ebook img

From Newton to Boltzmann: Hard Spheres and Short-range Potentials PDF

149 Pages·2014·1.224 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview From Newton to Boltzmann: Hard Spheres and Short-range Potentials

Zurich Lectures in Advanced Mathematics Edited by Erwin Bolthausen (Managing Editor), Freddy Delbaen, Thomas Kappeler (Managing Editor), Christoph Schwab, Michael Struwe, Gisbert Wüstholz Mathematics in Zurich has a long and distinguished tradition, in which the writing of lecture notes volumes and research monographs plays a prominent part. The Zurich Lectures in Advanced Mathematicsseries aims to make some of these publications better known to a wider audience. The series has three main con- stituents: lecture notes on advanced topics given by internationally renowned experts, graduate text books designed for the joint graduate program in Mathematics of the ETH and the University of Zurich, as well as contributions from researchers in residence at the mathematics research institute, FIM-ETH. Moderately priced, concise and lively in style, the volumes of this series will appeal to researchers and students alike, who seek an informed introduction to important areas of current research. Previously published in this series: Yakov B. Pesin, Lectures on partial hyperbolicity and stable ergodicity Sun-Yung Alice Chang, Non-linear Elliptic Equations in Conformal Geometry Sergei B. Kuksin, Randomly forced nonlinear PDEs and statistical hydrodynamics in 2 space dimensions Pavel Etingof, Calogero-Moser systems and representation theory Guus Balkema and Paul Embrechts, High Risk Scenarios and Extremes – A geometric approach Demetrios Christodoulou, Mathematical Problems of General Relativity I Camillo De Lellis, Rectifiable Sets, Densities and Tangent Measures Paul Seidel, Fukaya Categories and Picard–Lefschetz Theory Alexander H.W. Schmitt, Geometric Invariant Theory and Decorated Principal Bundles Michael Farber, Invitation to Topological Robotics Alexander Barvinok, Integer Points in Polyhedra Christian Lubich, From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis Shmuel Onn,Nonlinear Discrete Optimization – An Algorithmic Theory Kenji Nakanishi and Wilhelm Schlag, Invariant Manifolds and Dispersive Hamiltonian Evolution Equations Erwan Faou, Geometric Numerical Integration and Schrödinger Equations Alain-Sol Sznitman,Topics in Occupation Times and Gaussian Free Fields François Labourie, Lectures on Representations of Surface Groups Robert J. Marsh, Lecture Notes on Cluster Algebras Published with the support of the Huber-Kudlich-Stiftung, Zürich Isabelle Gallagher Laure Saint-Raymond Benjamin Texier From Newton to Boltzmann: Hard Spheres and Short-range Potentials Authors: Isabelle Gallagher Laure Saint-Raymond Institut Mathématiques de Jussieu (UMR 7586) Université Pierre et Marie Curie and Université Paris-Diderot (Paris 7) Département de Mathématique et Applications Bâtiment Sophie Germain, Case 7012 Ecole Normale Superieure 75205 Paris Cedex 13 45 Rue d'Ulm France 75230 Paris Cedex 05 France E-mail: [email protected] E-mail: [email protected] Benjamin Texier Institut Mathématiques de Jussieu (UMR 7586) Université Paris-Diderot (Paris 7) Bâtiment Sophie Germain, Case 7012 75205 Paris Cedex 13 France E-mail: [email protected] 2010 Mathematics Subject Classification (Primary; secondary): 35Q20; 35Q70 Key words: Boltzmann equation, particle systems, propagation of chaos, BBGKY hierarchy, hard spheres, clusters, collision trees ISBN 978-3-03719-129-3 The Swiss National Library lists this publication in The Swiss Book, the Swiss national bibliography, and the detailed bibliographic data are available on the Internet at http://www.helveticat.ch. This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use permission of the copyright owner must be obtained. ©2013 European Mathematical Society Contact address: European Mathematical Society Publishing House Seminar for Applied Mathematics ETH-Zentrum SEW A27 CH-8092 Zürich Switzerland Phone: +41 (0)44 632 34 36 Email: [email protected] Homepage: www.ems-ph.org Typeset using the authors’ TEX files: le-tex publishing services GmbH, Leipzig, Germany Printing and binding: Beltz Bad Langensalza GmbH, Bad Langensalza, Germany ∞Printed on acid free paper 9 8 7 6 5 4 3 2 1 Preface Thesubjectofthismonographistheappearanceofirreversibilityingasdynamics. Atamolecularlevel,thedynamicsisNewtonian. Inparticular,itisreversible,in contrastwithobservationsatamacroscopiclevel. In1872,Boltzmannintroducedtheequation .B/ @tf Cv(cid:2)rxf DQ.f;f/; where x 2 Rd represents position and v 2 Rd velocity, for the probability den- sity f.t;x;v/ known as the distribution function of the gas. The bilinear collision operator Q is related to a jump process in the velocity variable. The dynamics of the Boltzmann equationlocally preservesmass, momentumand energy, as does the Newtonianmicroscopicdynamics.Inaddition,theBoltzmannequationadmitsaLya- punov functional, known as the entropy, which is nondecreasing along trajectories. Thisisafeatureofanirreversibledynamics. The specific question that we address in this monograph is the relationship be- tweentheNewtondynamicsforasystemofparticlesandtheBoltzmanndynamics. ApartialanswerisgiveninOscarLanford’s1975theorem[35], whichaccounts forsomeimportantintuitionsofBoltzmann[9]: (cid:3) equation (B) should be obtained as a limit when the number of particles be- comeslarge. InBoltzmann’swords: Thevelocitydistributionofthemolecules isnotmathematicallyexactaslongasthenumberofmoleculesisnotassumed tobemathematicallyinfinitelylarge. (cid:3) equation (B) predicts only the most probable behavior. In particular, it does not accountfor trajectories along the Newtonian flow which have decreasing entropy: In nature, the tendency is to pass from the least likely state to the morelikely. [...] ThesecondprincipleinThermodynamicsappearstherefore asaprobabilitytheorem. (cid:3) acentralquestioninthederivationofequation(B)istheindependenceofele- mentaryparticles: From nowonwe shallspecificallyassumethatthemotion istotallydisorganized,eitherasanensembleoratamolecularlevel,andthat itremainssoindefinitely. Lanford’s theorem states that the distribution function of a system of N particles, whichareinteractingwithoneanotherbyelasticcollisionsandareinitiallyindepen- dentand smoothly distributed, convergesto the solution of the Boltzmann equation (B)inthe limitN ! 1;ifthe characteristiclengthofinteraction" simultaneously goesto0intheBoltzmann-GradscalinglimitN"d(cid:2)1 DO.1/. AstrikingpointinLanford’stheoremisthatitpartiallyinvalidatesthethirdintu- itionofBoltzmann: theindependenceisrigorouslyestablishedinthelimit,underthe mereassumptionthatitholdsinitially. vi Themainlimitationinthetheoremisthattheconvergenceisprovedtoholdonly on small time intervals, in which typically only a small number of collisions per particletakeplace. Asweshallsee,trajectoriesthatarenotaccountedforintheBoltzmanndynamics involve recollisions, meaning interactions between particles which have previously interactedinthepast(directlyorindirectly). Suchtrajectoriesviolateindependence. The strategy of Lanford was then to decompose the dynamics in terms of collision treesandprovethat (cid:3) withprobabilityconvergingto1,collisionstreesarefinite,and (cid:3) withprobabilityconvergingto1,recollisionsdonothappeninfinitetrees. It seems however that the arguments used in the literature to establish the second pointwerenotentirelycorrect,sothatatsomepointtheproofshouldbecompleted. The aim ofthis monographis to providesucha completionoftheproofofLan- ford’s theorem, in a self-contained manner. In addition, building on the important contribution of King [31], the convergence result is extended to systems of parti- cles interacting pairwise via compactly supported potentials satisfying a convexity assumption. Wealsodiscussindepththenotionofindependence.Inthehard-sphere case,preciseboundsinallstepsoftheproofenableustoobtainarateofconvergence. Weinsistonthefactthatthestrategyoftheproofisbynomeansnew. Themain novelty here is the detailed study of trajectories involving recollisions. This is the keypointthatallowstoprovetheterm-by-termconvergenceresultinthecorrelation seriesexpansion. PartIgivessomecontext: wediscusslow-densitylimits,recallsomeofthemain landmarks in the vast literature concerning the Boltzmann equation, and state the maintheoremsprovedinthismonograph. InPartIIwefocusonthehard-spherecase. WefirstderivetheBBGKYhierarchy associatedwiththeLiouvilleequation,andprovethatitiswell-posedonashorttime interval,uniformlyinthenumberofparticles. Thenweturntothenotionofindepen- dence,whichiscentralinLanford’stheorem. Finallywegiveapreciseconvergence statementoftheBBGKYhierarchytotheBoltzmannhierarchy. Theconvergenceto the Boltzmann equation then appears as the particular case of tensor products. We finallypresentthesalientfeaturesoftheproof. PartIIIisdevotedtothecaseofparticleinteractionsproducedbyacompactlysup- ported potential. We first study the scattering operator associated with two-particle interactions, and then derive the associated BBGKY hierarchy. This derivation is rendereddelicatebythe factthatsimultaneousinteractionsoflarge numbersofpar- ticles mayoccur. Only pairwiseinteractionscontributeto thedynamicsin the limit, however,andboundssimilarto theonesin thehard-spherecasearederived. A pre- cisestatementofconvergencetowardsthelimitingBoltzmannhierarchyisgiven,and astrategyofproofispresented. Part IV presents the proofs of both convergenceresults (hard spheres and short- rangepotential). Thefactthatpotentialinteractionsarenon-localproducesonlymi- nordifferencesbetween the proofs. The study oftrajectories involvingrecollisions, which deviate substantially from the Boltzmann trajectories, is performed in detail. vii Inparticular,weprovideexplicit(semi-explicit,inthecaseofapotential)boundson their size. As a consequence, in the hard-sphere case a rate of convergence can be obtained. Alistofopenproblemsconcludesthetext. We thank Jean Bertoin, Thierry Bodineau, Dario Cordero-Erausquin, Laurent Desvillettes,Franc¸oisGolse,Ste´phaneMischler,Cle´mentMouhotandRobertStrain for many helpful discussions on topics addressed in this text. We are particularly grateful to Mario Pulvirenti, Chiara Saffirio and Sergio Simonella for explaining to ushowcondition(8.3.1)makespossibleaparametrizationofthecollisionintegralby thedeflectionangle(seeChapt.8). Finally we thank the anonymous referee for helpful suggestions to improve the manuscript. Paris,May2013 IsabelleGallagher LaureSaint-Raymond BenjaminTexier Contents I Introduction 1 1 Thelowdensitylimit 2 1.1 TheLiouvilleequation . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Meanfieldversuscollisionaldynamics . . . . . . . . . . . . . . . . . 4 1.3 TheBoltzmann-Gradlimit . . . . . . . . . . . . . . . . . . . . . . . 6 2 TheBoltzmannequation 7 2.1 Transportandcollisions . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Boltzmann’sH-theoremandirreversibility . . . . . . . . . . . . . . . 8 2.3 TheCauchyproblem . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3.1 Short-timeexistenceofcontinuoussolutions. . . . . . . . . . . 10 2.3.2 Fluctuationsaroundsomeglobalequilibrium. . . . . . . . . . 11 2.3.3 Renormalizedsolutions. . . . . . . . . . . . . . . . . . . . . . 12 3 Mainresults 14 3.1 LanfordandKing’stheorems . . . . . . . . . . . . . . . . . . . . . . 14 3.2 Backgroundandreferences . . . . . . . . . . . . . . . . . . . . . . . 15 3.3 Newcontributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 II The caseofhardspheres 19 4 MicroscopicdynamicsandBBGKYhierarchy 20 4.1 TheN-particleflow . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.2 TheLiouvilleequationandtheBBGKYhierarchy . . . . . . . . . . . 22 4.3 WeakformulationofLiouville’sequation . . . . . . . . . . . . . . . 23 4.4 TheBoltzmannhierarchyandtheBoltzmannequation . . . . . . . . . 27 5 UniformaprioriestimatesfortheBBGKYandBoltzmannhierarchies 30 5.1 Functionalspacesandstatementoftheresults . . . . . . . . . . . . . 30 5.2 Mainstepsoftheproofs . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.3 Continuityestimates . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.4 Someremarksonthestrategyofproof . . . . . . . . . . . . . . . . . 38 6 Statementoftheconvergenceresult 39 6.1 Quasi-independence . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6.1.1 AdmissibleBoltzmanndata. . . . . . . . . . . . . . . . . . . . 39 6.1.2 Conditioning. . . . . . . . . . . . . . . . . . . . . . . . . . . 40 6.1.3 CharacterizationofadmissibleBoltzmanninitialdata. . . . . . 41 x Contents 6.2 Mainresult: ConvergenceoftheBBGKYhierarchytotheBoltzmannhierarchy . . 46 6.2.1 Statementoftheresult. . . . . . . . . . . . . . . . . . . . . . 46 6.2.2 AbouttheproofofTheorem8: outlineofChapter7andPartIV. 47 7 Strategyoftheproofofconvergence 49 7.1 Reductiontoafinitenumberofcollisiontimes . . . . . . . . . . . . . 50 7.2 Energytruncation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 7.3 Timeseparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 7.4 Reformulationintermsofpseudo-trajectories . . . . . . . . . . . . . 54 III The caseofshort-range potentials 57 8 Two-particleinteractions 58 8.1 Reducedmotion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 8.2 Scatteringmap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 8.3 Scatteringcross-sectionandtheBoltzmanncollisionoperator . . . . . 64 8.3.1 Scatteringcross-section. . . . . . . . . . . . . . . . . . . . . . 64 8.3.2 Boltzmanncollisionoperator. . . . . . . . . . . . . . . . . . . 67 9 TruncatedmarginalsandtheBBGKYhierarchy 68 9.1 Truncatedmarginals . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 9.2 WeakformulationofLiouville’sequation . . . . . . . . . . . . . . . 70 9.3 Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 9.4 Collisionoperators . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 9.5 Mildsolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 9.6 ThelimitingBoltzmannhierarchy . . . . . . . . . . . . . . . . . . . 79 10 Clusterestimatesanduniformaprioriestimates 81 10.1 Clusterestimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 10.2 Functionalspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 10.3 Continuityestimates . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 10.4 UniformboundsfortheBBGKYandBoltzmannhierarchies . . . . . 90 11 Convergenceresultandstrategyofproof 91 11.1 Admissibleinitialdata . . . . . . . . . . . . . . . . . . . . . . . . . 91 11.2 ConvergencetotheBoltzmannhierarchy . . . . . . . . . . . . . . . . 93 11.3 ReductionsoftheBBGKYhierarchy,andpseudo-trajectories . . . . . 94 IV Termwiseconvergence 98 12 Eliminationofrecollisions 99 12.1 Stabilityofgoodconfigurationsbyadjunctionofcollisionalparticles . 99 12.2 Geometriclemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.