Journal of Financial Econometrics Edited by Yiu-Kuen Tse Printed Edition of the Special Issue Published in Journal of Risk and Financial Management www.mdpi.com/journal/jrfm Financial Econometrics Financial Econometrics SpecialIssueEditor Yiu-KuenTse MDPI•Basel•Beijing•Wuhan•Barcelona•Belgrade SpecialIssueEditor Yiu-KuenTse SingaporeManagementUniversity Singapore EditorialOffice MDPI St.Alban-Anlage66 4052Basel,Switzerland This is a reprint of articles from the Special Issue published online in the open access journal JournalofRiskandFinancialManagement (ISSN 1911-8074) form 2018 to 2019 (available at: https:// www.mdpi.com/journal/jrfm/specialissues/financialeconometrics) Forcitationpurposes,citeeacharticleindependentlyasindicatedonthearticlepageonlineandas indicatedbelow: LastName,A.A.; LastName,B.B.; LastName,C.C.ArticleTitle. JournalNameYear,ArticleNumber, PageRange. ISBN978-3-03921-626-0(Pbk) ISBN978-3-03921-627-7(PDF) (cid:2)c 2019bytheauthors. ArticlesinthisbookareOpenAccessanddistributedundertheCreative Commons Attribution (CC BY) license, which allows users to download, copy and build upon publishedarticles,aslongastheauthorandpublisherareproperlycredited,whichensuresmaximum disseminationandawiderimpactofourpublications. ThebookasawholeisdistributedbyMDPIunderthetermsandconditionsoftheCreativeCommons licenseCCBY-NC-ND. Contents AbouttheSpecialIssueEditor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Yiu-KuenTse EditorialfortheSpecialIssueonFinancialEconometrics Reprintedfrom:J.RiskFinancialManag.2019,12,153,doi:10.3390/jrfm12030153. . . . . . . . . . 1 AndersEriksson,DanielP.A.PreveandJunYu ForecastingRealizedVolatilityUsingaNonnegativeSemiparametricModel Reprintedfrom:J.RiskFinancialManag.2019,12,139,doi:10.3390/jrfm12030139. . . . . . . . . . 3 MuhammadFaridAhmedandStephenSatchell SomeDynamicandSteady-StatePropertiesofThresholdAuto-RegressionswithApplications toStationarityandLocalExplosivity Reprintedfrom:J.RiskFinancialManag.2019,12,123,doi:10.3390/jrfm12030123 . . . . . . . . . 26 HuiXiaoandYiguoSun OnTuningParameterSelectioninModelSelectionandModelAveraging:AMonteCarloStudy Reprintedfrom:J.RiskFinancialManag.2019,12,109,doi:10.3390/jrfm12030109. . . . . . . . . . 44 ZhongxianMen,AdamW.KolkiewiczandTonyS.Wirjanto ThresholdStochasticConditionalDurationModelforFinancialTransactionData Reprintedfrom:J.RiskFinancialManag.2019,12,88,doi:10.3390/jrfm12020088 . . . . . . . . . . 60 ConstantinoHeviaandMartinSola BondRiskPremiaandRestrictionsonRiskPrices† Reprintedfrom:J.RiskFinancialManag.2018,11,60,doi:10.3390/jrfm11040060 . . . . . . . . . . 81 GalynaGrynkivandLarsStentoft StationaryThresholdVectorAutoregressiveModels Reprintedfrom:J.RiskFinancialManag.2018,11,45,doi:10.3390/jrfm11030045 . . . . . . . . . . 103 v About the Special Issue Editor Yiu-KuenTseisaProfessorofEconomicsattheSingaporeManagementUniversity. Hisresearch interests are in econometric methodology, financial econometrics, risk management, and actuarial science. He is currently working on a high-frequency estimation of large dimensional covariance matrices, aswellasseveraltopicsonempiricalinternationalfinance. Hehaspublishedapopular textbookentitled‘’NonlifeActuarialModels”. vii Journal of Risk and Financial Management Editorial Editorial for the