FLEXIBLE MULTIBODY DYNAMICS EFFICIENT FORMULATIONS AND APPLICATIONS ArunK. Banerjee FormerlyPrincipalResearchScientist LockheedMartinAdvancedTechnologyCenter PaloAlto,CA USA Thiseditionfirstpublished2016©2016JohnWiley&SonsLtd Registeredoffice JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UnitedKingdom Fordetailsofourglobaleditorialoffices,forcustomerservicesandforinformationabouthowtoapplyfor permissiontoreusethecopyrightmaterialinthisbookpleaseseeourwebsiteatwww.wiley.com. TherightoftheauthortobeidentifiedastheauthorofthisworkhasbeenassertedinaccordancewiththeCopyright, DesignsandPatentsAct1988. Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,inany formorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedbytheUK Copyright,DesignsandPatentsAct1988,withoutthepriorpermissionofthepublisher. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmaynotbe availableinelectronicbooks. Designationsusedbycompaniestodistinguishtheirproductsareoftenclaimedastrademarks.Allbrandnamesand productnamesusedinthisbookaretradenames,servicemarks,trademarksorregisteredtrademarksoftheir respectiveowners.Thepublisherisnotassociatedwithanyproductorvendormentionedinthisbook. LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbesteffortsinpreparing thisbook,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsof thisbookandspecificallydisclaimanyimpliedwarrantiesofmerchantabilityorfitnessforaparticularpurpose.Itis soldontheunderstandingthatthepublisherisnotengagedinrenderingprofessionalservicesandneitherthe publishernortheauthorshallbeliablefordamagesarisingherefrom.Ifprofessionaladviceorotherexpert assistanceisrequired,theservicesofacompetentprofessionalshouldbesought. LibraryofCongressCataloging-in-PublicationData Banerjee,ArunK.,author. Flexiblemultibodydynamics:efficientformulationsandapplications/ArunK.Banerjee. pagescm Includesbibliographicalreferencesandindex. ISBN978-1-119-01564-2(hardback) 1.Machinery,Dynamicsof. 2.Multibodysystems–Mathematicalmodels. I.Title. TJ173.B2352015 621.8′11–dc23 2015033623 AcataloguerecordforthisbookisavailablefromtheBritishLibrary. Coverimages:Redrescuehelicoptermovinginbluesky:©aragami123345/iStock;Roboticprobeindeepspace, computerillustration:VictorHabbickVisions/SciencePhotoLibrary/Getty Setin10/12ptTimesbyAptaraInc.,NewDelhi,India 1 2016 Thisbookisdedicatedto: Alpona,mywifewhosufferedoverthirty-five yearsasIworkedatmy jobandonweekendsandnightsforpublications,andurgedmetowrite thisbookafterIretired,butdidnotlivetoseeitpublished; and ProfessorThomasKane,mymentor, fromwhosemagnificentbooksI learnedtododynamics, andwhostartedmeonthepathtopublished researchthatthisbookembodies; and Ourdaughter, Onureena,andson, Abheek,whohavebeenmyblessings; and LockheedMartinSpaceSystemsCompany anditsmanagers, particularlyDr.RonDotson,whogavemeafreehandtoworkonthe algorithms reportedhere,whichledtoaflexiblemultibodydynamicscode developedwithmajorhelpfrommycolleague,MarkLemak,andseveral independentformulations. Contents Preface ix 1 DerivationofEquationsofMotion 1 1.1 AvailableAnalyticalMethodsandtheReasonforChoosingKane’sMethod 1 1.2 Kane’sMethodofDerivingEquationsofMotion 2 1.2.1 Kane’sEquations 4 1.2.2 SimpleExample:EquationsforaDoublePendulum 4 1.2.3 EquationsforaSpinningSpacecraftwithThreeRotors,FuelSlosh, andNutationDamper 