ebook img

Financial Econometrics PDF

138 Pages·2019·8.963 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Financial Econometrics

Journal of Financial Econometrics Edited by Yiu-Kuen Tse Printed Edition of the Special Issue Published in Journal of Risk and Financial Management www.mdpi.com/journal/jrfm Financial Econometrics Financial Econometrics SpecialIssueEditor Yiu-KuenTse MDPI•Basel•Beijing•Wuhan•Barcelona•Belgrade SpecialIssueEditor Yiu-KuenTse SingaporeManagementUniversity Singapore EditorialOffice MDPI St.Alban-Anlage66 4052Basel,Switzerland This is a reprint of articles from the Special Issue published online in the open access journal JournalofRiskandFinancialManagement (ISSN 1911-8074) form 2018 to 2019 (available at: https:// www.mdpi.com/journal/jrfm/specialissues/financialeconometrics) Forcitationpurposes,citeeacharticleindependentlyasindicatedonthearticlepageonlineandas indicatedbelow: LastName,A.A.; LastName,B.B.; LastName,C.C.ArticleTitle. JournalNameYear,ArticleNumber, PageRange. ISBN978-3-03921-626-0(Pbk) ISBN978-3-03921-627-7(PDF) (cid:2)c 2019bytheauthors. ArticlesinthisbookareOpenAccessanddistributedundertheCreative Commons Attribution (CC BY) license, which allows users to download, copy and build upon publishedarticles,aslongastheauthorandpublisherareproperlycredited,whichensuresmaximum disseminationandawiderimpactofourpublications. ThebookasawholeisdistributedbyMDPIunderthetermsandconditionsoftheCreativeCommons licenseCCBY-NC-ND. Contents AbouttheSpecialIssueEditor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Yiu-KuenTse EditorialfortheSpecialIssueonFinancialEconometrics Reprintedfrom:J.RiskFinancialManag.2019,12,153,doi:10.3390/jrfm12030153. . . . . . . . . . 1 AndersEriksson,DanielP.A.PreveandJunYu ForecastingRealizedVolatilityUsingaNonnegativeSemiparametricModel Reprintedfrom:J.RiskFinancialManag.2019,12,139,doi:10.3390/jrfm12030139. . . . . . . . . . 3 MuhammadFaridAhmedandStephenSatchell SomeDynamicandSteady-StatePropertiesofThresholdAuto-RegressionswithApplications toStationarityandLocalExplosivity Reprintedfrom:J.RiskFinancialManag.2019,12,123,doi:10.3390/jrfm12030123 . . . . . . . . . 26 HuiXiaoandYiguoSun OnTuningParameterSelectioninModelSelectionandModelAveraging:AMonteCarloStudy Reprintedfrom:J.RiskFinancialManag.2019,12,109,doi:10.3390/jrfm12030109. . . . . . . . . . 44 ZhongxianMen,AdamW.KolkiewiczandTonyS.Wirjanto ThresholdStochasticConditionalDurationModelforFinancialTransactionData Reprintedfrom:J.RiskFinancialManag.2019,12,88,doi:10.3390/jrfm12020088 . . . . . . . . . . 60 ConstantinoHeviaandMartinSola BondRiskPremiaandRestrictionsonRiskPrices† Reprintedfrom:J.RiskFinancialManag.2018,11,60,doi:10.3390/jrfm11040060 . . . . . . . . . . 81 GalynaGrynkivandLarsStentoft StationaryThresholdVectorAutoregressiveModels Reprintedfrom:J.RiskFinancialManag.2018,11,45,doi:10.3390/jrfm11030045 . . . . . . . . . . 