Lecture Notes in Economics and Mathematical Systems For information about Vols. 1-128, please contact your bookseller or Springer-Verlag Vol. 129: H..J. LUthi, Komplementarilllts· und Fixpunktalgorithmen in Vol. 157: Optimization and Operations Research. Proceedings 1977. der mathematischen Programmierung. Spieltheorie und Okonomie. Edited by R. Henn, B. Korte, and ~. Oellii. VI, 270 pages. 1978, VII, 145 Seiten. 1976. Vol. 158: L. J. Cherene, Set Valued Dynamical Systems and Economic Vol. 130: Multiple Criteria Decision Making, Jouy·en-Josas, France. Flow. VIII, 83 pages, 1978. Proceedings 1975. Edited by H. Thiriez and S. Zionts. VI, 409 pages. Vol. 169: Some Aspects of the Foundations of General Equilibrium 1976. Theory: The Posthumous Papers of Peter J. Kalman. Edited by J, Green. Vol. 131: Mathematical Syslems Theory. Proceedings 1975. Edited VI, 167 pages. 1978. by G. Marchesini and S. K. Miller. X, 408 pages, 1976. Vol. 160: Integer Programming and Related Areas. A Classified Vol. 132: U. H. Funke, Mathematical Models in Marketing. A Collec Bibliography. Edited by D. Hausmann. XIV, 314 pages. 1978. tion of Abstracts. XX, 514 pages. 1976. Vol. 161: M. J. Beckmann, Rank in Organizations. VIII,164 pages. 1978, Vol. 133: Warsaw Fall Seminars in Mathematical Economics 1975. Edited by M. W. Lo$, J. LO$, and A Wieczorek. V. 159 pages. 1976. Vol. 162: Recent Developments in Variable Structure Systems, Eco· nomics and Biology. Proceedings 1977. Edited by R. R. Mohler and Vol. 134: Computing Methods in Applied Sciences and Engineering. A Ruberti. VI, 326 pages. 1978. Proceedings 1975. VIII, 390 pages. 1976, Vol. 135: H. Haga, A Disequilibrium - EqUilibrium Model with Money Vol. 163: G. Fandel, Optimale Entscheidungen in Organisationen. and Bonds. A Keynesian -Walrasian SynthesiS. VI, 119 pages. 1976. VI, 143 Seiten. 1979. Vol. 136: E. Koflerund G. Menges, Entscheidungen bei unvollstandiger Vol. 164: C. L. Hwang and A S.M. Masud, Multiple Objective De Information .. XII, 357 Seiten. 1976. cision Making - Methods and Applications. A State·of·the-Art Survey. Vol. 137: R. Wets, Grundlagen Konvexer Optimierung. VI, 146 Seiten. XII, 351 pages. 1979. 1976. Vol. 165: A Maravall, Identification in Dynamic Shock·Error Models. Vol. 138: K. Okuguchi, Expectations and Stability in Oligopoly Models. VIII, 158 pages. 1979. VI, 103 pages. 1976. Vol. 166: R. Cuninghame-Green, Minimax Algebra. XI, 258 pages. Vol. 139: Production Theory and Its Applications. Proceedings. Edited 1979. by H. Albach and G. Bergendahl. VIII, 193 pages. 1977. Vol. 167: M. Faber, Introduction to Modern Austrian Capital Theory. Vol. 140: W. Eichhorn and J. Voeller, Theory of the Price Index. X, 196 pages. 1979. Fisher's Test Approach and Generalizations. VII, 95 pages. 1976. Vol. 168: Convex Analysis and Mathematical Economics. Proceedings Vol. 141: Mathematical Economics and Game Theory. Essays in Honor 1978. Edited by J. Kriens. V, 136 pages. 1979. of Oskar Morgenstern. Edited by R. Henn and O. Moeschlin. XIV, 703 pages. 1977. Vol. 169: A Rapoport et al., Coalition Formation by Sophisticated Vol. 142: J. S. Lene, On Optimal Population Path •. V,123 pages. 1977. Players. VII, 170 pages. 1979. Vol. 143: B. Nisiund, An Analysis of Economic Size Distributions. Vol. 170: A. E. Roth, Axiomatic Models of Bargaining. V, 121 pages. XV, 100 pages. 1977. 1979. Vol. 144: Convex Analysis and Its Applications. Proceedings 1976, Vol. 171: G. F. Newell, Approximate Behavior of Tandem Queues. XI, Edited byA. Auslender. VI, 219 pages. 