ebook img

Flexible Multibody Dynamics: Efficient Formulations and Applications PDF

306 Pages·2016·8.9 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Flexible Multibody Dynamics: Efficient Formulations and Applications

FLEXIBLE MULTIBODY DYNAMICS EFFICIENT FORMULATIONS AND APPLICATIONS ArunK. Banerjee FormerlyPrincipalResearchScientist LockheedMartinAdvancedTechnologyCenter PaloAlto,CA USA Thiseditionfirstpublished2016©2016JohnWiley&SonsLtd Registeredoffice JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UnitedKingdom Fordetailsofourglobaleditorialoffices,forcustomerservicesandforinformationabouthowtoapplyfor permissiontoreusethecopyrightmaterialinthisbookpleaseseeourwebsiteatwww.wiley.com. TherightoftheauthortobeidentifiedastheauthorofthisworkhasbeenassertedinaccordancewiththeCopyright, DesignsandPatentsAct1988. Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,inany formorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedbytheUK Copyright,DesignsandPatentsAct1988,withoutthepriorpermissionofthepublisher. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmaynotbe availableinelectronicbooks. Designationsusedbycompaniestodistinguishtheirproductsareoftenclaimedastrademarks.Allbrandnamesand productnamesusedinthisbookaretradenames,servicemarks,trademarksorregisteredtrademarksoftheir respectiveowners.Thepublisherisnotassociatedwithanyproductorvendormentionedinthisbook. LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbesteffortsinpreparing thisbook,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsof thisbookandspecificallydisclaimanyimpliedwarrantiesofmerchantabilityorfitnessforaparticularpurpose.Itis soldontheunderstandingthatthepublisherisnotengagedinrenderingprofessionalservicesandneitherthe publishernortheauthorshallbeliablefordamagesarisingherefrom.Ifprofessionaladviceorotherexpert assistanceisrequired,theservicesofacompetentprofessionalshouldbesought. LibraryofCongressCataloging-in-PublicationData Banerjee,ArunK.,author. Flexiblemultibodydynamics:efficientformulationsandapplications/ArunK.Banerjee. pagescm Includesbibliographicalreferencesandindex. ISBN978-1-119-01564-2(hardback) 1.Machinery,Dynamicsof. 2.Multibodysystems–Mathematicalmodels. I.Title. TJ173.B2352015 621.8′11–dc23 2015033623 AcataloguerecordforthisbookisavailablefromtheBritishLibrary. Coverimages:Redrescuehelicoptermovinginbluesky:©aragami123345/iStock;Roboticprobeindeepspace, computerillustration:VictorHabbickVisions/SciencePhotoLibrary/Getty Setin10/12ptTimesbyAptaraInc.,NewDelhi,India 1 2016 Thisbookisdedicatedto: Alpona,mywifewhosufferedoverthirty-five yearsasIworkedatmy jobandonweekendsandnightsforpublications,andurgedmetowrite thisbookafterIretired,butdidnotlivetoseeitpublished; and ProfessorThomasKane,mymentor, fromwhosemagnificentbooksI learnedtododynamics, andwhostartedmeonthepathtopublished researchthatthisbookembodies; and Ourdaughter, Onureena,andson, Abheek,whohavebeenmyblessings; and LockheedMartinSpaceSystemsCompany anditsmanagers, particularlyDr.RonDotson,whogavemeafreehandtoworkonthe algorithms reportedhere,whichledtoaflexiblemultibodydynamicscode developedwithmajorhelpfrommycolleague,MarkLemak,andseveral independentformulations. Contents Preface ix 1 DerivationofEquationsofMotion 1 1.1 AvailableAnalyticalMethodsandtheReasonforChoosingKane’sMethod 1 1.2 Kane’sMethodofDerivingEquationsofMotion 2 1.2.1 Kane’sEquations 4 1.2.2 SimpleExample:EquationsforaDoublePendulum 