103 v About the Special Issue Editor Yiu-KuenTseisaProfessorofEconomicsattheSingaporeManagementUniversity. Hisresearch interests are in econometric methodology, financial econometrics, risk management, and actuarial science. He is currently working on a high-frequency estimation of large dimensional covariance matrices, aswellasseveraltopicsonempiricalinternationalfinance. Hehaspublishedapopular textbookentitled‘’NonlifeActuarialModels”. vii Journal of Risk and Financial Management Editorial Editorial for the Special Issue on Financial Econometrics Yiu-KuenTse SchoolofEconomics,SingaporeManagementUniversity,Singapore178903,Singapore;[email protected] Received:16September2019;Accepted:17September2019;Published:19September2019 Financialeconometricshasdevelopedintoaveryfruitfulandvibrantresearchareainthelast twodecades.Theavailabilityofgooddatapromotesresearchinthisarea,speciallyaidedbyonline dataandhigh-frequencydata. Thesetwocharacteristicsoffinancialdataalsocreatechallengesfor researchersthataredifferentfromclassicalmacro-econometricandmicro-econometricproblems. Thisspecialissueisdedicatedtoresearchtopicsthatarerelevantforanalyzingfinancialdata. Wehavegatheredsixarticlesunderthistheme. ThepaperbyErikssonetal. (2019)considersa methodtoforecastrealizedvolatilityusingaclassicalautoregressivemodel.Twomodificationsare adoptedtomakethismodelsuitablefornonnegativevaluedvariableslikevolatility.First,theyapply Tukey’spowertransformationtotheirdata.Second,theyallowtheerrordistributiontobeunspecified, resultinginasemiparametricapproach.Whiletheirmodelhasforecastingvolatilityastheprimary motivation,itcanbeusedformanynonnegativevaluedvariables,thusextendingtheapplicabilityof theirapproach. TheempiricalstudyofErikssonetal.(2019)showsthattheirmethodcomparesverywellagainst someofthemostcommonlyusedforecastingmodelsforvolatilityintermsofpost-sampleprediction. Asmentionedintheirconcludingremarks,itwillbeinterestingtoseehowtheirapproachworksfor intra-daydataandmultivariatemodels. AhmedandSatchell(2019)considerathresholdautoregressivemodelwithMarkovianstates. Thesestatesmayincorporatebothexplosiveandstationaryregimes.Theyinvestigatethecharacteristic functionofthisprocessandderiveanalyticformulafortheirmoments.Theirapproachcanbeapplied toprocessesforwhichthemomentgeneratingfunctiondoesnotexist. Thus,certainassetpricing modelswithnon-normalerrorscanbeanalyzed. XiaoandSun(2019)investigatetheestimationofthetuningparameterformodelselectionand averaging.IncorporatingtheshrinkageaveragingestimatormethodandMallow’smodelaveraging method, theyproposetheshrinkagemodelaveragingmethod, whichcanbeusedforaveraging high-dimensionalsparsemodels.Themethodisapplicabletoawiderangeofeconometricmodels, andextendsbeyondthefinancialeconometricsarena.TheirMonteCarlostudyshowsthattheirnew methodperformswellagainstothermethodsinaveraginghigh-dimensionalsparsemodels. Menetal.(2019)proposeathresholdstochasticconditionaldurationmodelthatcanbeusedto analyzetransactionfinancialdata. TheyassumealatentAR(1)model,whichmayswitchbetween tworegimes.Theregimesareself-excitedandarebasedontheobservedduration.Themodelcanbe estimatedefficientlyusingaMarkov-ChainMonteCarloapproach.Theirempiricalexamplessupport thedesirableperformanceoftheirnewmodelinforecastingtransactionduration. HeviaandSola(2018)examinetheeffectofimposingover-identifyingrestrictionsonaffineterm structuremodels. Inparticular,theyinvestigatetheeffectsofinappropriaterestrictionsonsome riskmeasures. Theyarguethatincertaincases,suchrestrictionsmayhaveasignificantimpacton theestimatedriskpremium,anditisdifficulttoascertainapriorithelikelyoutcome. Duetothis uncertainty,theyrecommendusingjust-identifiedmodelswhenthepurposeistoapplytheaffine modelstocomputetheriskpremium. JRFM2019,12,153;doi:10.3390/jrfm12030153 1 www.mdpi.com/journal/jrfm

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.