Stephan Russenschuck Field Computation for Accelerator Magnets Related Titles Griffiths, D. Introduction to Elementary Particles 470 pages with 106 figures and 12 tables, Softcover 2008 ISBN: 978-3-527-40601-2 Meunier, G. The Finite Element Method for Electromagnetic Modeling 832 pages, Hardcover 2008 ISBN: 978-1-84821-030-1 Buckel, W., Kleiner, R. Superconductivity Fundamentals and Applications 475 pages with approx. 247 figures, Hardcover 2004 ISBN: 978-3-527-40349-3 Jackson, J. D. Classical Electrodynamics 832 pages, Hardcover 2004 ISBN: 978-3-527-40349-3 Edwards, D. A., Syphers, M. J. An Introduction to the Physics of High Energy Accelerators 304 pages with 103 figures, Hardcover 1993 ISBN: 978-0-471-55163-8 Stephan Russenschuck Field Computation for Accelerator Magnets Analytical and Numerical Methods for Electromagnetic Design and Optimization WILEY-VCH Verlag GmbH & Co. KGaA The Author All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the Dr.-Ing. Stephan Russenschuck information contained in these books, CERN, Geneva, Switzerland including this book, to be free of errors. [email protected] Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate. Cover Library of Congress Card No.: The reduced field from the iron applied for magnetization in the MQXA magnets for the LHC inner triplet (see also chapter 13) British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. Figures Bibliographic information published by the Deutsche Nationalbibliothek The Field plots where created with the The Deutsche Nationalbibliothek lists this CERN-HIGZ graphics package and the publication in the Deutsche sketches were drawn with Micrografx Nationalbibliografie; detailed bibliographic Designer. The photographs, if not taken by data are available on the Internet at the author or as otherwise stated, were <http://dnb.d-nb.de>. taken from the CERN document server with permission. (cid:164) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law. Typesetting Uwe Krieg, Berlin Printing and Binding Strauss GmbH, Mörlenbach Printed in the Federal Republic of Germany Printed on acid-free paper ISBN: 978-3-527-40769-9 V Contents Preface XV Notation XIX 1 MagnetsforAccelerators 1 1.1 TheLargeHadronCollider 2 1.2 AMagnetMetamorphosis 7 1.3 SuperconductorTechnology 16 1.3.1 CriticalCurrentDensityofSuperconductors 16 1.3.2 Strands 19 1.3.3 Cables 22 1.4 TheLHCDipoleColdmass 27 1.5 SuperfluidHeliumPhysicsandCryogenicEngineering 29 1.6 CryostatDesignandCryogenicTemperatureLevels 32 1.7 VacuumTechnology 33 1.8 PoweringandElectricalQualityAssurance 35 1.9 ElectromagneticDesignChallenges 38 1.9.1 TheCERNFieldComputationProgramROXIE 42 1.9.2 AnalyticalandNumericalFieldComputation 44 References 46 2 AlgebraicStructuresandVectorFields 49 2.1 Mappings 49 2.2 Groups,Rings,andFields 50 2.3 VectorSpace 51 2.3.1 LinearIndependenceandBasis 53 2.4 LinearTransformations 54 2.5 AffineSpace 56 2.5.1 Coordinates 58 2.6 InnerProductSpace 60 FieldComputationforAcceleratorMagnets.StephanRussenschuck Copyright©2010WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim ISBN:978-3-527-40769-9 VI Contents 2.6.1 MetricSpace 62 2.6.2 OrthonormalBases 63 2.6.3 TheErhardSchmidtOrthogonalization 64 2.7 Orientation 66 2.8 AGlimpseonTopologicalConcepts 68 2.8.1 Homotopy 69 2.8.2 TheBoundaryOperator 70 2.9 ExteriorProducts 72 2.10 IdentitiesofVectorAlgebra 75 2.11 VectorFields 75 2.12 