1977. 410 pages. 1979. Vol. 145: J. RosenmOller, Extreme Games and Their Solutions. IV, Vol. 172: K. Neumann and U. Steinhard~ GERT Networks and the 126 pages. 1977. Time-Oriented Evaluation of Projects. 268 pages. 1979. Vol. 146: In Sesrch of Economic Indicators. Edited by W. H. Strigel. Vol. 173: S. Erlander, Optimal Spatial Interaction and the Gravity XVI, 198 pages, 1977. Model. VII, 107 pages. 1980. Vol. 147: Resource Allocation and Division of Space. Proceedings. Vol. 174: Extremal Methods and Systems Analysis. Edited by A V. Edited by. T. Fujii and R. Sato, VIII, 184 pages. 1977, Fiacco and K. O. Kortanek. XI, 545 pages. 1980. Vol. 148: C. E. Mandl, Simulationstechnik und Simulationsmodelle Vol. 175: S. K. Srinivasan and R. Subramanian, Probabilistic Analysis in den Sozial· und Wirtschaftswissenschaften. IX, 173 Seiten. 1977, of Redundant Systems. VII, 356 pages. 19BO. Vol. 149: Station~re und schrumpfende BevOlkerungen: Dernogra' Vol. 176: R. Fire, Lews of Diminishing Returns. VIII, 97 pages. 1980. phisches Null· und Negativwachstum in Osterreich. Herausgegeben von G. Feichtinger. VI, 262 Seiten. 1977. Vol. 177: Multiple Criteria Decision Making-Theory and Application. Proceedings, 1979. Edited by G. Fandel and 1. Gal. XVI, 570 pages. Vol. 150: Bauer et aI., Supercritical Win9 Sections III. VI, 179 pages. 1980. 1977. Vol. 178: 1.1. N. Bhattacharyy8, Comparison of Box-Jenkins and Bonn Vol. 151: C. A Schneewei8,lnventory-Production Theory. VI,116 pages. Monetary Model Prediction Performance. VII, 146 pages. 1980. 1977. Vol. 152: Kirsch et aI., Notwendige Optimalitlitsbedingungen und Vol. 179: Recent Results in Stochastic Programming. Proceedings, ihre Anwendung. VI, 157 Seiten. 1978. 1979. Edited by P. Kall and A. Prekopa, IX, 237 pages. 1980. Vol. 153: Kombinatorische Entscheidungsprobleme: Methoden und Vol. 180: J. F. Brotchie, J. W. Dickey and R. Sharpe, TOPAZ - General Anwendungen. Herausgegeben von T. M. Liebling und M. ROssler, Planning Technique and its Applications at the Regional, Urban, VIII, 206 Seiten. 1978. and Facility Planning Levels. VII, 356 pages. 1980. Vol. 154: Problems and Instruments of Business Cycle Analysis. Vol. 181: H. D. Sherali and C. M. ShellY, Optimization with Disiunctive Proceedings 1977. Edited by W. H. Strigel. VI, 442 pages. 1978. Constraints. VIII, 156 pages. 1980. Vol. 155: Multiple Criteria Problem Solving. Proceedings 1977. Edited Vol. 182: J. Wolters, Stochastic Dynamic Properties of Linear Eco· by S. Zionts. VIII, 567 pages. 1978, nometric Models. VIII, 154 pages. 1980. Vol. 156: B. Naslund and B. Sellstedt, Neo-Ricardian Theory. With Vol. 183: K. Schillkowski, Nonlinear Programming Codes. VIII, 242 Applications to Some Current Economic Problems. VI, 165 pages. pages. 1980. 1978. continuation on page 325 Lectu re Notes in Economics and Mathematical Systems Managing Editors: M. Beckmann and W. Krelle 284 Helmut Lutkepohl Forecasting Aggregated Vector ARMA Processes Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Editorial Board H.A1bach M.Beckmann (Managing Editor) P. Ohrymes G. Fandel J. Green W. Hildenbrand W. Krelle (Managing Editor) H. P. Ki..inzi K. Ritter RSato U. Schittko P. Schonfeld R. Setten Managing Editors Prof. Dr. M. Beckmann Brown University Providence, RI 02912, USA w. Prof. Dr. KreUe InsliM fUr Gesellschahs-und Wirtschahswissenschahen der Universitlit Bonn .A.d.e..n.a uerallee 24-42, D-5300 Bonn, FRG Prof. Dr. Helmut li..itkepohl Universitiit Hamburg lostitut fUr Slatistik und Okonometrie Von-Melle-Park 5, 0·2000 Hamburg 13, FRG ISBN·13: 978·3·540·17208·6 e-ISBN·13: 978-3·642-61584-9 001: 10.10071978-3-642-61584-9 This WOI'k is subject to copyright. All righla are.---:l, whether the whole or part of the material is concerned, specifically those 01 tran8lation, reprinting, ..- use of illuatrations, broadcastftg, reprodu<:tion by photoeopying machine or similar meana, and storage in data banks. Under § ~ 01 the German Copyright u w whttru copies are made lor other than private \1&8, _ leu is pIIy_boIe to -Vllrwertungsg&eellschaft Wort", Munich. C Sprioger-Ver1ag Bertin Heidelberg 1967 2142/3140-543210 To Sab,[ne. PREFACE This study is concerned with forecasting time series variables and the impact of the level of aggregation on the efficiency of the forecasts. Since temporally and contemporaneously disaggregated data at various levels have become available for many countries, regions, and variables during the last decades the question which data and procedures to use for prediction has become increasingly important in recent years. This study aims at pointing out some of the problems involved and at pro viding some suggestions how to proceed in particular situations. Many of the results have been circulated as working papers, some have been published as journal articles, and some have been presented at conferences and in seminars. I express my gratitude to all those who have commented on parts of this study. They are too numerous to be listed here and many of them are anonymous referees and are therefore unknown to me. Some early results related to the present study are contained in my monograph "Prognose aggregierter Zeitreihen" (Lutkepohl (1986a)) which was essentially completed in 1983. The present study contains major extensions of that research and also summarizes the earlier results to the extent they are of interest in the context of this study. This monograph is based on research I have carried out while I have been employed by the University of Bielefeld (1979-B1), the Uni versity of Osnabruck (1981-84), the University of California, San Diego (1984/85), and the University of Hamburg (since 1985). I gratefully acknowledge the technical support by these institutions and many useful discussions and comments by my colleagues at these institutions. Sabine Dornbusch has performed the computations reported in this study. I take this opportunity to thank her for outstanding research assistance during the last few years. Last not least I am most grateful to Mrs. Marlene Hakelberg for typing the final manuscript with patience and skill. November 1986 Helmut Lutkepohl CONTENTS CHAPTER 1. PROLOGUE 1.1 Objective of the Study ••••••••••••.••••••••••••••••• 1 1.2 Survey of the Study ••••.•••••••••••••••.•••••••.•••• 3 CHAPTER 2. VECTOR STOCHASTIC PROCESSES ••••••••••••••••.••.•••• 6 2.1 Discrete-Time, Stationary Vector Stochastic Processes 6 2.1.1 General Assumptions ••.••••.••••••••••..••••••• 6 2.1.2 The Wold or Moving Average Representation ••••• 8 2.1.3 Autoregressive Representation ••••••••••••••••• 10 2.1.4 Spectral Representation ••••••••••••••••••••••• 12 2.2 Nonstationary Processes ••••••••••••••••••••••••••••• 14 2.3 Vector Autoregressive Moving Average Processes •••••• 16 2.3.1 Stationary Processes •••••••••••••••.•.•••..••• 16 2.3.2 Nonstationary Processes ••••••••••••.•••••••••• 20 2.4 Estimation. • • • • • • • • • • • . • • • • • • • • • • • • • • • • • • • • . . • • • • • • • 21 2.4.1 Maximum Likelihood Estimation of Stationary Gaussian Vector ARMA Processes of Known Order.. 