6 1.3 ComparisontoDerivationofEquationsofMotionbyLagrange’sMethod 11 1.3.1 Lagrange’sEquationsinQuasi-Coordinates 14 Reader’sExercise 15 1.4 Kane’sMethodofDirectDerivationofLinearizedDynamicalEquation 16 1.5 PrematurelyLinearizedEquationsandaPosterioriCorrectionbyadhoc AdditionofGeometricStiffnessduetoInertiaLoads 19 1.6 Kane’sEquationswithUndeterminedMultipliersforConstrainedMotion 21 1.7 SummaryoftheEquationsofMotionwithUndeterminedMultipliers forConstraints 22 1.8 ASimpleApplication 23 Appendix1.A GuidelinesforChoosingEfficientMotionVariablesin Kane’sMethod 25 ProblemSet1 27 References 28 2 Deployment,Station-Keeping,andRetrievalofaFlexibleTether ConnectingaSatellitetotheShuttle 29 2.1 EquationsofMotionofaTetheredSatelliteDeploymentfromthe SpaceShuttle 30 2.1.1 KinematicalEquations 31 2.1.2 DynamicalEquations 32 2.1.3 SimulationResults 35 2.2 Thruster-AugmentedRetrievalofaTetheredSatellitetotheOrbitingShuttle 37 2.2.1 DynamicalEquations 37 Contents v 2.2.2 SimulationResults 47 2.2.3 Conclusion 47 2.3 DynamicsandControlofStation-KeepingoftheShuttle-TetheredSatellite 47 Appendix2.A SlidingImpactofaNoseCapwithaPackageofParachute UsedforRecoveryofaBoosterLaunchingSatellites 49 Appendix2.B FormationFlyingwithMultipleTetheredSatellites 53 Appendix2.C OrbitBoostingofTetheredSatelliteSystemsby ElectrodynamicForces 55 ProblemSet2 60 References 60 3 Kane’sMethodofLinearizationAppliedtotheDynamicsofaBeamin LargeOverallMotion 63 3.1 NonlinearBeamKinematicswithNeutralAxisStretch,Shear,andTorsion 63 3.2 NonlinearPartialVelocitiesandPartialAngularVelocitiesfor CorrectLinearization 69 3.3 UseofKane’sMethodforDirectDerivationofLinearized DynamicalEquations 70 3.4 SimulationResultsforaSpace-BasedRoboticManipulator 76 3.5 ErroneousResultsObtainedUsingVibrationModesinConventionalAnalysis 78 ProblemSet3 79 References 82 4 DynamicsofaPlateinLargeOverallMotion 83 4.1 MotivatingResultsofaSimulation 83 4.2 ApplicationofKane’sMethodologyforProperLinearization 85 4.3 SimulationAlgorithm 90 4.4 Conclusion 92 Appendix4.A SpecializedModalIntegrals 93 ProblemSet4 94 References 96 5 DynamicsofanArbitraryFlexibleBodyinLargeOverallMotion 97 5.1 DynamicalEquationswiththeUseofVibrationModes 98 5.2 CompensatingforPrematureLinearizationbyGeometricStiffnessdueto InertiaLoads 100 5.2.1 RigidBodyKinematicalEquations 104 5.3 SummaryoftheAlgorithm 105 5.4 CrucialTestandValidationoftheTheoryinApplication 106 Appendix5.A ModalIntegralsforanArbitraryFlexibleBody 112 ProblemSet5 114 References 114 6 FlexibleMultibodyDynamics:DenseMatrixFormulation 115 6.1 FlexibleBodySysteminaTreeTopology 115 6.2 KinematicsofaJointinaFlexibleMultibodyBodySystem 115 vi Contents 6.3 KinematicsandGeneralizedInertiaForcesforaFlexibleMultibodySystem 116 6.4 KinematicalRecurrenceRelationsPertainingtoaBodyandIts InboardBody 120 6.5 GeneralizedActiveForcesduetoNominalandMotion-InducedStiffness 121 6.6 TreatmentofPrescribedMotionandInternalForces 126 6.7 “RuthlessLinearization”forVerySlowlyMovingArticulating FlexibleStructures 126 6.8 SimulationResults 127 ProblemSet6 129 References 131 7 ComponentModeSelectionandModelReduction:AReview 133 7.1 Craig-BamptonComponentModesforConstrainedFlexibleBodies 133 7.2 ComponentModesbyGuyanReduction 136 7.3 ModalEffectiveMass 137 7.4 ComponentModelReductionbyFrequencyFiltering 138 7.5 CompensationforErrorsduetoModelReductionbyModal TruncationVectors 138 7.6 RoleofModalTruncationVectorsinResponseAnalysis 141 7.7 ComponentModeSynthesistoFormSystemModes 143 7.8 FlexibleBodyModelReductionbySingularValueDecompositionof ProjectedSystemModes 145 7.9 DerivingDampingCoefficientofComponentsfromDesired SystemDamping 147 ProblemSet7 148 Appendix7.A MatlabCodesforStructuralDynamics 149 7.10 Conclusion 159 References 159 8 Block-DiagonalFormulationforaFlexibleMultibodySystem 161 8.1 Example:RoleofGeometricStiffnessduetoInterbodyLoadonaComponent 161 8.2 MultibodySystemwithRigidandFlexibleComponents 164 8.3 RecurrenceRelationsforKinematics 165 8.4 ConstructionoftheDynamicalEquationsinaBlock-DiagonalForm 168 8.5 SummaryoftheBlock-DiagonalAlgorithmforaTreeConfiguration 174 8.5.1 FirstForwardPass 174 8.5.2 BackwardPass 174 8.5.3 SecondForwardPass 175 8.6 NumericalResultsDemonstratingComputationalEfficiency 175 8.7 ModificationoftheBlock-DiagonalFormulationtoHandle MotionConstraints 176 8.8 ValidationofFormulationwithGroundTestResults 182 8.9 Conclusion 186 Appendix8.A AnAlternativeDerivationofGeometricStiffnessdueto InertiaLoads 187 Contents vii ProblemSet8 188 References 189 9 EfficientVariables,RecursiveFormulation,andMulti-PointConstraints inFlexibleMultibodyDynamics 191 9.1 SingleFlexibleBodyEquationsinEfficientVariables 191 9.2 MultibodyHingeKinematicsforEfficientGeneralizedSpeeds 196 9.3 RecursiveAlgorithmforFlexibleMultibodyDynamicswithMultiple StructuralLoops 201 9.3.1 BackwardPass 201 9.3.2 ForwardPass 207 9.4 ExplicitSolutionofDynamicalEquationsUsingMotionConstraints 209 9.5 ComputationalResultsandSimulationEfficiencyforMoving Multi-LoopStructures 210 9.5.1 SimulationResults 210 Acknowledgment 215 Appendix9.A Pseudo-CodeforConstrainednb-Bodym-LoopRecursive AlgorithminEfficientVariables 216 ProblemSet9 220 References 220 10 EfficientModelingofBeamswithLargeDeflectionandLarge BaseMotion 223 10.1 DiscreteModelingforLargeDeflectionofBeams 223 10.2 MotionandLoadsAnalysisbytheOrder-nFormulation 226 10.3 NumericalIntegrationbytheNewmarkMethod 230 10.4 NonlinearElastodynamicsviatheFiniteElementMethod 231 10.5 ComparisonoftheOrder-nFormulationwiththeFiniteElementMethod 233 10.6 Conclusion 237 Acknowledgment 238 ProblemSet10 238 References 238 11 Variable-nOrder-nFormulationforDeploymentandRetractionof BeamsandCableswithLargeDeflection 239 11.1 BeamDiscretization 239 11.2 Deployment/RetractionfromaRotatingBase 240 11.2.1 InitializationStep 240 11.2.2 ForwardPass 240 11.2.3 BackwardPass 243 11.2.4 ForwardPass 244 11.2.5 Deployment/RetractionStep 244 11.3 NumericalSimulationofDeploymentandRetraction 246 11.4 DeploymentofaCablefromaShiptoaManeuveringUnderwater SearchVehicle 247 viii Contents 11.4.1 CableDiscretizationandVariable-nOrder-nAlgorithmfor ConstrainedSystemswithControlledEndBody 248 11.4.2 HydrodynamicForcesontheUnderwaterCable 254 11.4.3 NonlinearHolonomicConstraint,Control-ConstraintCoupling, ConstraintStabilization,andCableTension 255 11.5 SimulationResults 257 ProblemSet11 261 References 267 12 Order-nEquationsofFlexibleRocketDynamics 269 12.1 Introduction 269 12.2 Kane’sEquationforaVariableMassFlexibleBody 269 12.3 MatrixFormoftheEquationsforVariableMassFlexibleBodyDynamics 274 12.4 Order-nAlgorithmforaFlexibleRocketwithCommandedGimbaled NozzleMotion 275 12.5 NumericalSimulationofPlanarMotionofaFlexibleRocket 278 12.6 Conclusion 285 Acknowledgment 285 Appendix12.A SummaryAlgorithmforFindingTwoGimbalAngle TorquesfortheNozzle 285 ProblemSet12 286 References 286 AppendixA EfficientGeneralizedSpeedsforaSingleFree-FlyingFlexibleBody 287 AppendixB AFORTRANCodeoftheOrder-nAlgorithm:Applicationto anExample 291 Index 301 Preface Thisbookisbasedonmypublishedresearchonderivingcomputationallyefficientequations of motion of multibody systems with rotating, flexible components. It reflects my work of over thirty-five years done mostly at Lockheed Missiles & Space Company, and also at MartinMariettaandNorthropCorporations.Thecoverofthebookdepictstwoexamplesof flexiblemultibodysystems:theGalileospacecraft,whichwassenttoJupiter,withitsrotating antennadishonaninertially-fixedbasewithadeployedtruss,andahelicopterinflight.Other examplesofmultibodysystems,apartfromthehumanbodyitself,areroboticmanipulators, a space shuttle deploying a tethered subsatellite, and a ship reeling out a cable to a vehicle doing sea floor mine searches. Formulation of equations of motion is the first step in their simulation-baseddesign. Inthisbook,IchoosetouseKane’smethodofderivingequationsofmotion,fortworeasons: efficiencyinreducinglaborofderivingtheequations,andsimplicityofthefinalequationsdue to a choice of variables that the method allows. However, the contribution of the book goes beyondadirectformulationofKane’sequationstomorecomputationallyefficientalgorithms like block-diagonal and order-n formulations. Another major contribution of this book is in compensatingforerrorsofprematurelinearization,inherentwiththeuseofvibrationmodes inlargeoverallmotionproblems,byusinggeometricstiffnessduetoinertialoads. Ahighlightofthisbookistheapplicationofthetheorytocomplexproblems.InChapter1, I explain Kane’s method, first with a simple example and then by applying it to a realistic problem of the dynamics of a three-axis controlled spacecraft with fuel slosh. Presented separately are Kane’s method of direct linearization of equation of motion and a method of a posteriori compensation for premature linearization by adding geometric stiffness due to inertia loads; in the Appendix, a guideline for choosing variables that simplify equations of motion is provided. In Chapter 2, Kane’s method is used to derive nonlinear dynamical equations for tethered satellite deployment, station-keeping and retrieval, and a problem of impact dynamics of a nose cap during ejection of a parachute for recovery of a booster launchingasatellite.Thenexttwochapterscoverlargeoverallmotionofbeamsandplatesthat illustratetheapplicationofKane’smethodofdirectlinearization.Chapter5givesaderivation ofequationsoflargeoverallmotionofanarbitraryflexiblebody,withamethodofredeeming prematurely linearized equations by adding motion-induced geometric stiffness. Chapter 6 incorporatesthemotion-inducedgeometricstiffnessintothedynamicsofasystemofflexible bodies in large overall motions. Chapter 7 is a review material from structural dynamics, based mainly on the book by Craig, with some additional work on mode selection done at Lockheed. Chapter 8 produces an algorithm for dynamical equations, with block-diagonal
Description: