainingincosmology. However,Idoassumethatyouhavesomeworkingknowledgeofgeneralrelativity(GR).Asasource,and forreferences,Iusuallyquotemyrecenttextbook[1]. InanopeningchapterthosepartsoftheStandardModelofcosmologywillbetreatedthatareneededfor themainpartsofthelectures.Moreonthiscanbefoundatmanyplaces,forinstanceintherecenttextbooks oncosmology[2–6]. www.ann-phys.org (cid:1)c 2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim 704 N.Straumann:Cosmologicalperturbationtheory InPartIwewilldevelopthesomewhatinvolvedcosmologicalperturbationtheory.Theformalismwill laterbeappliedtotwomaintopics:(1)Thegenerationofprimordialfluctuationsduringaninflationaryera. (2)Theevolutionoftheseperturbationsduringthelinearregime.AmaingoalwillbetodeterminetheCMB powerspectrum. 0 EssentialsofFriedmann-Lemaˆıtremodels ForreasonsexplainedintheIntroductionItreatinthisopeningchaptersomestandardmaterialthatwillbe neededinthemainpartsofthesenotes.Inaddition,animportanttopicalsubjectwillbediscussedinsome detail, namely the Hubble diagram forType Ia supernovas that gave the first evidence for an accelerated expansionofthe‘recent’andfutureuniverse.MostreaderscandirectlygotoSect.0.2,wherethisistreated. 0.1 Friedmann-Lemaˆıtrespacetimes Thereisnowgoodevidencethatthe(recentaswellastheearly)Universe1is–onlargescales–surprisingly homogeneousandisotropic.Themostimpressivesupportforthiscomesfromextendedredshiftsurveysof galaxiesandfromthetrulyremarkableisotropyofthecosmicmicrowavebackground(CMB).IntheTwo DegreeField(2dF)GalaxyRedshiftSurvey,2completedin2003,theredshiftsofabout250’000galaxies have been measured. The distribution of galaxies out to 4 billion light years shows that there are huge clusters,longfilaments,andemptyvoidsmeasuringover100millionlightyearsacross.Butthemapalso showsthattherearenolargerstructures.ThemoreextendedSloanDigitalSkySurvey(SDSS)hasalready producedverysimilarresults,andwillintheendhavespectraofaboutamilliongalaxies3. OnearrivesattheFriedmann(Lemaˆıtre-Robertson-Walker)spacetimesbypostulatingthatforeachob- server,movingalonganintegralcurveofadistinguishedfour-velocityfieldu,theUniverselooksspatially isotropic. Mathematically, this means the following: Let Iso (M) be the group of local isometries of a x Lorentzmanifold(M,g),withfixedpointx∈M,andletSO3(ux)bethegroupofalllineartransforma- tions of the tangent space T (M) which leave the 4-velocity u invariant and induce special orthogonal x x transformationsinthesubspaceorthogonaltou ,then x {Txφ: φ∈Isox(M), φ(cid:1)u=u}⊇SO3(ux) (φ denotesthepush-forwardbelongingtoφ;see[1,p.550]).In[7]itisshownthatthisrequirementimplies (cid:1) that(M,g)isaFriedmannspacetime,whosestructurewenowrecall.Notethat(M,g)isthenautomatically homogeneous. AFriedmannspacetime(M,g)isawarpedproductoftheformM = I ×Σ,whereI isanintervalof R,andthemetricgisoftheform g =−dt2+a2(t)γ, (1) such that (Σ,γ) is a Riemannian space of constant curvature k = 0,±1.The distinguished time t is the cosmictime,anda(t)isthescalefactor(itplaystheroleofthewarpfactor(seeAppendixBof[1])).Instead oftweoftenusetheconformaltimeη,definedbydη =dt/a(t).Thevelocityfieldisperpendiculartothe slicesofconstantcosmictime,u=∂/∂t. 1 ByUniverseIalwaysmeanthatpartoftheworldarounduswhichisinprincipleaccessibletoobservations.Inmyopinionthe ‘Universeasawhole’isnotascientificconcept.Whentalkingaboutmodeluniverses,wedeveloponpaperorwiththehelp ofcomputers,Itendtouselowercaseletters.Inthisdomainweare,ofcourse,freetomakeextrapolationsandventureinto speculations,butoneshouldalwaysbeawarethatthereisthedangertobedriftedintoakindof‘cosmo-mythology’. 2 ConsulttheHomePage:http://www.mso.anu.edu.au/2dFGRS. 3 Foradescriptionandpictures,seetheHomePage:http://www.sdss.org/sdss.html. (cid:1)c 2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim www.ann-phys.org Ann. Phys. (Leipzig)15,No.10–11(2006) 705 0.1.1 Spacesofconstantcurvature Forthespace(Σ,γ)ofconstantcurvature4thecurvatureisgivenby R(3)(X,Y)Z =k[γ(Z,Y)X −γ(Z,X)Y]; (2) incomponents: R(3) =k(γ γ −γ γ ). (3) ijkl ik jl il jk Hence,theRiccitensorandthescalarcurvatureare (3) (3) R =2kγ , R =6k. (4) jl jl Forthecurvaturetwo-formsweobtainfrom(3)relativetoanorthonormaltriad{θi} Ω(3) = 1R(3) θk∧θl =kθ ∧θ (5) ij 2 ijkl i j (θ =γ θk).Thesimplyconnectedconstantcurvaturespacesareinndimensionsthe(n+1)-sphereSn+1 i ik (k = 1),theEuclideanspace(k = 0),andthepseudo-sphere(k = −1).Non-simplyconnectedconstant curvature spaces are obtained from these by forming quotients with respect to discrete isometry groups. (Fordetailedderivations,see[8].) 0.1.2 CurvatureofFriedmannspacetimes Let{θ¯i}beanyorthonormaltriadon(Σ,γ).OnthisRiemannianspacethefirststructureequationsread (weusethenotationin[1];quantitiesreferringtothis3-dim.spaceareindicatedbybars) dθ¯i+ω¯i ∧θ¯j =0. (6) j On(M,g)weintroducethefollowingorthonormaltetrad: θ0 =dt, θi =a(t)θ¯i. (7) Fromthisand(6)weget a˙ dθ0 =0, dθi = θ0∧θi−aω¯i ∧θ¯j. (8) a j ComparingthiswiththefirststructureequationfortheFriedmannmanifoldimplies a˙ ω0i∧θi =0, ωi0∧θ0+ωij ∧θj = aθi∧θ0+aω¯ij ∧θ¯j, (9) whence a˙ ω0 = θi, ωi =ω¯i . (10) i a j j The worldlines of comoving observers are integral curves of the four-velocity field u = ∂ .We claim t thatthesearegeodesics,i.e.,that ∇ u=0. (11) u Toshowthis(andforotherpurposes)weintroducethebasis{eµ}ofvectorfieldsdualto(7).Sinceu=e0 wehave,usingtheconnectionforms(10), ∇uu=∇e0e0 =ωλ0(e0)eλ =ωi0(e0)ei =0. 4 ForadetaileddiscussionofthesespacesIrefer–forreadersknowingGerman–to[8]or[9]. www.ann-phys.org (cid:1)c 2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim 706 N.Straumann:Cosmologicalperturbationtheory 0.1.3 EinsteinequationsforFriedmannspacetimes Inserting the connection forms (10) into the second structure equations we readily find for the curvature 2-formsΩµ : ν a¨ k+a˙2 Ω0 = θ0∧θi, Ωi = θi∧θj. (12) i a j a2 AroutinecalculationleadstothefollowingcomponentsoftheEinsteintensorrelativetothebasis(7) (cid:1) (cid:2) a˙2 k G00 =3 a2 + a2 , (13) a¨ a˙2 k G11 =G22 =G33 =−2a − a2 − a2, (14) G =0(µ(cid:6)=ν). (15) µν Inordertosatisfythefieldequations,thesymmetriesofG implythattheenergy-momentumtensor µν musthavetheperfectfluidform(see[1,Sect.1.4.2]): Tµν =(ρ+p)uµuν +pgµν, (16) whereuisthecomovingvelocityfieldintroducedabove. Now,wecanwritedownthefieldequations(includingthecosmologicalterm): (cid:1) (cid:2) a˙2 k 3 + =8πGρ+Λ, (17) a2 a2 a¨ a˙2 k −2 − − =8πGp−Λ. (18) a a2 a2 Although the ‘energy-momentum conservation’does not provide an independent equation, it is useful to work this out. As expected, the momentum ‘conservation’is automatically satisfied. For the ‘energy conservation’weusethegeneralform(see(1.37)in[1]) ∇ ρ=−(ρ+p)∇·u. (19) u Inourcasewehavefortheexpansionrate ∇·u=ωλ0(eλ)u0 =ωi0(ei), thuswith(10) a˙ ∇·u=3 . (20) a Therefore,Eq.(19)becomes a˙ ρ˙+3 (ρ+p)=0. (21) a Foragivenequationofstate,p=p(ρ),wecanuse(21)intheform d (ρa3)=−3pa2 (22) da todetermineρasafunctionofthescalefactora.Examples:1.Forfreemasslessparticles(radiation)we havep=ρ/3,thusρ∝a−4.2.Fordust(p=0)wegetρ∝a−3. (cid:1)c 2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim www.ann-phys.org Ann. Phys. (Leipzig)15,No.10–11(2006) 707 WiththisknowledgetheFriedmannequation(17)determinesthetimeevolutionofa(t). Exercise.Showthat(18)followsfrom(17)and(21). Asanimportantconsequenceof(17)and(18)weobtainfortheaccelerationoftheexpansion 4πG 1 a¨=− (ρ+3p)a+ Λa. (23) 3 3 Thisshowsthataslongasρ+3pispositive,thefirsttermin(23)isdecelerating,whileapositivecosmological constantisrepulsive.Thisbecomesunderstandableifonewritesthefieldequationas Λ G =κ(T +T ) (κ=8πG), (24) µν µν µν with Λ TΛ =− g . (25) µν 8πG µν Thisvacuumcontributionhastheformoftheenergy-momentumtensorofanidealfluid,withenergydensity ρΛ = Λ/8πG and pressure pΛ = −ρΛ. Hence the combination ρΛ +3pΛ is equal to −2ρΛ, and is thus negative.Inwhatfollowsweshalloftenincludeinρandpthevacuumpieces. 0.1.4 Redshift AsaresultoftheexpansionoftheUniversethelightofdistantsourcesappearsredshifted.Theamountof redshiftcanbesimplyexpressedintermsofthescalefactora(t). Considertwointegralcurvesoftheaveragevelocityfieldu.Weimaginethatonedescribestheworldline of a distant comoving source and the other that of an observer at a telescope (see Fig. 1). Since light is propagatingalongnullgeodesics,weconcludefrom(1)thatalongtheworldlineofalightraydt=a(t)dσ, wheredσisthelineelementonthe3-dimensionalspace(Σ,γ)ofconstantcurvaturek =0,±1.Hencethe integralontheleftof (cid:3) (cid:3) to dt obs. = dσ, (26) a(t) te source between the time of emission (t ) and the arrival time at the observer (t ), is independent of t and t . e o e o Therefore,ifweconsiderasecondlightraythatisemittedatthetimet +∆t andisreceivedatthetime e e t +∆t ,weobtainfromthelastequation o o (cid:3) (cid:3) to+∆to dt to dt = . (27) a(t) a(t) te+∆te te Forasmall∆t thisgives e ∆t ∆t o = e . a(t ) a(t ) o e Theobservedandtheemittedfrequencesν andν ,respectively,arethusrelatedaccordingto o e ν ∆t a(t ) o = e = e . (28) ν ∆t a(t ) e o o Theredshiftparameterzisdefinedby ν −ν z := e o, (29) ν o www.ann-phys.org (cid:1)c 2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim 708 N.Straumann:Cosmologicalperturbationtheory Observer (t ) o σ d a(t) = dt Integral curve of uµ Source (t ) e Fig.1 RedshiftforFriedmannmodels. andisgivenbythekeyequation a(t ) 1+z = o . (30) a(t ) e Onecanalsoexpressthisbytheequationν·a=constalonganullgeodesic. 0.1.5 Cosmicdistancemeasures Wenowintroduceafurtherimportanttool,namelyoperationaldefinitionsofthreedifferentdistancemea- sures,andshowthattheyarerelatedbysimpleredshiftfactors. IfDisthephysical(proper)extensionofadistantobject,andδisitsanglesubtended,thentheangular diameterdistanceD isdefinedby A D :=D/δ. (31) A IftheobjectismovingwiththepropertransversalvelocityV⊥andwithanapparentangularmotiondδ/dt0, thentheproper-motiondistanceisbydefinition V⊥ D := . (32) M dδ/dt0 Finally,iftheobjecthastheintrinsicluminosityLandF isthereceivedenergyfluxthentheluminosity distanceisnaturallydefinedas D :=(L/4πF)1/2. (33) L Belowweshowthatthesethreedistancesarerelatedasfollows D =(1+z)D =(1+z)2D . (34) L M A Itwillbeusefultointroduceon(Σ,γ)‘polar’coordinates(r,ϑ,ϕ),suchthat dr2 2 2 2 2 2 2 γ = +r dΩ , dΩ =dϑ +sin ϑdϕ . (35) 1−kr2 (cid:1)c 2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim www.ann-phys.org Ann. Phys. (Leipzig)15,No.10–11(2006) 709 r a(t ) t e o o 0 re = = r e r = r r dt e D Fig.2 Spacetimediagramforcosmicdistancemeasures. Oneeasilyverifiesthatthecurvatureformsofthismetricsatisfy(5).(Thisfollowswithoutdoinganywork byusingin[1]thecurvatureforms(3.9)intheansatz(3.3)fortheSchwarzschildmetric.) Toprove(34)weshowthatthethreedistancescanbeexpressedasfollows,ifr denotesthecomoving e radialcoordinate(in(35))ofthedistantobjectandtheobserveris(withoutlossofgenerality)atr =0. a(t0) DA =rea(te), DM =rea(t0), DL =rea(t0)a(t ). (36) e Oncethisisestablished,(34)followsfrom(30). FromFig.2and(35)weseethat D =a(t )r δ, (37) e e hencethefirstequationin(36)holds. Toprovethesecondonewenotethatthesourcemovesinatimedt0apropertransversaldistance a(t ) dD =V⊥dte =V⊥dt0a(t0e). Usingagainthemetric(35)weseethattheapparentangularmotionis dD V⊥dt0 dδ = = . a(te)re a(t0)re Insertingthisintothedefinition(32)showsthatthesecondequationin(36)holds.Forthethirdequation wehavetoconsidertheobservedenergyflux.Inatimedt thesourceemitsanenergyLdt .Thisenergyis e e redshiftedtothepresentbyafactora(te)/a(t0),andisnowdistributedby(35)overaspherewithproper area4π(rea(t0))2(seeFig.2).Hencethereceivedflux(apparentluminosity)is a(t ) 1 1 F =Ldt e , ea(t0) 4π(rea(t0))2 dt0 thus La2(t ) F = e . 4πa4(t0)re2 www.ann-phys.org (cid:1)c 2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim 710 N.Straumann:Cosmologicalperturbationtheory 4 Ω0 = 1, ΩΛ = 0 Ω0 = 0.2, ΩΛ = 0.8 D 3 prop D com z) D 0, ang D( 2 Dlum ) c /0 H Fig. 3 Cosmological distance measures as a ( 1 function of source redshift for two cosmological models. The angular diameter distance D ≡ ang D andtheluminositydistanceD ≡D have A lum L beenintroducedinthissection.Theothertwowill 0 beintroducedlater. 0 0.5 1.0 1.5 2.00 0.5 1.0 1.5 2.0 z Insertingthisintothedefinition(33)establishesthethirdequationin(36).Forlaterapplicationswewrite thelastequationinthemoretransparentform L 1 F = . (38) 4π(rea(t0))2 (1+z)2 Thelastfactorisduetoredshifteffects. Twoofthediscusseddistancesasafunctionofz areshowninFig.3fortwoFriedmannmodelswith differentcosmologicalparameters.Theothertwodistancemeasureswillbeintroducedlater(Sect.3.2). 0.2 Luminosity-redshiftrelationforTypeIasupernovas AfewyearsagotheHubblediagramforTypeIasupernovasgave,asabigsurprise,thefirstseriousevidence foracurrentlyacceleratingUniverse.Beforepresentinganddiscussingcriticallytheseexcitingresults,we developonthebasisoftheprevioussectionsometheoreticalbackground.(Forthebenefitofreaderswho startwiththissectionwerepeatafewthings.) 0.2.1 Theoreticalredshift-luminosityrelation We have seen that in cosmology several different distance measures are in use, which are all related by simpleredshiftfactors.TheonewhichisrelevantinthissectionistheluminositydistanceD .Werecall L thatthisisdefinedby D =(L/4πF)1/2, (39) L whereListheintrinsicluminosityofthesourceandF theobservedenergyflux. Wewanttoexpressthisintermsoftheredshiftzofthesourceandsomeofthecosmologicalparameters. IfthecomovingradialcoordinaterischosensuchthattheFriedmann-Lemaˆıtremetrictakestheform (cid:4) (cid:5) dr2 g =−dt2+a2(t) +r2dΩ2 , k =0,±1, (40) 1−kr2 thenwehave 1 1 Fdt0 =Ldte· 1+z · 4π(rea(t0))2. (cid:1)c 2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim www.ann-phys.org