21 2.4.2 Estimation of Vector Autoregressive Processes of Known Order •••••••••••••.••••••••••••••.••• 23 2.4.3 Multivariate Least Squares Estimation of AR Processes With Unknown Order •••••••••.•••••••. 32 2.4.4 Nonstationary Processes •••.•••••••••••.••••.•• 36 2.5 Model Specification •••.•••••••••.•••••.••.••.••••••• 36 2.5.1 AR Order Determination •••••••••••••••••••••••• 36 2.5.2 Subset Autoregressions ••••.••••••••••..••.•••• 41 2.5.3 The Box-Jenkins Approach •••••••••••••••••••••• 47 2.6 Summary ••••••••••••••••.•••••••••••••••••••••••••.•• 47 CHAPTER 3. FORECASTING VECTOR STOCHASTIC PROCESSES ••••••••.••• 49 3.1 Forecasting Known Processes ••••••••••••••••••••••••. 50 3.1.1 Predictors Based on the Moving Average Representation •••••••••••••••••••••••••••••••• 50 3.1.2 Predictors Based on the Autoregressive Representation ••••••••••••••••••••••••••••.••• 54 3.1.3 Forecasting Known Vector ARMA Processes ••.•••• 57 3.2 Forecasting Vector ARMA Processes with Estimated Coefficients •••••.••••.•.••••••••••••••••.•••••••••• 58 3.2.1 The General Case •.•••••••••••••.••••••••••••.• 58 3.2.2 Finite Order AR Processes ••••••••••••••••••••• 65 VIII 3.3 Forecasting Autoregressive Processes of Unknown Order 73 3.3.1 The Asymptotic MSE Matrix •••..••••••.••••••••• 74 3.3.2 Proof of Proposition 3.2 ..••••.•.••••..•••.•.• 77 3.4 Forecasting Nonstationary Processes ••••..••••••••.•• 85 3.4.1 Known Processes .•••.•••••.••.••••.•••••••.•.•• 86 3.4.2 Estimated Coefficients •.••••••.••.••••••••••.• 92 3.4.3 Unknown Order ...••••.•....•••••.•••.••••••.••• 94 3.5 Comparing Forecasts .•.•..••••••••••.••••••••••••.•.• 94 3.6 Summary. • . • • • • • • • • . . . . . . • . • . • • . • • . . • • • . • • • • •• • • • . • . • 95 CHAPTER 4. FORECASTING CONTEMPORANEOUSLY AGGREGATED KNOWN PROCESSES ••.••..•.••.......•..•••.•..••••.••....••. 97 4.1 Linear Transformations of vector Stochastic Processes 98 4.2 Forecasting Linearly Transformed Stationary vector Stochastic Processes •.••••••••••••.•.•.•.••.•••••••• 100 4.2.1 The Predictors •.••.•••••••••••••.•••••••..•.•• 100 4.2.2 Comparison of the Predictors ••...•••••.••••.•• 104 4.2.3 Equality of the Predictors •••••••.•••••.••••.• 105 4.2.4 Granger-Causality •••••.•••••••••••••.•••••.••. 108 4.3 Forecasting Linearly Transformed Nonstationary Processes •••••.•.•.••.•••.••..••.••.••.•.••.•••.••.. 110 4.4 Linearly Transformed vector ARMA Processes ••.•••.••. 113 4.4.1 Finite Order MA Processes ••••.•••.•••.••••.... 113 4.4.2 ARMA Processes ..•.••.•.•••••••.••••••.•••••••• 114 4.5 Summary and Comments •.••.•••.••••.••••.•.•.•.••••.•• 117 CHAPTER 5. FORECASTING CONTEMPORANEOUSLY AGGREGATED ESTIMATED PROCESSES ••••.••.•..••••.••••••••••••••••••.•••.••. 119 5.1 Summary of Assumptions and Predictors •••••.••••••••. 120 5.2 Estimated Coefficients •••.••••.••..•••.••.•..•..•••• 121 5.2.1 Comparison of YAOt (h) and YA t(h) •••••••.••••.•.•. 123 5.2.2 Compar~. son of yAOt( h) and YAUt (h) ••.••••••.••••••. 127 5.3 Unknown Orders and Estimated Coefficients ••••••.•.•• 129 5.4 Nonstationary Processes .•••••••••••••.•••••••••••••• 132 5.5 Small Sample Results ....•.••••.•.•••••.•••...••••.•• 133 5.5.1 Design of the Monte Carlo Experiment ..••••.••• 133 5.5.2 Simulation Results for AR Process I •.•.•••.••. 134 5.5.3 Simulation Results for AR Process II .•.•••.••. 139 5.5.4 Simulation Results for MA Process I ••••••••••• 142 5.5.5 Simulation Results for MA Process II •.