Special Issue on Financial Econometrics Yiu-KuenTse SchoolofEconomics,SingaporeManagementUniversity,Singapore178903,Singapore;[email protected] Received:16September2019;Accepted:17September2019;Published:19September2019 Financialeconometricshasdevelopedintoaveryfruitfulandvibrantresearchareainthelast twodecades.Theavailabilityofgooddatapromotesresearchinthisarea,speciallyaidedbyonline dataandhigh-frequencydata. Thesetwocharacteristicsoffinancialdataalsocreatechallengesfor researchersthataredifferentfromclassicalmacro-econometricandmicro-econometricproblems. Thisspecialissueisdedicatedtoresearchtopicsthatarerelevantforanalyzingfinancialdata. Wehavegatheredsixarticlesunderthistheme. ThepaperbyErikssonetal. (2019)considersa methodtoforecastrealizedvolatilityusingaclassicalautoregressivemodel.Twomodificationsare adoptedtomakethismodelsuitablefornonnegativevaluedvariableslikevolatility.First,theyapply Tukey’spowertransformationtotheirdata.Second,theyallowtheerrordistributiontobeunspecified, resultinginasemiparametricapproach.Whiletheirmodelhasforecastingvolatilityastheprimary motivation,itcanbeusedformanynonnegativevaluedvariables,thusextendingtheapplicabilityof theirapproach. TheempiricalstudyofErikssonetal.(2019)showsthattheirmethodcomparesverywellagainst someofthemostcommonlyusedforecastingmodelsforvolatilityintermsofpost-sampleprediction. Asmentionedintheirconcludingremarks,itwillbeinterestingtoseehowtheirapproachworksfor intra-daydataandmultivariatemodels. AhmedandSatchell(2019)considerathresholdautoregressivemodelwithMarkovianstates. Thesestatesmayincorporatebothexplosiveandstationaryregimes.Theyinvestigatethecharacteristic functionofthisprocessandderiveanalyticformulafortheirmoments.Theirapproachcanbeapplied toprocessesforwhichthemomentgeneratingfunctiondoesnotexist. Thus,certainassetpricing modelswithnon-normalerrorscanbeanalyzed. XiaoandSun(2019)investigatetheestimationofthetuningparameterformodelselectionand averaging.IncorporatingtheshrinkageaveragingestimatormethodandMallow’smodelaveraging method, theyproposetheshrinkagemodelaveragingmethod, whichcanbeusedforaveraging high-dimensionalsparsemodels.Themethodisapplicabletoawiderangeofeconometricmodels, andextendsbeyondthefinancialeconometricsarena.TheirMonteCarlostudyshowsthattheirnew methodperformswellagainstothermethodsinaveraginghigh-dimensionalsparsemodels. Menetal.(2019)proposeathresholdstochasticconditionaldurationmodelthatcanbeusedto analyzetransactionfinancialdata. TheyassumealatentAR(1)model,whichmayswitchbetween tworegimes.Theregimesareself-excitedandarebasedontheobservedduration.Themodelcanbe estimatedefficientlyusingaMarkov-ChainMonteCarloapproach.Theirempiricalexamplessupport thedesirableperformanceoftheirnewmodelinforecastingtransactionduration. HeviaandSola(2018)examinetheeffectofimposingover-identifyingrestrictionsonaffineterm structuremodels. Inparticular,theyinvestigatetheeffectsofinappropriaterestrictionsonsome riskmeasures. Theyarguethatincertaincases,suchrestrictionsmayhaveasignificantimpacton theestimatedriskpremium,anditisdifficulttoascertainapriorithelikelyoutcome. Duetothis uncertainty,theyrecommendusingjust-identifiedmodelswhenthepurposeistoapplytheaffine modelstocomputetheriskpremium. JRFM2019,12,153;doi:10.3390/jrfm12030153 1 www.mdpi.com/journal/jrfm