ebook img

Fault-Tolerant Flight Control for a Fixed-Wing Unmanned Aerial Vehicle with Partial Horizontal and PDF

162 Pages·2016·4.17 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fault-Tolerant Flight Control for a Fixed-Wing Unmanned Aerial Vehicle with Partial Horizontal and

Fault-Tolerant Flight Control for a Fixed-Wing Unmanned Aerial Vehicle with Partial Horizontal and Vertical Stabiliser Losses by Ryan Lee Maggott Thesis presented in partial fulfilment of the requirements for the degree Master of Engineering in the Faculty of Engineering at Stellenbosch University. Supervisor: Mr J.A.A. Engelbrecht Department of Electrical and Electronic Engineering December 2016 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. December 2016 Copyright © 2016 Stellenbosch University All rights reserved Stellenbosch University https://scholar.sun.ac.za Acknowledgements I would like to thank the following people for their assistance in completing this project: God for His continued guidance and support. • Mr Japie Engelbrecht, for all your input, help and guidance as my supervisor. • My family for constantly supporting and motivating me. My father (Shaun) for his help • with the hardware manufacturing. My mother (Lindy) for her continued care, support and concern. My sister (Stacey) for always being interested and willing to help. Michael Basson for all the aircraft related advice and for being a great safety pilot. • Wiaan Beeton, Nico Alberts, Cornelus Le Roux and Chris Fourie as ESL lab engineers • for assistance in the lab and flight test preparation. Andrew de Bruyn, Gideon Hugo and Piero Ioppo for their willing nature to help at flight • tests. All the friends that I have made at the ESL throughout my studies. • i Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this thesis electronically, I declare that the entirety of the work contained herein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third-party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. December 2016 Copyright c 2016 Stellenbosch University (cid:13) All rights reserved ii Stellenbosch University https://scholar.sun.ac.za Abstract In the study reported here, a fault-tolerant flight control system for a fixed-wing unmanned aerial vehicle with partial stabiliser loss is designed, analysed, implemented and verified. The partial stabiliser damage changes the natural dynamics of the aircraft and causes asymmetry. The control system must maintain aircraft stability and transition from the healthy to the damaged configuration without depending on in-flight knowledge of the change in dynamics. The control system must also provide satisfactory transient performance for both the healthy and the damaged configuration. Using existing reference frames and conventions, a six-degrees-of-freedom equations of mo- tion model of the aircraft is derived that can model the effects of the partial horizontal and vertical stabiliser loss on the aircraft dynamics. This model considers the changes in the mass, moment of inertia, aerodynamic model, control authority of the aerodynamic control surfaces, as well as the shift in the centre of gravity. The altered aerodynamic coefficients are calculated using vortex lattice techniques for the different damage configurations. In order to determine the trim states and inputs of the aircraft as a function of the partial horizontal and vertical stabiliser loss, a multivariate Newton–Raphson technique is applied to the equations of motion. The required trim actuator deflections are compared to the physical actuator limitations to establish the feasibility of maintaining trim flight for each damage case. Assuming feasible trim states and inputs, the system is linearised and the open-loop dynamics of the aircraft are investigated as a function of partial stabiliser loss. A combination of classical and acceleration-based control architectures are designed and implemented. The stability, performance and robustness of the flight control system are verified insimulationfordamagecasesupto70%lefthorizontalstabiliserlossand20%verticalstabiliser loss. The fault-tolerant flight control system is verified with flight tests. A release mechanism is designed and manufactured to allow 70% of the left horizontal stabiliser and 20% of the vertical stabiliser to be jettisoned in flight. The flight control system is implemented on a practical unmanned aerial vehicle and successful reference tracking is demonstrated. Practical flight tests showed that the flight control was stable for both the healthy and the damaged aircraft configurations, and able to handle the transition following an in-flight partial stabiliser loss event. iii Stellenbosch University https://scholar.sun.ac.za Opsomming Hierdie tesis beskryf die ontwerp, analise, implementasie en verifikasie van ‘n fout-tolerante vlugbeheerstelsel vir ‘n vastevlerk onbemande vliegtuig met gedeeltelike stabiliseerder verlies. Hierdie verlies veroorsaak ‘n verandering in die natuurlike dinamika van die vliegtuig en veroor- saak asimmetrie. Die beheerstelsel moet in staat wees om stabiliteit te handhaaf en die oorgang van die gesondenadiebeskadigdekonfigurasiestehanteer, enmoetniestaatmaakopin-vlugkennisvan die verandering in die dinamika nie. Die beheerstelsel moet ook bevredigende oorgangsgedrag vertoon vir beide die gesonde en die beskadigde konfigurasies. Bestaande verwysingsraamwerke en konvensies is gebruik om ‘n ses-grade-van-vryheid be- wegingsvergelykingsmodel vir die vliegtuig af te lei wat die effekte van die gedeeltelike ho- risontale en vertikale stabiliseerder verlies op die vlugdinamika modelleer. Hierdie model neem die veranderinge in die massa, traagheidsmoment, aerodinamiese model, beheergesag van die