•••••••• 145 5.5.6 Simulation Results for MA Process III .•••••.•• 147 5.6 An Empirical Example ••••••••..••••••••••••.••••••••. 149 5.7 Conclusions. • . . • • . • . . . . • • • • • . . . • . • . • . • • • • • • • . • • • • . •• 158 IX CHAPTER 6. FORECASTING TEMPORALLY AND CONTEMPORANEOUSLY AGGREGATED KNOWN PROCESSES ...•....•.••.........•••• 161 6.1 Macro Processes ..•...•....•.•••••..••.•..•...••....• 163 6.2 Six Predictors •..••.••••..•••••••.•.•..•.•..•.•..••. 166 6.3 Comparison of Predictors .•.••..•.•.••...•....••.•••. 173 6.4 Nonstationary Processes •..•..•.•...•••..••..•.•....• 179 6.4.1 Differencing to Obtain Stationarity ...•..•.... 179 6.4.2 Forecasting Aggregated Nonstationary Processes 181 6.5 Temporally and Contemporaneously Aggregated vector ARMA Processes ••......•••.•.•......••....•..•.•....• 182 6.6 Conclusions and Comments ...•..•...•......••.....••.. 186 CHAPTER 7. TEMPORAL AGGREGATION OF STOCK VARIABLES - SYSTEMATICALLY MISSING OBSERVATIONS ••...••...••...• 187 7. 1 Forecasting Known Processes With Systematically Missing Observations ••...•••..••.......•.•.•••..•.•• 189 7.2 Processes With Estimated Coefficients .•..•.•••••..•• 192 7.3 Processes With Unknown Orders and Estimated Coefficients •..•..•.••.•...•..•...•.•.•.••...••..... 198 7.4 Nonstationary Time Series With Systematically Missing Observations •..•....•.....•.........•.•......•.....• 200 7.5 Monte Carlo Results ..•.•.••.•.••........••.•....•..• 203 7.5.1 Univariate AR Processes •.....•.•.••.•.•••.•..• 203 7.5.2 Bivariate AR Process ........•.••....•.•....•.• 206 7.5.3 MA(m) Processes ••.•.••...•..•.•....•....•.••.• 208 7.5.4 Univariate MA(l) Process ••........•.•..••...•. 211 7.5.5 Summary of Small Sample Results .••.••••....•.• 215 7.6 Empirical Examples ••..•...•...••....••...•......•.•• 215 7.6.1 Consumption Expenditures ••....•.•............• 216 7.6.2 Investment ..........••..••.•....•.••....•....• 219 7.7 Concluding Remarks •••••..••.••••••••••...••••••••••• 220 7.A Appendix: Proof of Relation (7.2.18) •••.•....•....•. 222 CHAPTER 8. TEMPORAL AGGREGATION OF FLOW VARIABLES •..•••••••••• 224 8.1 Forecasting With Known Processes •...•..•.••....•.••. 225 8.2 Forecasts Based on Processes With Estimated Coefficients •.•.•••••••.••.•.....•••.•.••..•..•..•.. 230 8.3 Forecasting With Autoregressive Processes of Unknown Order •.•..••..•.•....•...••....•••...•.•.••. 236 8.4 Temporally Aggregated Nonstationary Processes ......• 238 8.5 Small Sample Comparison .•....•.....•.•.•...••.•..•.. 240 8.5.1 A Univariate AR Process .•.••••••.•••••••••.••. 240 8.5.2 A Univariate MA(2) Process .••.••.•••.••••••••. 242 8.5.3 A Univariate 1~(3) Process •.•..••.•.•.••...••. 244 8.5.4 A Bivariate MA Process .•....•...••.....••••••• 246 8.5.5 A System With a Stock and a Flow Variable .•••. 248 x 8.6 Examples. . • • • . • • • • • . • . • . . • • • • • • • • . • • • • . • • • • • • • . . • • •• 250 8.6.1 Consumption •......•..••......•.•.•.....•...•.. 250 8.6.2 Investment •...••...•..•••.••.•..•.•••.••...•.. 253 8.7 Summary and Conclusions •.•.•••••••••.•....•.•...•.•• 255 8.A Appendix: Proof of Relation (8.2.23) .••••.•..••.•.•. 256 CHAPTER 9. JOINT TEMPORAL AND CONTEMPORANEOUS AGGREGATION ..•.. 258 9. 1 Summary of Processes and Predictors ••..•.••..••..•.. 259 9.2 Prediction Based on Processes With Estimated Coefficients •.••.•.••••.••.•.••.•.•••..•••••••...... 263 9.2.1 General Results .•..•.•.•.•..•...•••.•••.•.••.• 263 9.2.2 An Example •••••••..••••••••.••••.••.•••.•••... 267 9.2.3 Conclusions for Processes With Estimated Coefficients ..•.•..•••.••.••••.•.••.•.•....... 274 9.3 Prediction Based on Estimated Processes With Unknown Order s •••.•.....••.•••..•.••...•..••....•••. 275 9.3.1 General Comments ••..••.••.••••••••.••.•.•..•.• 275 9.3.2 Comparison of MSEs •••..••.•.••.••••••.••••••.• 278 9.3.3 Summary and Discussion of Results for Processes With Unknown Orders •.•.•.••.••.••••••.•••.••.. 280 9.4 Monte Carlo Comparison of Predictors •••.••.•••••.••. 281 9.4.1 Simulation Results for AR Process •..•.•..••••. 282 9.4.2 Simulation Results for MA Process ••••.••.••... 289 9.4.3 Discussion of Small Sample Results ••••••••••.. 296 9.5 Forecasts of U.S. Gross Private Domestic Investment .• 299 9.5.1 First Differences of Investment Data ..••.••••. 299 9.5.2 Aggregation of Original Investment Data .•..•.. 303 9.6 Summary and Conclusions ...•..••••.•••.••••.••....••• 304 CHAPTER 1 0 . EPILOGUE. • . • • • • • . • • . . • • • . • • • • . . • • • • • . . • • • . • • . • . . • .• 309 10.1 Summary and Conclusions 309 10.2 Some Remaining Problems 311 APPENDIX. DATA USED FOR EXAMPLES ....•.•••.••••.••.••.•..•.••. 313 BIBLIOGRAPHY •.•••••••.••.••..•.•••••••.•••••••••.•••••.••••••••• 316 CHAPTER 1. PROLOGUE 1.1 OBJECTIVE OF THE STUDY In making choices between alternative courses of action, decision mak ers at all structural levels often need predictions of aggregated var iables. For example, in the process of planning a government budget, forecasts of annual tax revenues may be required. If quarterly or month ly figures of previous revenues are available then a time series model may be constructed for the generation process of the quarterly or month ly data. This model can then be used to obtain predictions for the next quarters or months and these forecasts can be aggregated to obtain an nual forecasts of the tax revenues. Alternatively, the available month ly or quarterly data may be aggregated to obtain an annual series of tax revenues. Based on this series a model may be constructed to gen erate annual forecasts. As a second example consider the manager of a retail firm with sev eral branches who wants to place an order of a certain product to stock in for the next week. To minimize the storage space and at the same time minimize the risk of running out of stock, he or she needs a precise forecast of the demand in all branches during the next week. In other words, the manager will be interested in a forecast of a variable that is aggregated over time (temporally), adding up the sales of all days during the week, and over units (contemporaneously), summing up the sales for the individual branches. One possibility is to obtain the de sired forecast by constructing and estimating a univariate time series model for the total sales data of the past weeks and use this model for generating a forecast. Alternatively, rather than using contemporane ously and temporally aggregated weekly total sales figures, a multiple time series model could be constructed for the disaggregate daily sales data of all separate branches. Such a model can be used to produce daily sales forecasts for the individual branches. The obtained forecasts can then be aggregated to give a total sales forecast for the next week. There are some other predictors that are relevant in the present con text. For instance, the total daily sales, aggregated over all branches, can be predicted using univariate time series methods. A weekly fore-
Description: