Floor Scale Modulo Lifting for QC-LDPC codes Nikita Polyanskii, Vasiliy Usatyuk, and Ilya Vorobyev Huawei Technologies Co., Moscow, Russia Email: [email protected], [email protected], [email protected] Abstract—In the given paper we present a novel approach for with respect to the number of small cycles. The performance constructingaQC-LDPCcodeofsmallerlengthbyliftingagiven of QC-LDPC codes obtained by the floor scale modulo lifting QC-LDPC code. The proposed method can be considered as a method is investigated by simulations in Section V. generalizationoffloorlifting.Alsoweproveseveralprobabilistic statements concerning a theoretical improvement of the method II. QC-LDPCCODES with respect to the number of small cycles. Making some A QC-LDPC code is described by a parity-check matrix H offline calculation of scale parameter it is possible to construct which consists of square blocks which could be either zero a sequence of QC-LDPC codes with different circulant sizes generated from a single exponent matrix using only floor and matrix or circulant permutation matrices. Let P = (Pij) be scale operations. The only parameter we store in memory is a the L×L circulant permutation matrix defined by constant needed for scaling. (cid:40) 7 Keywords: QC-LDPC code, floor lifting, modulo lifting, 1, if i+1≡j mod L P = 1 ij block cycle, girth. 0, otherwise. 0 2 I. INTRODUCTION Then Pk is the circulant permutation matrix (CPM) which b Low-density parity-check (LDPC) codes were first discov- shifts the identity matrix I to the right by i times for any k, e 0 ≤ k ≤ L−1. For simplicity of notation denote the zero ered by Gallager [1], generalized by Tanner [2], Wibberg [3] F matrix by P−1. Denote the set {−1,0,1,...,L−1} by A . andrediscoveredbyMacKayetal.[4],[5]andSipseretal.[6]. L 4 Quasi-cyclic low-density parity-check (QC-LDPC) codes LetthematrixHofsizemL×nLbedefinedinthefollowing manner are of great interest to researchers [7]–[11] since they can be T] encoded and decoded with low complexity and allow to reach Pa11 Pa12 ··· Pa1n I high throughput using linear-feedback shift register [12]–[14]. Pa21 Pa22 ··· Pa2n cs. One advantage of QC-LDPC codes based on circulant H= ... ... ... ... , (1) permutationmatrices(CPM)isthatitiseasiertoanalyzetheir [ Pam1 Pam2 ··· Pamn code and graph properties than in the case of random LDPC 2 codes. The performance of LDPC codes is strongly affected where ai,j ∈ AL. Further we call L the circulant size of H. v In what follows a code C with parity-check matrix H will be by their graph properties such as the length of the shortest 1 referredtoasaQC-LDPCcode.LetE(H)=(E (H))bethe cycle, i.e., girth [15], [16], and trapping sets [17], [18] and ij 2 exponent matrix of H given by: 5 code properties, e.g., the distance of the code [19], [20] and 7 the ensemble weight enumerator [21]. a a ··· a 11 12 1n 0 The main contribution of the paper is a novel approach a21 a22 ··· a2n 1. for constructing a quasi-cyclic LDPC code of smaller length E(H)= ... ... ... ... , (2) 0 by lifting a given QC-LDPC code. The proposed method 7 can be considered as a generalization of floor lifting method am1 am2 ··· amn 1 introduced in [22], [23]. Making some offline calculation it i.e., the entry Eij(H) = aij. The mother matrix M(H) is : v is possible to construct a sequence of QC-LDPC codes with a m × n binary matrix obtained from replacing −1’s and Xi different circulant sizes generated from a single exponent other integers by 0 and 1, respectively, in E(H). If there matrix of QC-LDPC code having the largest length. The only is a cycle of length 2l in the Tanner graph of M(H), it r a parameterwestoreinmemoryisaconstantneededforscaling is called a block-cycle of length 2l. Any block-cycle in in the lifting procedure. M(H) of length 2l corresponds both to the sequence of 2l The outline of the paper is as follows. In Section II, we CPM’s{Pa1,Pa2...,Pa2l}inHandsequenceof2l integers introduce some basic definitions and notations for our presen- {a1,a2...a2l} in E(H) which will be called exponent chain. tation.InSectionIII,wereviewstate-of-artliftingmethodsfor The following well known result gives the easy way to find QC-LDPC codes. Also assuming some natural assumption we cycles in the Tanner graph of parity-check matrix H. prove some probabilistic statements with respect to cycles of Proposition 1. [15]. An exponent chain forms a cycle in length4andprovideacomparisonbetweenliftingprocedures. the Tanner graph of H iff the following condition holds In Section IV, we present our floor scale modulo lifting 2l (cid:88) method for QC-LDPC codes and prove several probabilistic (−1)iai ≡0 mod L. statements concerning theoretical improvement of the method i=1 III. LIFTINGOFQC-LDPCCODES that a −b +d −c ≡0 mod 2. Therefore, the conditional 2 2 2 2 probability A. State-of-art Lifting Methods Consider a QC-LDPC code with mL0×nL0 parity-check Pr(C1 |C0)=Pr(a2−b2−c2+d2 =0|C0)= matrix H0 with circulant size L0, m × n exponent matrix Pr(a2−b2−c2+d2 =0|a2−b2−c2+d2 ≡0 mod 2)=3/4. E(H ) = (E (H )) and mother matrix M(H ). Given a 0 ij 0 0 set of circulant sizes {L }, L < L , lifting is a method of Indeed we have exactly 8 = 23 equiprobable choices for constructing QC-LDPC ckodeskwith m0Lk ×nLk parity-check a2,b2,c2,d2 depicted in Table I, 6 = (cid:0)42(cid:1) of which give the matrices H from H , which have the same mother matrix cycle. k 0 M(H ) = M(H ) and entries of exponent matrices E(H ) k 0 k TABLEI satisfy −1 ≤ E (H ) ≤ L − 1. Therefore, it suffices to ij k k POSSIBLECHOICESFORa2,b2,c2,d2 specify a formula using which we recalculate each value of E(H ) from E(H ). In paper [22] two lifting approaches are k 0 a2 b2 c2 d2 a2−b2−c2+d2 given. 0 0 0 0 0 Floor lifting is defined as follows: 0 0 1 1 0 0 1 0 1 0 Eij(Hk)=(cid:40)(cid:106)LLk0 ×Eij(H0)(cid:107), if Eij(H0)(cid:54)=−1, (3) 01 10 10 01 -22 −1, otherwise. 1 0 1 0 0 1 1 0 0 0 Modulo lifting is determined by the following equation: 1 1 1 1 0 (cid:40) E (H ) mod L , if E (H )(cid:54)=−1, Eij(Hk)= ij 0 k ij 0 (4) Now let us find the probability Pr(C1 |C0). Since −1, otherwise. Pr(C C ) Pr(C |C )= 1 0 Now we prove several probabilistic statements. 1 0 Pr(C ) 0 Consider an exponent chain of length 4 with exponent and Pr(C ) = 2q−1, it suffices to obtain Pr(C C ). Find the values a, b, c, d 0 2q 1 0 numberofall4-tuples(a,b,c,d),suchthata −b −c +d ≡0 (cid:20) (cid:21) 1 1 1 1 A= a b , mod q and a2−b2−c2+d2 (cid:54)≡0 mod 2q. We have q3 ways c d to choose a ,b ,c ,d and 10 ways to choose a ,b ,c ,d 1 1 1 1 2 2 2 2 whereeachelementischosenindependentlyandequiprobable for q >2. Therefore, fromtheset{0,1,...,2q−1},L0 =2qisacirculantsize,q > 10q3 5 5 2. Notice that the probability of the event C0: “the exponent Pr(C1C0)= (2q)4 = 8q and Pr(C1 |C0)= 4(2q−1). chain with exponent values a, b, c and d forms a cycle”, i.e., a−b−c+d ≡ 0 mod 2q, is equal to 1/(2q). Assume that Let us sum up the results in we use some lifting method to obtain exponent values a(cid:48), b(cid:48), Proposition 2. An exponent chain in E(H) of length 4, c(cid:48), d(cid:48) whichformsacycleintheparity-checkmatrixHwithcirculant size 2q, turns into a cycle in the parity-check matrix H(cid:48) with (cid:20) a(cid:48) b(cid:48) (cid:21) B = , circulantsizeqobtainedafterfloorliftingwithprobability3/4, c(cid:48) d(cid:48) while an exponent chain of length 4, which does not form a forcirculantsizeL =q.Weareinterestedintheprobabilities cycle, turns into a cycle with probability p (cid:44)5/(4(2q−1)). 1 fl of an event C : “the exponent chain with exponent values a(cid:48), 1 C. Modulo Lifting b(cid:48), c(cid:48) and d(cid:48) forms a cycle” given the event C and given 0 the event C0. In Sections III-B and III-C we obtain these Leta=a1q+a2,b=b1q+b2,c=c1q+c2,d=d1q+d2, probabilities for floor lifting and modulo lifting, respectively. wherea2,b2,c2,d2 ∈{0,1,...,q−1}.Itiseasytocheckthat Finally,wesummarizeresultsandcomparethesetwomethods a(cid:48) =a2, b(cid:48) =b2, c(cid:48) =c2, d(cid:48) =d2. Given the event C0 occurs, in Section III-D. we have q(a −b −c +d )+(a −b −c +d )≡0 mod 2q. B. Floor Lifting 1 1 1 1 2 2 2 2 It follows that Leta=2a +a ,b=2b +b ,c=2c +c andd=2d + 1 2 1 2 1 2 1 d2, where a2,b2,c2,d2 ∈ {0,1}. One can see that a(cid:48) = a1, a(cid:48)−b(cid:48)−c(cid:48)+d(cid:48) =a −b −c +d ≡0 mod q, 2 2 2 2 b(cid:48) =b , c(cid:48) =c , d(cid:48) =d . Given the event C occurs, i.e. 1 1 1 0 thustheconditionalprobabilityPr(C |C )=1.Letusobtain 1 0 2(a1−b1−c1+d1)+(a2−b2−c2+d2)≡0 mod 2q. probability Pr(C1 |C0). Since the event C1, i.e., a1−b1+d1−c1 ≡0 mod q, is equivalent Pr(C |C )= Pr(C1C0) to the condition a2 −b2 −c2 +d2 = 0. From C0 it follows 1 0 Pr(C0) and Pr(C )= 2q−1, we need to find Pr(C C ). Calculate the Let a = 2a + a , b = 2b + b , c = 2c + c and d = 0 2q 1 0 1 2 1 2 1 2 numberofall4-tuples(a,b,c,d),suchthata −b −c +d ≡0 2d +d , where a ,b ,c ,d ∈{0,1}. Suppose we use floor 2 2 2 2 1 2 2 2 2 2 mod q and a−b−c+d(cid:54)≡0 mod 2q. We have q3 ways to scale modulo lifting for L = q with scale value r = 2t+1, 1 choose a ,b ,c ,d and 8 ways to choose a ,b ,c ,d for 0<r <2q,whichiscoprimewith2q.Thenweobtainmatrix 2 2 2 2 2 2 2 2 q >2. Therefore, B(r): 8q3 1 1 (cid:20) a(cid:48)(r) b(cid:48)(r) (cid:21) Pr(C C )= = and Pr(C |C )= . B(r)= , 1 0 (2q)4 2q 1 0 2q−1 c(cid:48)(r) d(cid:48)(r) As a result we have obtained the following where Proposition 3. An exponent chain in E(H) of length 4, (cid:22)2a r+a r(cid:23) a(cid:48)(r)= 1 2 ≡a r+a t mod q. whichformsacycleintheparity-checkmatrixHwithcirculant 2 1 2 size 2q, turns into a cycle in the parity-check matrix H(cid:48) with Othervaluesb(cid:48)(r),c(cid:48)(r)andd(cid:48)(r)arerepresentedinthesame circulant size q obtained after modulo lifting with probability way. By C (r) denote the event: “the exponent chain with 1,whileanexponentchainoflength4,whichdoesnotforma 1 cycle, turns into a cycle with probability p (cid:44)1/(2q−1). exponent values a(cid:48)(r), b(cid:48)(r), c(cid:48)(r) and d(cid:48)(r) forms a cycle”. mod One can see that D. Comparison 3 Pr(C (r)|C )=Pr(C (1)|C )= . Now summarize the results from Sections III-B and III-C 1 0 1 0 4 in the following Moreover Theorem 1. Suppose that in exponent matrix E(H) with C (r)∩C =C (1)∩C . 1 0 1 0 circulantsize2q wehavey exponentchainsoflength4,which donotformacycle,andxexponentchainsoflength4,which Proposition4. Letr1,r2betwodistinctintegers,suchthat formacycle.ThenmathematicalexpectationsECfl (ECmod) 0<r1,r2 <2q,(r1,2q)=1,(r2,2q)=1andr1 (cid:54)≡r2(q+1) of the number of cycles after floor lifting (modulo lifting) for mod 2q. Then circulant size q are as follows: Pr(C (r )∩C (r )∩C )=0. 1 1 1 2 0 3 5 1 ECfl = 4x+ 4(2q−1)y, ECmod =x+ (2q−1)y. In other words, for any scale values r1 and r2 fulfilled the condition of Proposition 4 if the start exponent chain in the Note that ECfl ≥ ECmod when y ≥ (2q − 1)x. Since matrix A does not form a cycle then at least one exponent usually we try to eliminate short cycles in matrix E(H), the chain in the matrices B(r ) and B(r ) does not form a cycle 1 2 number y is likely to be much greater than (2q −1)x. So, too. we can conclude that modulo lifting is better than floor lifting Proof: Let u be such integer that u r ≡ 1 mod 2q. 1 1 1 with respect to the number of short cycles. Note that C (u )=C . Therefore, 0 1 0 IV. FLOORSCALEMODULOLIFTINGOFQC-LDPC Pr(C (r )∩C (r )∩C )=Pr(C (r u )∩C (r u )∩C )=0. 1 1 1 2 0 1 1 1 1 2 1 0 CODES Assume events C (r u ) and C (r u ) occur. Thus, a −b − 1 1 1 1 2 1 1 1 Now we introduce the proposed lifting method which we c +d ≡0 mod q and 1 1 call floor scale modulo lifting: (cid:40)−1, E (H )=−1, (a1−b1−c1+d1)r2(cid:48) +(a2−b2−c2+d2)t(cid:48)2 ≡0 mod q, ij 0 Eij(Hk)= (cid:106)LLk0((r×Eij(H0)) mod L0)(cid:107), otherwise, where (5) 1+2t(cid:48) =r(cid:48) ≡r u mod q, 0<r(cid:48) <2q. 2 2 2 1 2 where special parameter r is called a scale value. From Define A(r): (a −b −c +d )t(cid:48) ≡0 mod q, (cid:20) (cid:21) 2 2 2 2 2 a(r) b(r) A(r)= c(r) d(r) , (a2−b2−c2+d2)∈[−2,2], t(cid:48)2 ∈[1,q−1] where and 2t(cid:48) +1 (cid:54)= q+1 it follows that a −b −c +d = 0. 2 2 2 2 2 Hence (a −b −c +d )≡0 mod q and a(r)≡ra mod 2q, b(r)≡rb mod 2q, 1 1 1 1 2(a −b −c +d )+(a −b −c +d ) c(r)≡rc mod 2q, d(r)≡rd mod 2q. 1 1 1 1 2 2 2 2 =a−b−c+d≡0 mod 2q, ByC (r)denotetheevent:“theexponentchainwithexponent 0 valuesa(r),b(r),c(r)andd(r)formsacycle”.Noticethatfor i.e., we prove that C (r )∩C (r )⇒C . 1 1 1 2 0 r coprime with 2q, i.e. (r,2q) = 1, elements of matrix A(r) Remark 1. Note that if r ≡ r (q + 1) mod 2q, then 1 2 have the same distribution as matrix A. Moreover, exponent r ≡ r (q+1) mod 2q. Therefore, we can choose a set R 2 1 chainsfrommatricesAandA(r)formacyclesimultaneously. of scale values of cardinality ϕ(2q)/2 (ϕ(n) is Euler’s totient function) for even q and ϕ(2q) for odd q, such that for every we are interested in the probability that after lifting for the r ,r ∈R the conditions of Proposition 4 are fulfilled. circulant size L = q we will not obtain any cycle of length 1 2 1 Consider a floor scale modulo lifting with a family R = 4. We again assume that all events C are independent for 1 {r ,r ,...,r } of N scale values, such that for any two all exponent chains, i.e., all columns of matrix D are chosen 1 2 Nr r scale values r , r ∈ R the conditions of Proposition 4 are independently. i j satisfied. Let D = (D ) be an N ×y matrix, where the i- Theorem3.[28]. Theprobabilityoftheabsenceofcycles ij r th row corresponds to scale values r ∈ R, and each column of length 4 in the parity-check matrix with circulant size i corresponds to one exponent chain of length 4 in E(H). We q obtained after modulo lifting, floor lifting and floor scale setD to1ifthej-thexponentchainformsacycleafterfloor modulo lifting is as follows ij scale modulo lifting with scale value r , and to 0 otherwise. i P =(1−p )y =1−yp +O(q−2), q →∞ The first x columns, which corresponds to cycles in exponent mod mod mod matrixwithcirculantsize2q,equaltothecolumnofoneswith P =(1−p )y =1−yp +O(q−2), q →∞ fl fl fl probability 3/4 and to the column of zeros with probability 1/4. The rest y columns equal to the column of zeros with probability 5N P (N )=(cid:88)Nr(−1)k−1(cid:18)Nr(cid:19)(1−kp )y 1−N p =1− r fsml r k fl r fl 4(2q−1) k=1 (cid:40) and to the column of weight 1 with one at position i with = 1−O(q−Nr), if y ≥Nr, q →∞, probabilitypfl =5/(4(2q−1))foreachi∈[1,Nr].LetXi be 1, if y <Nr, q →∞. equal to the number of ones in the i-th row. We are interested In this case we see that floor scale modulo lifting is much intheminimumnumberofcyclesmin(X ,X ,...,X ).For 1 2 Nr better than modulo and floor lifting. further calculations we assume that all columns of matrix Table II shows one of possible advantages of the proposed D are chosen independently. Under this assumption exact lifting approach. We compare the floor lifting length adaption formulas for the mathematical expectation EC (N ) = fsml r of QC-LDPC codes used in IEEE 802.16 for rate 1/2 with 3x/4+Emin(X ,X ,...,X ) could be easily written out, 1 2 Nr the proposed floor scale modulo lifting. We apply the lifting but they rather messy. We provide only formula for the case methodstothe12×24mothermatrix.Wehavefoundoptimal N =2 in the form of r r scalevalueforourliftingapproachwithrespecttogirthand Proposition 5.[28]. Supposewehaveanexponentmatrix number of exponent chains which form cycles of the minimal E(H) with circulant size 2q having x exponent chains of length. In Table II for each circulant size the optimal r scale length 4, which form a cycle in H, and y exponent chains of value, girth and the number of cycles are depicted. Note that length 4, which do not form a cycle. Then the mathematical the QC-LDPC code of IEEE 802.16 standard was optimized expectation EC (2) of the number of cycles of length 4 in fsml with considering floor lifting method. If the QC-LDPC code the parity-check matrix of circulant size q obtained after floor withthemaximallengthsizeisnotoptimizedwithconsidering scale modulo lifting with N =2 scale values, which satisfies r floor or modulo lifting method, then the superiority of the the conditions of Proposition 4, is described by the following proposedfloorscalemoduloliftingwillbemoreconspicuous. expression y (cid:32) (cid:0) n (cid:1)(cid:33) 3 (cid:88) n (cid:98)n(cid:99) V. SIMULATIONRESULTS EC (2)= x+ 1− 2 fsml 4 2 2n n=0 QC-LDPC codes of smaller lengths can be obtained by (cid:18) (cid:19) ×(2p )n(1−2p )y−n y . liftingexponentmatrixofQC-LDPCcodesofmaximallength. fl fl n TheirperformanceoveranAWGNchannelwithBPSKmodu- lation was analyzed by computer simulations. Figure 1 shows The proof of Proposition 5 is provided in the full version theframeerrorrate(FER)performanceofrate4over5AR4JA of the given paper [28]. code defined by protograph of size 3×11 from [24]. We use Ify →∞theasymptoticbehaviorofEC (N )isgiven fsml r native lifting for fixed circulant sizes {16,32,64,128} and by floor modulo scale lifting beginning from parity-check matrix Theorem 2. [28]. The mathematical expectation of the H of circulant size 128 which goes down to circulant sizes number of cycles of length 4 after floor scale modulo lifting {16,32,64}. BP decoder with 100 iterations is used. has the following asymptotic form Figure 2 shows the SNR required to achieve 10−2 FER 3 √ √ EC = x+p y−c y+o( y), if y →∞, performance over an AWGN channel with QPSK modulation fsml 4 fl Nr for3familiesofQC-LDPCcodeswithrate8over9.Families where c does not depend on y. A [26] and B [25] are the industrial state-of-art QC-LDPC Nr Let us consider another scenario. Suppose that the number codes with their own lifting. For family C we applied floor ofcyclesoflength4inmatrixHwithcirculantsizeL =2qis modular scale lifting. Layered normalized offset min-sum 0 equalto0,andthenumbery ofexponentchainsisfixed.Now decoderwith15iterationswasusedinsimulations.Normalize TABLEII GIRTHANDTHENUMBEROFSHORTCYCLESFORFLOORLIFTINGAND [2] Tanner R. M. A Recursive Approach to Low Complexity Codes,IEEE Trans.Inform.Theory,IT-27,pp.533-547,September1981. FLOORSCALEMODULOLIFTING [3] Wiberg,N.Codesanddecodingongeneralgraphs,Ph.D.dissertation, LinkpingUniversity,1996. Floorscalemodulolifting Floorlifting,r=1 [4] D.J.C.MacKayandR.M.Neal,NearShannonlimitperformanceof Ek r girth/cycles Ek girth/cycles low-densityparity-checkcodes,Electron.Lett.,vol.32,pp.1645-1646, 24 95 6/13 24 6/20 Aug.1996. 28 1 4/1 28 4/1 [5] D. J. C. MacKay, Good error-correcting codes based on very sparse 32 1 6/11 32 6/11 matrices,IEEETrans.Inform.Theory,vol.45,pp.399-431,Mar.1999. 36 95 6/7 36 6/13 [6] M. Sipser and D. A. Spielman, Expander codes, IEEE Trans. Inform. 40 1 6/7 40 6/7 Theory,vol.42,pp.1710-1722,Nov.1996. 44 95 6/5 44 6/10 [7] Y.Kou,S.Lin,andM.P.C.Fossorier,Low-densityparity-checkcodes basedonfinitegeometries:arediscoveryandnewresults,IEEETrans. 48 1 6/7 48 6/7 Inf.Theory,vol.47,no.7,pp.2711-2736,Nov.2001. 52 1 6/6 52 6/6 [8] I. Djurdjevic, J. Xu, K. Abdel-Ghaffar, S. Lin, A class of low-density 56 1 6/5 56 6/5 parity-checkcodesconstructedbasedonReed-Solomoncodeswithtwo 60 1 6/6 60 6/6 informationsymbols,AppliedAlgebra,AlgebraicAlgorithmsandError- 64 34 6/5 64 6/9 CorrectingCodes,SpringerBerlinHeidelberg,2003.98-107 68 53 6/4 68 6/8 [9] R.M.Tanner,D.Sridhara,A.Sridharan,T.E.Fuja,andD.J.Costello, 72 11 6/6 72 6/9 Jr., LDPC block and convolutional codes based on circulant matrices, 76 91 6/4 76 6/5 IEEETrans.Inf.Theory,vol.50,no.12,pp.2966-2984,Dec.2004. 80 2 6/5 80 6/7 [10] L.Zhang,Q.Huang,S.Lin,K.Abdel-Ghaffar,andI.F.Blake,Quasi- 84 11 6/3 84 6/8 cyclicLDPCcodes:Analgebraicconstruction,rankanalysis,andcodes 88 41 6/3 88 6/6 on latin squares, IEEE Trans. Comm., vol. 58, no. 11, pp. 3126-3139, 92 13 6/4 92 6/8 Nov.2010. 96 1 6/5 96 6/5 [11] D. Divsalar, S. Dolinar and C. Jones, ”Construction of Protograph LDPCCodeswithLinearMinimumDistance,”2006IEEEInternational SymposiumonInformationTheory,Seattle,WA,2006,pp.664-668. [12] S. Myung, K. Yang, and J. Kim, Quasi-cyclic LDPC codes for fast encoding,IEEETrans.Inf.Theory,vol.51,no.8,pp.2894-2901,2005 [13] J. Kim, A. Ramamoorthy and S. W. Mclaughlin, ”The design of efficiently-encodable rate-compatible LDPC codes ,” IEEE Trans. Comm.,vol.57,no.2,pp.365-375,February2009. [14] Advanced hardware design for error correcting codes /Cyrille Chavet, PhilippeCoussy,editors.Cham:Springer,2015.,pp.7-31 [15] M. P. C. Fossorier, Quasi-cyclic low-density parity-check codes from circulantpermutationmatrices,IEEETrans.Inf.Theory,vol.50,no.8, pp.17881793,2004. [16] Y.Wang,S.C.DraperandJ.S.Yedidia,”HierarchicalandHigh-Girth QC LDPC Codes,” IEEE Trans. Inf. Theory, vol. 59, no. 7, pp. 4553- 4583,July2013. [17] B.Vasi,S.K.Chilappagari,D.V.NguyenandS.K.Planjery,”Trapping Fig. 1. PerformanceofAR4JAcodeswithdifferentCPMsizesbythe set ontology,” 2009 47th Annual Allerton Conference on Communica- liftingL=128,256,512.BP100it. tion,Control,andComputing(Allerton),Monticello,IL,2009,pp.1-7. [18] M. Diouf, D. Declercq, S. Ouya and B. Vasic, ”A PEG-like LDPC code design avoiding short trapping sets,” Proc. IEEE Inter. Symp. InformationTheory,HongKong,2015,pp.1079-1083. and offset factors were optimized to improve waterfall perfor- [19] R.Smarandache,P.O.Vontobel,”Quasi-CyclicLDPCCodes:Influence mance[27].Insummary,theproposedliftingschemesupports ofProto-andTanner-GraphStructureonMinimumHammingDistance fine granularity and avoids catastrophic cases for different UpperBounds,”inIEEETrans.Inf.Theory,vol.58,no.2,pp.585-607, Feb.2012. lengths. [20] B. K. Butler and P. H. Siegel, ”Bounds on the Minimum Distance of Punctured Quasi-Cyclic LDPC Codes,” IEEE Trans. Inf. Theory, vol. REFERENCES 59,no.7,pp.4584-4597,July2013. [21] DariushDivsalar,”EnsembleWeightEnumeratorsforProtographLDPC [1] R. G. Gallager, Low-density parity-check codes, IRE Trans. In- Codes”, Proc. IEEE Inter. Symp. Information Theory,2006. pp. 1554- form.Theory,vol.IT-8,pp.21-28,Jan.1962. 1558,2006. [22] Myung S., Yang K. Extension of quasi-cyclic LDPC codes by lifting. Proc. IEEE Inter. Symp. Information Theory, 2005. ISIT 2005, 2305- 2309. [23] Myung, S., Yang, K., and Kim, Y. . Lifting methods for quasi-cyclic LDPCcodes.IEEEComm.Lett.,2006,10(6),489-491. [24] D. Divsalar, S. Dolinar and C. Jones, ”Construction of Protograph LDPCCodeswithLinearMinimumDistance,”Proc.IEEEInter.Symp. InformationTheory,2006.ISIT2006.,Seattle,WA,2006,pp.664-668. [25] R1-166370,LDPCratecompatibledesign,Qualcommfrom3GPPTSG- RANWG186,22th 26thAugust2016,Gothenburg,Sweden [26] R1-167889,DesignofFlexibleLDPCCodes,Samsungfrom3GPPTSG RANWG186,22th26thAugust2016,Gothenburg,Sweden [27] Chen J., Tanner R. M., Jones C., Li Y. ”Improved min-sum decoding algorithms for irregular LDPC codes,” Proc. IEEE Inter. Symp. Infor- mationTheory,2005.ISIT2005.,Adelaide,SA,2005,pp.449-453. [28] Polianskii N., Usatyuk V., Vorobyev I., ”Floor Scale Modulo Lifting,” Fig.2. SNRrequiredtoachieve10−2FER https://arxiv.org/abs/1701.07521,2017. APPENDIX Let denote as minn(X) the function which equals max(min(min(X),n),−n). This function is continuous and A. Proof of Proposition 5 bounded, hence Proof: Consider a random variable min(X ,X ). Then 1 2 (cid:18) (cid:19) X−EX lim Emin √ = Emin(X ,X )=EE(min(X ,X )|X +X ) y→∞ y 1 2 1 2 1 2 X−EX y = (cid:88)Emin(Y,n−Y)Pr(X1+X2 =n), nl→im∞yl→im∞Eminn √y n=0 = lim Emin N(0,Σ)= n n→∞ where Y ∼B(n,1). From EminN(0,Σ)=−c , (8) 2 Nr Emin(Y,n−Y)= n(cid:32)1− (cid:0)(cid:98)nn/2(cid:99)(cid:1)(cid:33) where cNr =EmaxN(0,Σ)>0. Therefore, 2 2n √ Emin(X ,X ,...,X )=EminX+o( y)= 1√ 2 √Nr √ √ and minEX− yc +o( y)=p y− yc +o( y). (9) Nr fl Nr (cid:18) (cid:19) y Pr(X +X =n)=(2p )n(1−2p )y−n , 1 2 fl fl n C. Proof of Theorem 3 it follows the statement of the proposition. Proof:WeprovetheformulaforP only.Firstly,find fsml theprobabilityP thatthefirstk rowsofthematrixDcontain k B. Proof of Theorem 2 only zeros Proof: Consider a random vector Pk =(1−kpfl)y. Secondly, using the inclusion-exclusion principle we get X=(X ,X ,...,X ,X ), 1 2 Nr Nr+1 (cid:80)Nr P =(cid:88)Nr(−1)k−1(cid:18)Nr(cid:19)(1−kp )y. (10) where XNr+1 =y− Xi). fsml k fl i=1 k=1 One can see that X has a multinomial distribution with Now we prove an auxiliary statement. y! N(cid:80)rxi Lemma 1. The binomial identity Pr(x1,...,xNr+1)= x1!·...·xNr+1!pif=l0 (1−Nrpfl)xNr+1. (cid:88)n (−1)k(cid:18)n(cid:19)g(k)=0 k BytheCentrallimittheoremthedistributionofrandomvector k=0 X−√EX tendstonormaldistributionN(0,Σ)asy →∞,where holds for every polynomial g(k) with degree less than n. y Σ is the covariance matrix of X. Proof: Every polynomial g(k) of degree t can be repre- Let us prove that Emin(X ,X ,...,X )−EminX = sented in the following form √ 1 2 Nr o( y) as y →∞. t (cid:88) g(k)= c (k) , l l |Emin(X ,X ,...,X )−EminX| 1 2 Nr l=0 ≤yP(minX=XNr+1)≤yP(XNr+1 ≤y/(Nr+1)) where (cid:18) (cid:19) 1 (k) =k(k−1)...(k−l+1), ≤yP X ≤EX (6) l Nr+1 Nr+1(1−p N )(N +1) fl r r ans c are some coefficients. l From N ≤ϕ(2q)≤q it follows that 1−p N >p for For every l<n r fl r fl q >2. The following chain of inequalities takes place n (cid:18) (cid:19) n (cid:18) (cid:19) (cid:88) n (cid:88) n (−1)k (k) = (−1)k (k) k l k l 1−p N >p ⇒ fl r fl k=0 k=l pfl(Nr+1)Nr ≤Nr <Nr+1⇒ =(cid:88)n (−1)k n!k! =(cid:88)n (−1)k n!k! 1 k!(n−k)!(k−l)! k!(n−k)!(k−l)! <1. (7) k=l k=l (1−p N )(N +1) fl r r n! (cid:88)n (n−l)! = (−1)k Denote 1 as 1−δ for some δ >0 and use the (n−l)! (n−k)!(k−l)! (1−pflNr)(Nr+1) k=l Chernoff inequality n (cid:18) (cid:19) n! (cid:88) n−l = (−1)k =0, (11) yP(XNr+1 ≤EXNr+1(1−δ))≤ye−δ2EX2Nr+1 =o(√y). (n−l)! k=l n−k therefore, n (cid:18) (cid:19) (cid:88) n (−1)k g(k)=0. k k=0 Finally, using the evident asymptotic (cid:18) (cid:19) 5 1 p = =O , as q →∞, fl 4(2q−1) q along with Lemma 1 and the equality (10), we obtain the statement of Theorem 3.