aerodinamiese oppervlakkeverskuiwing en massamiddelpunt in ag. Die veranderinge in die aerodinamiese koëffisiënte word bereken met draaikolk rooster tegnieke vir die verskillende beskadigde konfigurasies. ‘n Meerveranderlike Newton–Raphson tegniek word gebruik om die bewegingsvergelykings op te los om die ekwilibrium toestande en intrees van die vliegtuig te bereken as ‘n funksie van persentasies gedeeltelike horisontale en vertikale stabiliseerder ver- lies. Die benodigde aktueerder defleksies vir ekwilibrium vlug word vergelyk met die fisiese aktueerder limiete om te bepaal of dit haalbaar is vir die spesifieke hoeveelheid skade. Gegee haalbare ekwilibrium toestande en intrees, word die stelsel gelineariseer en die ooplusdinamika van die vliegtuig ondersoek as ‘n funksie van gedeeltelike stabiliseerder verlies. ‘n Kombinasie van klassieke en versnellingsgebaseerde beheerargitekture is ontwerp en im- plementeer. Die stabiliteit, prestasie en robuustheid van die vlugbeheerstelsel word verifieer in simulasie vir skade tot by verlies van 70% van die linkerkantste horisontale stabiliseerder en 20% van die vertikale stabiliseerder. Die fout-tolerante vlugbeheerstelsel is ook verifieer met praktiese vlugtoetse. ‘n Loslaat- meganisme is ontwerp en vervaardig om 70% van die linker horisontale stabiliseerder en 20% van die vertikale stabiliseerder in vlug af te gooi. Die vlugbeheerstelsel is implementeer op ‘n praktiese onbemande vliegtuig en suksesvolle verwysingsvolging is gedemonstreer. Die prak- tiese vlugtoetsresultate wys dat die vlugbeheer stabiel is vir beide die gesonde en die beskadigde vliegtuig konfigurasies, en dat dit in staat is om die oorgang te hanteer na in-vlug gedeeltelike stabiliseerder verlies. iv Stellenbosch University https://scholar.sun.ac.za Table of Contents Acknowledgements i Declaration ii Abstract iii Opsomming iv Table of Contents v List of Figures x List of Tables xiii Nomenclature xiv 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2.1 Internal Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.2 External Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Research Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.5 Research Vehicle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.6 Project Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.7 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Modelling 10 2.1 Reference Frames and Conventions . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.1 Inertial, Body and Wind Reference Frames . . . . . . . . . . . . . . . . . 11 2.1.1.1 Inertial Axes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.1.2 Body Axes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1.1.3 Wind Axes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1.2 Standard Notation and Conventions . . . . . . . . . . . . . . . . . . . . . 12 2.1.2.1 General Conventions . . . . . . . . . . . . . . . . . . . . . . . . 13 v Stellenbosch University https://scholar.sun.ac.za Table of Contents 2.1.2.2 Actuator Conventions . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 Symmetric Flight Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.1 Standard Six Degrees of Freedom (6DoF) . . . . . . . . . . . . . . . . . . 17 2.2.1.1 Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.1.2 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.1.3 Attitude Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.1.4 Position Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.2 Forces and Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.2.1 Aerodynamic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.2.2 Thrust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.2.3 Gravitational . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3 Extended Aircraft Flight Mechanics Model . . . . . . . . . . . . . . . . . . . . . 24 2.3.1 Effect of Partial Stabiliser Loss . . . . . . . . . . . . . . . . . . . . . . . 25 2.3.2 Asymmetric Six Degrees of Freedom Model . . . . . . . . . . . . . . . . . 25 2.3.2.1 Force Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3.2.2 Moment Equations . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3.2.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3.3 Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.4 The Effects of Partial Stabiliser Loss on Aerodynamic Coefficients . . . . . . . . 30 2.4.1 Numerical Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3 Trim 34 3.1 Trim Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.2 Symmetric Trim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.3 Asymmetric Trim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3.1 Analytic Trim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3.2 Newton–Raphson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.3.2.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4 Stability Analysis 44 4.1 Linearisation of Aircraft Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.2 Validity of Decoupling the Longitudinal and Lateral Dynamics . . . . . . . . . . 48 4.3 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.3.1 Modes of Motion Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.3.1.1 Longitudinal Modes . . . . . . . . . . . . . . . . . . . . . . . . 51 4.3.1.2 Lateral Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5 Controller Design 57 5.1 Control Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.1.1 Decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 vi Stellenbosch University https://scholar.sun.ac.za Table of Contents 5.1.2 Longitudinal Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.1.2.1 Airspeed Controller . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.1.2.2 Normal Specific Acceleration Controller . . . . . . . . . . . . . 59 5.1.2.3 Climb Rate Controller . . . . . . . . . . . . . . . . . . . . . . . 61 5.1.2.4 Altitude Controller . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.1.3 Lateral Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.1.3.1 Lateral Specific Acceleration Controller . . . . . . . . . . . . . . 64 5.1.3.2 Roll Angle Controller . . . . . . . . . . . . . . . . . . . . . . . 67 5.1.3.3 Cross track Controller . . . . . . . . . . . . . . . . . . . . . . . 67 5.2 Controller Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.2.1 Healthy Aircraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.2.1.1 Airspeed Controller . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.2.1.2 Normal Specific Acceleration Controller . . . . . . . . . . . . . 70 5.2.1.3 Climb Rate Controller . . . . . . . . . . . . . . . . . . . . . . . 72 5.2.1.4 Altitude Controller . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.2.1.5 Lateral Specific Acceleration Controller . . . . . . . . . . . . . . 75 5.2.1.6 Roll Angle Controller . . . . . . . . . . . . . . . . . . . . . . . 76 5.2.1.7 Cross Track Controller . . . . . . . . . . . . . . . . . . . . . . . 77 5.2.2 Robustness of Controllers to Partial Stabiliser Loss . . . . . . . . . . . . 77 5.2.2.1 Airspeed Controller . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.2.2.2 Normal Specific Acceleration Controller . . . . . . . . . . . . . 77 5.2.2.3 Climb Rate Controller . . . . . . . . . . . . . . . . . . . . . . . 80 5.2.2.4 Altitude Controller . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.2.2.5 Lateral Specific Acceleration Controller . . . . . . . . . . . . . . 83 5.2.2.6 Roll Angle Controller . . . . . . . . . . . . . . . . . . . . . . . 83 5.2.2.7 Cross Track Controller . . . . . . . . . . . . . . . . . . . . . . . 86 5.2.3 Closed-loop Pole Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6 Hardware in the Loop Simulation 88 6.1 Nonlinear Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.1.1 Controller Step Responses . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.1.1.1 Airspeed Controller . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.1.1.2 Normal Specific Acceleration Controller . . . . . . . . . . . . . 89 6.1.1.3 Climb Rate Controller . . . . . . . . . . . . . . . . . . . . . . . 89 6.1.1.4 Altitude Controller . . . . . . . . . . . . . . . . . . . . . . . . . 92 6.1.1.5 Lateral Specific Acceleration Controller . . . . . . . . . . . . . . 92 6.1.1.6 Roll Angle Controller . . . . . . . . . . . . . . . . . . . . . . . 93 6.1.1.7 Guidance Controller . . . . . . . . . . . . . . . . . . . . . . . . 94 6.1.2 In-Flight Transition for Healthy to Damaged Configuration . . . . . . . . 96 6.1.2.1 Airspeed Response . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.1.2.2 Normal Specific Acceleration Response . . . . . . . . . . . . . . 97 vii Stellenbosch University https://scholar.sun.ac.za Table of Contents 6.1.2.3 Climb Rate Response . . . . . . . . . . . . . . . . . . . . . . . 97 6.1.2.4 Altitude Response . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.1.2.5 Lateral Specific Acceleration Response . . . . . . . . . . . . . . 99 6.1.2.6 Roll Angle Response . . . . . . . . . . . . . . . . . . . . . . . . 99 6.1.2.7 Guidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 7 Flight Tests 101 7.1 Research Vehicle Modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 7.1.1 Hardware Modifications to Represent Partial Stabiliser Losses . . . . . . 102 7.1.2 Release Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 7.2 Flight Test Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 7.2.1 Flight Test Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 7.2.2 Flight Test Campaign . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 7.2.2.1 Flight Test: RC Flight . . . . . . . . . . . . . . . . . . . . . . . 104 7.2.2.2 Flight Test: Estimator Flight . . . . . . . . . . . . . . . . . . . 105 7.2.2.3 Flight Test: Controller Tests on Healthy Aircraft Configuration 105 7.2.2.4 Flight Test: Controller Tests with Partial Stabiliser Loss . . . . 106 7.2.2.5 Flight Test: In-Flight Transition from Healthy to Damaged Air- craft Configuration . . . . . . . . . . . . . . . . . . . . . . . . . 107 7.3 Flight Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 7.3.1 LongitudinalFlightControl-HealthyandDamagedAircraftConfigurations107 7.3.1.1 Airspeed Controller . . . . . . . . . . . . . . . . . . . . . . . . . 108 7.3.1.2 Normal Specific Acceleration Controller . . . . . . . . . . . . . 108 7.3.1.3 Climb Rate Controller . . . . . . . . . . . . . . . . . . . . . . . 109 7.3.1.4 Altitude Controller . . . . . . . . . . . . . . . . . . . . . . . . . 109 7.3.2 Lateral Flight Control - Healthy and Damaged Aircraft Configurations . 110 7.3.2.1 Lateral Specific Acceleration Regulation . . . . . . . . . . . . . 111 7.3.2.2 Roll Angle Controller . . . . . . . . . . . . . . . . . . . . . . . 112 7.3.2.3 Cross Track Controller . . . . . . . . . . . . . . . . . . . . . . . 113 7.3.3 In-Flight Transition from Healthy to Damaged Configuration . . . . . . . 114 7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 8 Conclusions 120 8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 8.2 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 8.3 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 8.3.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 8.3.2 Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 viii

Description:
in the Faculty of Engineering at Stellenbosch University. The stability, performance and robustness of the flight control system are verified Blaauw designed a flight control system with gain-scheduling for a variable stability UAV.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.