4 1.2.3 EquationsforaSpinningSpacecraftwithThreeRotors,FuelSlosh, andNutationDamper 6 1.3 ComparisontoDerivationofEquationsofMotionbyLagrange’sMethod 11 1.3.1 Lagrange’sEquationsinQuasi-Coordinates 14 Reader’sExercise 15 1.4 Kane’sMethodofDirectDerivationofLinearizedDynamicalEquation 16 1.5 PrematurelyLinearizedEquationsandaPosterioriCorrectionbyadhoc AdditionofGeometricStiffnessduetoInertiaLoads 19 1.6 Kane’sEquationswithUndeterminedMultipliersforConstrainedMotion 21 1.7 SummaryoftheEquationsofMotionwithUndeterminedMultipliers forConstraints 22 1.8 ASimpleApplication 23 Appendix1.A GuidelinesforChoosingEfficientMotionVariablesin Kane’sMethod 25 ProblemSet1 27 References 28 2 Deployment,Station-Keeping,andRetrievalofaFlexibleTether ConnectingaSatellitetotheShuttle 29 2.1 EquationsofMotionofaTetheredSatelliteDeploymentfromthe SpaceShuttle 30 2.1.1 KinematicalEquations 31 2.1.2 DynamicalEquations 32 2.1.3 SimulationResults 35 2.2 Thruster-AugmentedRetrievalofaTetheredSatellitetotheOrbitingShuttle 37 2.2.1 DynamicalEquations 37 Contents v 2.2.2 SimulationResults 47 2.2.3 Conclusion 47 2.3 DynamicsandControlofStation-KeepingoftheShuttle-TetheredSatellite 47 Appendix2.A SlidingImpactofaNoseCapwithaPackageofParachute UsedforRecoveryofaBoosterLaunchingSatellites 49 Appendix2.B FormationFlyingwithMultipleTetheredSatellites 53 Appendix2.C OrbitBoostingofTetheredSatelliteSystemsby ElectrodynamicForces 55 ProblemSet2 60 References 60 3 Kane’sMethodofLinearizationAppliedtotheDynamicsofaBeamin LargeOverallMotion 63 3.1 NonlinearBeamKinematicswithNeutralAxisStretch,Shear,andTorsion 63 3.2 NonlinearPartialVelocitiesandPartialAngularVelocitiesfor CorrectLinearization 69 3.3 UseofKane’sMethodforDirectDerivationofLinearized DynamicalEquations 70 3.4 SimulationResultsforaSpace-BasedRoboticManipulator 76 3.5 ErroneousResultsObtainedUsingVibrationModesinConventionalAnalysis 78 ProblemSet3 79 References 82 4 DynamicsofaPlateinLargeOverallMotion 83 4.1 MotivatingResultsofaSimulation 83 4.2 ApplicationofKane’sMethodologyforProperLinearization 85 4.3 SimulationAlgorithm 90 4.4 Conclusion 92 Appendix4.A SpecializedModalIntegrals 93 ProblemSet4 94 References 96 5 DynamicsofanArbitraryFlexibleBodyinLargeOverallMotion 97 5.1 DynamicalEquationswiththeUseofVibrationModes 98 5.2 CompensatingforPrematureLinearizationbyGeometricStiffnessdueto InertiaLoads 100 5.2.1 RigidBodyKinematicalEquations 104 5.3 SummaryoftheAlgorithm 105 5.4 CrucialTestandValidationoftheTheoryinApplication 106 Appendix5.A ModalIntegralsforanArbitraryFlexibleBody 112 ProblemSet5 114 References 114 6 FlexibleMultibodyDynamics:DenseMatrixFormulation 115 6.1 FlexibleBodySysteminaTreeTopology 115 6.2 KinematicsofaJointinaFlexibleMultibodyBodySystem 115 vi Contents 6.3 KinematicsandGeneralizedInertiaForcesforaFlexibleMultibodySystem 116 6.4 KinematicalRecurrenceRelationsPertainingtoaBodyandIts InboardBody 120 6.5 GeneralizedActiveForcesduetoNominalandMotion-InducedStiffness 121 6.6 TreatmentofPrescribedMotionandInternalForces 126 6.7 “RuthlessLinearization”forVerySlowlyMovingArticulating FlexibleStructures 126 6.8 SimulationResults 127 ProblemSet6 129 References 131 7 ComponentModeSelectionandModelReduction:AReview 133 7.1 Craig-BamptonComponentModesforConstrainedFlexibleBodies 133 7.2 ComponentModesbyGuyanReduction 136 7.3 ModalEffectiveMass 137 7.4 ComponentModelReductionbyFrequencyFiltering 138 7.5 CompensationforErrorsduetoModelReductionbyModal TruncationVectors 138 7.6 RoleofModalTruncationVectorsinResponseAnalysis 141 7.7 ComponentModeSynthesistoFormSystemModes 143 7.8 FlexibleBodyModelReductionbySingularValueDecompositionof ProjectedSystemModes 145 7.9 DerivingDampingCoefficientofComponentsfromDesired SystemDamping 147 ProblemSet7 148 Appendix7.A MatlabCodesforStructuralDynamics 149 7.10 Conclusion 159 References 159 8 Block-DiagonalFormulationforaFlexibleMultibodySystem 161 8.1 Example:RoleofGeometricStiffnessduetoInterbodyLoadonaComponent 161 8.2 MultibodySystemwithRigidandFlexibleComponents 164 8.3 RecurrenceRelationsforKinematics 165 8.4 ConstructionoftheDynamicalEquationsinaBlock-DiagonalForm 168 8.5 SummaryoftheBlock-DiagonalAlgorithmforaTreeConfiguration 174 8.5.1 FirstForwardPass 174 8.5.2 BackwardPass 174 8.5.3 SecondForwardPass 175 8.6 NumericalResultsDemonstratingComputationalEfficiency 175 8.7 ModificationoftheBlock-DiagonalFormulationtoHandle MotionConstraints 176 8.8 ValidationofFormulationwithGroundTestResults 182 8.9 Conclusion 186 Appendix8.A AnAlternativeDerivationofGeometricStiffnessdueto InertiaLoads 187 Contents vii ProblemSet8 188 References 189 9 EfficientVariables,RecursiveFormulation,andMulti-PointConstraints inFlexibleMultibodyDynamics 191 9.1 SingleFlexibleBodyEquationsinEfficientVariables 191 9.2 MultibodyHingeKinematicsforEfficientGeneralizedSpeeds 196 9.3 RecursiveAlgorithmforFlexibleMultibodyDynamicswithMultiple StructuralLoops 201 9.3.1 BackwardPass 201 9.3.2 ForwardPass 207 9.4 ExplicitSolutionofDynamicalEquationsUsingMotionConstraints 209 9.5 ComputationalResultsandSimulationEfficiencyforMoving Multi-LoopStructures 210 9.5.1 SimulationResults 210 Acknowledgment 215 Appendix9.A Pseudo-CodeforConstrainednb-Bodym-LoopRecursive AlgorithminEfficientVariables 216 ProblemSet9 220 References 220 10 EfficientModelingofBeamswithLargeDeflectionandLarge BaseMotion 223 10.1 DiscreteModelingforLargeDeflectionofBeams 223 10.2 MotionandLoadsAnalysisbytheOrder-nFormulation 226 10.3 NumericalIntegrationbytheNewmarkMethod 230 10.4 NonlinearElastodynamicsviatheFiniteElementMethod 231 10.5 ComparisonoftheOrder-nFormulationwiththeFiniteElementMethod 233 10.6 Conclusion 237 Acknowledgment 238 ProblemSet10 238 References 238 11 Variable-nOrder-nFormulationforDeploymentandRetractionof BeamsandCableswithLargeDeflection 239 11.1 BeamDiscretization 239 11.2 Deployment/RetractionfromaRotatingBase 240 11.2.1 InitializationStep 240 11.2.2 ForwardPass 240 11.2.3 BackwardPass 243 11.2.4 ForwardPass 244 11.2.5 Deployment/RetractionStep 244 11.3 NumericalSimulationofDeploymentandRetraction 246 11.4 DeploymentofaCablefromaShiptoaManeuveringUnderwater SearchVehicle 247 viii Contents 11.4.1 CableDiscretizationandVariable-nOrder-nAlgorithmfor ConstrainedSystemswithControlledEndBody 248 11.4.2 HydrodynamicForcesontheUnderwaterCable 254 11.4.3 NonlinearHolonomicConstraint,Control-ConstraintCoupling, ConstraintStabilization,andCableTension 255 11.5 SimulationResults 257 ProblemSet11 261 References 267 12 Order-nEquationsofFlexibleRocketDynamics 269 12.1 Introduction 269 12.2 Kane’sEquationforaVariableMassFlexibleBody 269 12.3 MatrixFormoftheEquationsforVariableMassFlexibleBodyDynamics 274 12.4 Order-nAlgorithmforaFlexibleRocketwithCommandedGimbaled NozzleMotion 275 12.5 NumericalSimulationofPlanarMotionofaFlexibleRocket 278 12.6 Conclusion 285 Acknowledgment 285 Appendix12.A SummaryAlgorithmforFindingTwoGimbalAngle TorquesfortheNozzle 285 ProblemSet12 286 References 286 AppendixA EfficientGeneralizedSpeedsforaSingleFree-FlyingFlexibleBody 287 AppendixB AFORTRANCodeoftheOrder-nAlgorithm:Applicationto anExample 291 Index 301 Preface Thisbookisbasedonmypublishedresearchonderivingcomputationallyefficientequations of motion of multibody systems with rotating, flexible components. It reflects my work of over thirty-five years done mostly at Lockheed Missiles & Space Company, and also at MartinMariettaandNorthropCorporations.Thecoverofthebookdepictstwoexamplesof flexiblemultibodysystems:theGalileospacecraft,whichwassenttoJupiter,withitsrotating antennadishonaninertially-fixedbasewithadeployedtruss,andahelicopterinflight.Other examplesofmultibodysystems,apartfromthehumanbodyitself,areroboticmanipulators, a space shuttle deploying a tethered subsatellite, and a ship reeling out a cable to a vehicle doing sea floor mine searches. Formulation of equations of motion is the first step in their simulation-baseddesign. Inthisbook,IchoosetouseKane’smethodofderivingequationsofmotion,fortworeasons: efficiencyinreducinglaborofderivingtheequations,andsimplicityofthefinalequationsdue to a choice of variables that the method allows. However, the contribution of the book goes beyondadirectformulationofKane’sequationstomorecomputationallyefficientalgorithms like block-diagonal and order-n formulations. Another major contribution of this book is in compensatingforerrorsofprematurelinearization,inherentwiththeuseofvibrationmodes inlargeoverallmotionproblems,byusinggeometricstiffnessduetoinertialoads. Ahighlightofthisbookistheapplicationofthetheorytocomplexproblems.InChapter1, I explain Kane’s method, first with a simple example and then by applying it to a realistic problem of the dynamics of a three-axis controlled spacecraft with fuel slosh. Presented separately are Kane’s method of direct linearization of equation of motion and a method of a posteriori compensation for premature linearization by adding geometric stiffness due to inertia loads; in the Appendix, a guideline for choosing variables that simplify equations of motion is provided. In Chapter 2, Kane’s method is used to derive nonlinear dynamical equations for tethered satellite deployment, station-keeping and retrieval, and a problem of impact dynamics of a nose cap during ejection of a parachute for recovery of a booster launchingasatellite.Thenexttwochapterscoverlargeoverallmotionofbeamsandplatesthat illustratetheapplicationofKane’smethodofdirectlinearization.Chapter5givesaderivation ofequationsoflargeoverallmotionofanarbitraryflexiblebody,withamethodofredeeming prematurely linearized equations by adding motion-induced geometric stiffness. Chapter 6 incorporatesthemotion-inducedgeometricstiffnessintothedynamicsofasystemofflexible bodies in large overall motions. Chapter 7 is a review material from structural dynamics, based mainly on the book by Craig, with some additional work on mode selection done at Lockheed. Chapter 8 produces an algorithm for dynamical equations, with block-diagonal

Description:
Arun K. Banerjee is one of the foremost experts in the world on the subject of flexible multibody dynamics. This book describes how to build mathermatical models of multibody systems with elastic components. Examples of such systems include the human body itself, construction cranes, cares with trai
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.