PhasePortraits 77 2.13 ThePhysicalDimensionSystem 80 References 84 3 ClassicalVectorAnalysis 85 3.1 SpaceCurves 86 3.1.1 TheFrenetFrameofSpaceCurves 88 3.2 TheDirectionalDerivative 93 3.3 Gradient,Divergence,andCurl 94 3.4 IdentitiesofVectorAnalysis 96 3.5 SurfacesinE3 96 3.6 TheDifferential 98 (cid:1) 3.7 DifferentialOperatorsonScalarandVectorFieldsinrandr 102 3.8 ThePathIntegralofaVectorField 103 3.9 Coordinate-FreeDefinitionsoftheDifferentialOperators 104 3.10 IntegralTheorems 106 3.10.1 TheKelvin–StokesTheorem 106 3.10.2 Green’sTheoreminthePlane 107 3.10.3 TheGauss–OstrogradskiDivergenceTheorem 108 3.10.4 AVariantoftheGaussTheorem 108 3.10.5 Green’sFirstIdentity 109 3.10.6 Green’sSecondIdentity(Green’sTheorem) 110 3.10.7 VectorFormofGreen’sTheorem 110 3.10.8 GeneralizationoftheIntegration-by-PartsRule 110 3.10.9 TheStrattonTheorems 111 3.11 CurvilinearCoordinates 111 3.11.1 ComponentsofaVectorField 113 3.11.2 ContravariantCoefficients 114 3.11.3 CovariantCoefficients 115 3.12 IntegrationonSpaceElements 115 3.13 OrthogonalCoordinateSystems 117 3.13.1 DifferentialOperators 119 Contents VII 3.13.2 CylindricalCoordinates 121 3.13.3 SphericalCoordinates 122 3.14 TheLemmataofPoincaré 125 3.15 DeRhamCohomology 126 3.16 FourierSeries 129 References 136 4 Maxwell’sEquationsandBoundaryValueProblemsin Magnetostatics 137 4.1 Maxwell’sEquations 138 4.1.1 TheGlobalForm 138 4.1.2 TheIntegralForm 139 4.1.3 TheLocalForm 141 4.1.4 Maxwell’sOriginalSetofEquations 142 4.2 Kirchhoff’sLaws 143 4.3 ConversionofEnergyinElectromagneticFields 143 4.4 ConstitutiveEquations 144 4.5 BoundaryandInterfaceConditions 146 4.6 MagneticMaterial 151 4.6.1 Ferromagnetism 152 4.6.2 MeasurementofHysteresisCurves 155 4.6.3 MagneticAnisotropyinLaminatedIronYokes 159 4.6.4 Magnetostriction 160 4.6.5 PermanentMagnets 161 4.6.6 MagnetizationCurrentsandFictitiousMagneticCharges 163 4.7 ClassificationDiagramsforElectromagnetism 165 4.8 FieldLines 167 4.8.1 ClassificationofElectromagneticFieldProblems 167 4.9 BoundaryValueProblems1: Magnetostatic 171 4.9.1 Scalar-PotentialFormulations 171 4.9.2 Vector-PotentialFormulations 173 4.9.3 TheScalarLaplaceEquationin2D 179 4.10 BoundaryValueProblems2: MagneticDiffusionProblems 180 References 184 5 FieldsandPotentialsofLine-Currents 187 5.1 GreenFunctions 188 5.2 PotentialsonBoundedDomains 189 5.3 PropertiesofHarmonicFields 191 5.4 TheBiot–SavartLaw 193 5.5 FieldofaStraightLine-CurrentSegment 197 5.6 FieldofaRingCurrent 200 VIII Contents 5.7 TheMagneticDipoleMoment 203 5.8 TheMagneticDoubleLayer 205 5.8.1 TheSolidAngle 206 5.8.2 ApproximatingtheSolidAngleofaCurrentLoop 208 5.9 TheImage-CurrentMethod 209 5.9.1 PlaneBoundaries 211 5.9.2 CircularBoundaries 213 5.10 StoredEnergyinaMagnetostaticField 216 5.10.1 SelfandMutualInductance 218 5.10.2 TheGeometricMeanDistance 220 5.10.3 MagneticFlux 222 5.11 MagneticEnergyinNonlinearCircuits 224 5.11.1 DifferentialInductance 224 5.12 MagneticForcesandtheMaxwellStressTensor 227 5.13 FieldsandPotentialsofMagnetizationCurrents 230 5.14 MagneticLevitation 232 References 235 6 FieldHarmonics 237 6.1 CircularHarmonics 238 6.1.1 DeterminingtheMultipoleCoefficients 240 6.1.2 MagneticShielding;PermeableCylindricalShellinaUniform Field 253 6.1.3 IntegratedMultipolesinAcceleratorMagnets 255 6.2 SphericalHarmonics 257 6.2.1 LegendreSeriesExpressionfortheVectorPotential 262 6.2.2 DeterminingtheZonalHarmonics 263 6.3 SeparationinCartesianCoordinates 265 References 268 7 Iron-DominatedMagnets 269 7.1 C-ShapedDipole 270 7.2 Quadrupole 271 7.3 OhmicLossesinDipoleandQuadrupoleCoils 272 7.4 MagneticCircuitwithVaryingYokeWidth 272 7.5 BranchedCircuits 274 7.6 IdealPoleShapesofIron-DominatedMagnets 275 7.6.1 Shimming 277 7.7 RogowskiProfiles 278 7.8 Combined-FunctionMagnets 281 7.9 PermanentMagnetExcitation 282 7.10 CoolingofNormal-ConductingMagnets 287 References 291 Contents IX 8 Coil-DominatedMagnets 293 8.1 AcceleratorMagnets 294 8.1.1 GenerationofPureMultipoleFields 295 8.1.2 SensitivitytoCoil-BlockPositioningErrors 305 8.1.3 ForceDistribution 305 8.1.4 MarginsintheLHCMainDipole 306 8.2 Combined-FunctionMagnetsandtheUnipolarCurrentDipole 309 8.3 RectangularBlock-CoilStructures 310 8.4 FieldEnhancementinCoilEndsofAcceleratorMagnets 311 8.5 MagneticForceDistributionintheLHCDipoleCoilEnds 312 8.6 NestedHelices 314 8.7 Solenoids 315 8.7.1 HelmholtzandMaxwellCoils 315 8.7.2 FabryFactors 317 8.7.3 Off-AxisFields 321 8.7.4 ZonalHarmonics 324 References 325 9 ComplexAnalysisMethodsforMagnetDesign 327 9.1 TheFieldofComplexNumbers 328 9.2 HolomorphicFunctionsandtheCauchy–RiemannEquations 329 9.3 PowerSeries 331 9.4 TheComplexFormoftheDiscreteFourierTransform 333 9.5 ComplexPotentials 335 9.6 ConformalMappings 336 9.7 ComplexRepresentationofFieldQualityinAccelerator Magnets 338 9.7.1 Feed-Down 338 9.7.2 ReferenceFrameRotation 342 9.7.3 ReflectionabouttheVerticalAxis 343 9.8 ComplexIntegration 344 9.8.1 Cauchy’sTheoremandtheIntegralFormula 345 9.8.2 PropertiesofHolomorphicFunctions 346 9.8.3 TheResidualTheorem 348 9.9 TheFieldandPotentialofaLineCurrent 349 9.9.1 SeriesExpansionoftheLine-CurrentField 350 9.9.2 CircularSectorWindings 351 9.10 MultipolesGeneratedbyaMagneticDipoleMoment 351 9.11 Beth’sCurrent-SheetTheorem 352 9.12 ElectromagneticForcesontheDipoleCoil 354 9.13 TheFieldofaPolygonalConductor 356 9.14 MagneticFluxDensityInsideEllipticalConductors 358 References 362 X Contents 10 FieldDiffusion 363 10.1 TimeConstantsandPenetrationDepths 363 10.2 TheLaplaceTransform 365 10.3 ConductiveSlabinaTime-TransientAppliedField 370 10.3.1 TheStep-ExcitationFunction 371 10.3.2 LinearRampoftheAppliedField 373 10.3.3 SinusoidalExcitation 375 10.4 EddyCurrentsintheLHCColdBoreandBeamScreen 376 References 382 11 ElementaryBeamOpticsandFieldRequirements 383 11.1 TheEquationsofChargedParticleMotioninaMagneticField 383 11.2 MagneticRigidityandtheBendingMagnets 387 11.3 TheLinearEquationsofMotion 389 11.4 WeakFocusing 390 11.5 Thin-LensApproximations 392 11.6 TransferMatrices 393 11.7 StrongFocusingandtheFODOCell 395 11.8 TheBetaFunction,Tune,andTransverseResonances 397 11.9 Off-MomentumParticles 407 11.9.1 Dispersion 408 11.9.2 Chromaticity 410 11.10 FieldErrorSpecifications 412 References 413 12 ReferenceFramesandMagnetPolarities 415 12.1 MagnetPolarityConventions 416 12.1.1 Spool-PieceCorrectors 418 12.1.2 Twin-ApertureandTwo-in-OneMagnets 418 12.2 ReferenceFrames 420 12.3 MultipoleExpansions 421 12.3.1 TheMagnetFrame 421 12.3.2 TheLocalReferenceFrameofBeam1 423 12.3.3 DefinitionofFieldErrorsintheAcceleratorDesignProgram MAD 424 12.3.4 TransformationbetweentheMagnetandtheBeam1Frames 424 12.4 OrbitCorrectors 426 12.5 PositionoftheConnectionTerminals 426 12.6 TurnedMagnetsandMagnetAssemblies 427 12.7 ElectricalCircuitsintheLHCMachine 429 References 432
Description: