Astronomy&Astrophysicsmanuscriptno.meny-1 February5,2008 (DOI:willbeinsertedbyhandlater) Far-infrared to millimeter astrophysical dust emission I: A model based on physical properties of amorphous solids 7 0 0 C.Meny1,V.Gromov1,2,N.Boudet1,J.-Ph.Bernard1,D.Paradis1,andC.Nayral1 2 n 1 Centred’EtudeSpatialedesRayonnements,CNRS,9,AvenueduColonelRoche,31028Toulouse,France a email:[email protected],[email protected] J 2 SpaceResearchInstitute,RAS,84/32Profsoyuznaya,117810Moscow,Russia 9 1 ReceivedJuin2006/Acceptednovember2006? v 6 2 Abstract.Anabstractshouldbegiven 2 1 0 We propose a new description of astronomicaldust emis- 1997, Draine & Li 2001). Most of them require a wide range 7 sion in the spectralregionfromtheFar-Infraredto millimeter ofthedustgrainsizesspanningalmost3ordersofmagnitude, 0 / wavelengths. Unlike previous classical models, this descrip- fromsub-nanometerdimensionstofractionsofamicron.They h tion explicitly incorporates the effect of the disordered inter- also require a minimum of three components with different p nal structure of amorphous dust grains. The model is based chemical composition in order to explain the ultraviolet and - o onresultsfromsolidstatephysics,usedtointerpretlaboratory opticalextinction,alongwithinfraredemission. r data.Themodeltakesintoaccounttheeffectofabsorptionby t s DisorderedChargeDistribution,aswellastheeffectofabsorp- The smallest component is needed to explain the ”aro- a matic” emission features at 3.3, 6.2, 7.7, 8.6 and 11.3µm. : tion by localized Two Level Systems. We review constraints v It is now routinely assigned to large aromatic molecules or on the various free parameters of the model from theory and i Polycyclic Aromatic Hydrocarbons (PAH) (Leger & Puget X laboratoryexperimentaldata.Weshowthat,forrealisticvalues 1984, Allamandola et al. 1985, De´sert et al. 1990). PAH are r ofthefreeparameters,theshapeoftheemissionspectrumwill a transientlyheated afterabsorbingsingle UV andfar-UV pho- exhibitverybroadstructureswhichshapewillchangewiththe tons,andcooldownemittingNIRphotonsinvibrationaltran- temperature of dust grains in a non trivial way. The spectral sitionsrepresentativeoftheiraromaticstructure. shape also depends upon the parameters describing the inter- nal structure of the grains. This opens new perspectives as to A second component, composed of Very Small Grains identifyingthe natureof astronomicaldustfrom the observed (VSG)isrequiredtoexplainthecontinuumemissionintheMid shape ofthe FIR/mm emission spectrum.A companionpaper Infra-Red (MIR). Emission in this range still requires signifi- will provide an explicit comparison of the model with astro- canttemperaturefluctuationsofthegrains,whichnecessitates, nomicaldata. underconditionsprevailingintheInter-StellarMedium(ISM), grainssizesinthenanometerrange.VSGscouldbecomposed ofcarbonaceousmaterialwhoseabsorptioncouldalsoexplain 1. Introduction the 2200ÅUV bump in the extinctioncurve(see for instance ItisnowwellestablishedthattheSpectralEnergyDistribution De´sertetal.1990). (SED)fromtheInter-StellarMedium(ISM)emissionfromour A third component, composed of Big Grains (BG), with Galaxy and most external galaxies is dominated by thermal sizes from10-20nmto about100nm,is necessaryto account emission from dust grains which spans over almost 3 orders forthelongwavelengthemission(inparticularasobservedin of magnitude in wavelengths, from the Near Infra-Red(NIR) theIRAS100µmbandandabove).TheBGcomponentdomi- to the millimeter wavelengthrange.Severaldustmodelshave natesthetotaldustmassandthe absorptionin the visibleand beenproposedtoexplaintheobservations.Recentdustmodels theNIR.Observationsofthe”silicate”absorptionfeaturenear share many common characteristics (e.g. Mathis at al. 1977, 10µmindicatethattheirmassisdominatedbyamorphoussil- Draine & Lee 1984, Draine & Anderson1985, Weiland et al. icates(seeKemperetal.2004).Suchamorphousstructurefor 1986, De´sert et al. 1990, Li & Greenberg 1997, Dwek et al. thesedustgrainsisexpectedfromtheinteractionwithcosmic Sendoffprintrequeststo:[email protected] rays which should alter the nature of the solid (Brucato et al. 2 C.Menyetal.:Far-infraredtomillimeterastrophysicaldustemission 2004,Ja¨geretal.2003),butalsofromtheformationprocesses tionsregardinggraincollisions,destructionandagglomeration, oftheseBGsbyaggregationofsub-sizedparticles. includingpreplanetarybodiesformationincircumstellardisks. Recentstudiesattemptingtoexplainthesubmillimeterob- InSect.2,wefirstrecallsomebasicsregardingtheFIR/mm servations,revealedtheneedforeithertheexistenceofanad- dust emission and the semi-classical model of light interac- ditionalmostmassivecomponentofverycolddust(e.g.Reach tion with matter. In Sect.3, we gather evidences for spectral etal.1995,Finkbeineretal.1999,Gallianoetal.2003)orfor variationsinastronomicalandlaboratorymeasurements.Then, substantialmodificationsofdustpropertiesinthesubmillime- we present in Sect.4 a model, based on the intrinsic proper- ter with respect to predictions of standard dust models (e.g. tiesofamorphousmaterials,takingintoaccountabsorptionby Ristorcellietal.1998,Bernardetal.1999,Stepniketal.2003a, DisorderedChargeDistributionaswellastheeffectofabsorp- Dupacetal.2001,Dupacetal.2002,Dupacetal.2003). tion by a distribution of TLS. In Sect.5, we propose a new modelofthesubmillimeterandmillimetergrainabsorptionand Similarly,laboratoryspectroscopicmeasurementsofinter- discuss the range of plausible values for the free parameters, stellar grains analogsrevealthat noticeable variationsin their based on existinglaboratorydata. In Sect.5.4, we discuss the optical properties in the Far Infra-red (FIR) and Millimeter implicationsofthemodel,inparticularregardingtheexpected (mm) wavelength range can occur (Agladze et al. 1994, variationsof the FIR/mm emission spectra with the dusttem- Agladzeetal.1996,Mennellaetal.1998,Boudetetal.2005). perature.Sect.6 is devotedto conclusions.The determination They pointed out the possible role of two phonons differ- of the model parameters applicable to astronomical data will ence processes, disorder-induced one-phonon processes, res- addressedinacompanionpaper. onant or relaxation processes in the presence of Two-Level Systems(TLS)inamorphousdust(seeSect.4.3).Theinfluence ofsuchTwo-LevelSystemsoninterstellargrainabsorptionand 2. BasicknowledgeontheFIR/mmdustemission emission properties was first proposed to the astronomers’s 2.1.Interstellardustemissionandextinction community by Agladze et al. 1994. More recently, a prelim- inary investigations by Boudet et al. 2002 showed that opti- Theintensityofthermalemissionfrominterstellardustattem- calresonantandrelaxationtransitionsinadistributionofTLS peratureT is d couldqualitativelyexplaintheanticorrelationbetweenthetem- perature and the spectral index of dust as observed by the Iω(ω,T)=ǫe(ω) Bω(ω,Td) (1) · PRONAOSballoonexperiment(e.g.Dupacetal.2003). whereI isenergyfluxdensityperunitarea,angularfrequency ω A precise modeling of the long wavelength dust emission andsolidangle(orspecificintensity),ǫ thedustemissivityand e is important in order to accurately subtract foreground emis- B thePlanckfunctionatangularfrequencyω. ω sion in cosmological background anisotropy measurements, Accordingto the Kirchhoff law, the emissivity ǫ is equal e especially for future missions for space CMB measurements totheabsorptivity (Lamarre et al. 2003) and for surveys of foregroundcompact sources(seeGromovetal.2002).Anumberofcomprehensive ǫe(ω)=1 e−τ(ω). (2) − foregroundanalysispapers(Bouchet&Gispert1999,Tegmark where the optical depth τ is related to the dust mass column etal.2000,Bennettetal.2003,Barreiroetal.2006,Naselsky densityonthelineofsightM andthedustmassopacityκas d et al. 2005and other)did not pay attention to dustemissivity modelaccuracy.In addition,precise modelingofthe FIR/mm τ(ω)=κ(ω) M (3) d · dust emission is also importantto derive reliable estimates of Forsphericalgrainsofradiusaanddensityρ,thedustopac- the dust mass, to trace the structure and density of pre-stellar ity(effectiveareapermass)isgivenby cold cores in molecular clouds. Indeed the dust governs the cloud opacity,and influencesthe size of the cloud fragments. 3 Q(ω) Inaddition,theefficiencyofstarformationshouldberelatedto κ(ω)= , (4) 4ρ a thedustproperties,whichareexpectedtovarybetweenthedif- fusemediumandthedensercoldcores.Itisthusofimportance wheretheabsorptionefficiencyQ(ω)=σ(ω)/(πa2)istheratio toknowhowsomephysicalorchemicalpropertiesofdustcan of the absorption cross section σ(ω) to the geometrical cross influencetheirFIR/mmemission. sectionofthegrainπa2.ThegrainequilibriumtemperatureT d Formodelsofthesubmillimeterelectromagneticemission isdeducedfromthebalancebetweentheemittedandabsorbed of dust, consideringthe intrinsic mechanicalvibrationsof the radiationfromtheInter-StellarRadiationField(ISRF) grainstructureis naturalsince theyfallin the rightfrequency range(typicallyinthefrequencyrangeν 1011 1013Hz,i.e. ∞B (ω,T )Q(ω)dω= ∞IISRFQ(ω)dω (5) ∼ − ω d ω λ 30µm 3mm).Observationsinthisspectralregionpoten- Z0 Z0 ∼ − tiallyprovidesnewtoolsforinvestigatingtheinternalstructure The Mie theory,using the Maxwell equationsof the elec- ofdustgrainmaterial.Theinternalmechanicsofgrainsisalso tromagnetictheory,leadstoanexactsolutionfortheabsorption important for chemistry in the ISM. The dust vibrations sup- andscatteringprocessesbyanhomogeneoussphericalparticle plyanenergysinkfornewlyformedmoleculeswhichareusu- ofradiusa whosematerialischaracterizedbyitscomplexdi- allyformedinunstableexcitedstates.Understandingthegrain electric constant ǫ(ω) = ǫ (ω)+iǫ (ω). In that case, the ab- ′ ′′ structure and intrinsic movementsis necessary for considera- sorption coefficient Q(ω) writes as an infinite series of terms C.Menyetal.:Far-infraredtomillimeterastrophysicaldustemission 3 related to the complex dielectric constant. For particles small wherek isthecomplexvalueofthewavenumberk =ω√ǫ/c compared with the wavelength such as √ǫ(ω) 2πa/λ 1 andǫ isthecomplexdielectricconstantThereforeforǫ ǫ , ′′ ′ | |· ≪ ≪ (whereλ=2πc/ωisthewavelengthandcthespeedoflightin ωǫ vacuum),theabsorptioncoefficientcanbeapproximatedby α= ′′ (12) c√ǫ ′ 8πa ǫ(ω) 1 Q(ω)= Im − (6) Industandporousmaterialmeasurements,amassabsorp- λ · ǫ(ω)+2 " # tioncoefficientα/ρisalsooftenused. IntheFIR/mmwavelengthrange,fornonconductingmate- rials of astronomicaldust particles , the conditionǫ′′ ǫ′ is Inthefollowinganalysis(Sect.2.4andother)wewilllink ≪ generally satisfied, and in this case the absorption coefficient themacroscopicvalueǫ tothevalueofthelocalsusceptibility reducesto χ =χ +iχ definedonmicroscopicscale. o ′o ′o′ Q(ω) ω 12 Becausesmallastronomicalparticlescannotalwaysbecon- = ǫ , (7) a c (ǫ +2)2 ′′ sideredasacontinuousmedium,theelectrodynamicequations ′ ofcontinuousmediamustbeappliedwithcare.Sowedetailin As a consequence, following Eq.(7) the dust opacity thefollowingtheequationsused,andwediscusstheirrangeof rewrites application. ω 9 ǫ κ(ω)= ′′. (8) TheEquationsofmotiondescribestheresponseofcharges c (ǫ′+2)2 ρ toalocalelectricfieldE0,whichpermitstodetermineadipole momentperunitvolumeas P = χ E .Itshouldbetakeninto 0 0 2.2.Assumptionofaλ-independentemissivity accountthatthelocalelectricfield E0 differsfromanexternal spectralindex field E due to additional field produced by other parts of the dielectric.Inthecaseofisotropicdielectricmaterials, Intheabsenceofspecificknowledgeaboutrealisticdependen- 4π cies for ǫ(ω), a simple power law approximationfor FIR/mm E = E+ P. 0 dustemissionisoftenassumed 3 ω β ThedielectricconstantǫlinkstheexternalfieldEandtheelec- κ(ω)=κ(ω0) ω , (9) tric inductance D = E+4πP through D = ǫE. In this case, 0! ǫ canbederivedfromthesusceptibilityχ ,usingthesocalled 0 whereβisreferredtoastheemissivityspectralindex. Clausius-Mossottiequation The intensity of thermal emission from interstellar dust, 4πχ assuming an optically thin medium, at a given wavelength ǫ =1+ 0 . (13) λ=2π/ωlocatedintheFIR/mmrangeis 1− 34πχ0 ω β Whenǫ′′ ǫ′,wehave I (ω,T)=ǫ (λ ) B (ω,T ) (10) ≪ ω e 0 · ω0! · ω d ǫ (ǫ′+2)2 4πχ , (14) where ǫ (λ ) is the dust emissivity at a reference wavelength ′′ ≈ 9 ′o′ e 0 λ =2πc/ω . 0 0 whichleadsto Simple semi-classical models of absorption such as the Lorentz model for damping oscillators and the Drude model forfreechargecarriers(Sect.2.4)provideanasymptoticvalue α(ω) = 4πω (ǫ′+2)2 χ (ω), (15) β = 2 when ω 0. Such a value of the spectral index was c√ǫ 9 ′o′ → ′ in satisfactory agreementwith the earliest observationsof the ω4πχ κ(ω) = ′o′. (16) FIR/mmSEDofinterstellardustemission,butnotnecessarily c ρ withthemostrecentones. The emissivity spectral index β is equal to the slope of a In Eq.(15), the term (ǫ′ + 2)2/9 is the local field correction plotofthedustopacityversuswavelengthinlogarithmicscale. factor,theterm √ǫ istherefractionindex. ′ Inthegeneralcase,thepower-lawassumptionisnotvalid,and Thus,therelationbetweentheabsorptioncoefficientαde- the spectral index has to be considered as a wavelength and duced from transmission measurements in the laboratory and temperaturedependentparameter.Similarly,ǫ (λ )inEq.(10) the absorption efficiency Q or opacity κ, for small spherical e 0 shouldbeconsideredafunctionofT. grainsofradiusaanddensityρcanbeobtainedfromequations Eq.7and12,andwrites 2.3.Relationsbetweenabsorptionpropertiesofbulk Q(ω) 12a √ǫ = · ′ (17) materialanddust α(ω) (ǫ +2)2 ′ The absorption coefficient defined as the optical depth in the andasaconsequence bulkmaterialperunitlengthis κ(ω) 9 √ǫ α=2Im(k), (11) α(ω) = ρ (ǫ· +2′)2 (18) · ′ 4 C.Menyetal.:Far-infraredtomillimeterastrophysicaldustemission AsolutionofEq.(19)withE(t)= Eˆe iωt isu=uˆe iωt, − − The condition ǫ ǫ is valid for dust materials in the FIR/mm wavelength′′ra≪nge,′implying that the real part of the uˆ = qjEˆ ·e∗κjω2κ . (24) dielectricconstantǫ′ canbeconsideredtofirstorderasacon- Xκ j ω2κ −ω2−iγκω stant, leading to dǫ /dω = 0. This comes from the coupling ′ Dielectric propertiesof a substance can be describedby a between the real part ǫ and the imaginary part ǫ through ′ ′′ susceptibilityχ ,whichisthedipolemomentperunitvolume theKramers-KronigrelationsexposedinSect.3.2.Thisimplies 0 generatedbyaunitylocalstrenght Eˆ =1electricalfield, that,inthatspectralrange,theabsorptioncoefficientα,theab- | | sorptionefficiencyQandtheopacityκaresimplyproportional. ρ ω2 χ = κ κ . (25) Thustheslopesofα(ω),Q(ω)andκ(ω)arethesame.Asforthe o ω2 ω2 iγ ω emissivity,anabsorptivityspectralindexcanthenbedefinedby Xκ κ − − κ theslopeofthespectralplotoftheabsorptionα(ω)inlogarith- Forisotropicmaterials,constants micscale.Thisabsorptivityspectralindexdeducedfromlabo- ρ = q q e (Eˆ e ) (26) ratorytransmissionmeasurementscanbedirectlycomparedto κ j′ j κj′ · ∗κj theemissivityspectralindexdeducedfromastrophysicalmea- (cid:12)Xj j′ (cid:12) (cid:12) (cid:12) surements. does(cid:12)(cid:12)notdependuponthe(cid:12)(cid:12)directionofEˆ. In the extreme case where ω γ the spectrum of the κ κ ≫ dielectric absorption can be described as a collection of non- 2.4.Thesemi-classicalmodels overlappingresonantLorentzprofiles Thewellknownsemi-classicalmodeloflightinteractionwith ρ ω2γ ω chargecarriersinmatter(electronsandions)considersthemo- χ = κ κ κ . (27) ′o′ (ω2 ω2)2+(γ ω)2 tionofchargedparticlesdrivenbythetime-dependentelectric κ − κ field of a monochromatic plane wave, magnetic forces being It is the case of infrared absorption bands, especially in neglectedcomparedwithelectricalforces. ionic crystals (”reststralen” bands). This corresponds to the Theequationsofmotionofinteractingchargecarriersare: thirdtermofEq.(19)beingsmall. Intheoppositecase(ω γ )thisleadstoaDebyerelax- κ κ ≪ ationspectrumwhenω ω : m u¨ξ+ Kξξ′uξ′ + bξξ′u˙ξ′ =q Eξ(t), (19) ≪ κ j j jj j jj j j ′ ′ ′ ′ ρ (ωτ ) Xj′ξ′ Xj′ξ′ χ′o′ = 1+κ (ωτκ)2, (28) κ wherem ,q aremassesandchargesofparticles,Kξξ′ arecon- stantsofjelasjticinteraction,Eξ isξ-thcomponentojfj′electrical whereτκ = γκ/ω2κ isa relaxationconstant.Thisis usuallythe caseofpolardielectricliquids.Itcorrespondstothefirstterm field vector E, uξ are components of the 3-dimensional vec- j ofEq.(19)beingnegligible. torof j-thiondisplacement.Dampingparametersb describes j Thisspectrumcorrespondsto situationswhere the inertial dissipationofenergy.ForceconstantsK arethecoefficientsof effects (first term in Eq.19) are comparatively small. If this powerexpansionofthepotentialenergyU. condition is satisfied, the time constant in Eq.(28) can usu- ally be determined by measuring or calculating the timescale 1 of energydissipation duringreturn to equilibriumstate, with- U = Kξξ′uξuξ′ +... (20) 2 jj′ j j′ outsolvingEq.(19). jξ X′ ′ Athirdextremecase,correspondingtothesecondtermof U( uξ ) dependsonlyon relativedeviations(uξ uξ) Eq.(28) being negligible is usually refered to as the Drude ··· j··· j − j′ approximation.It applies to free carriers and is considered in withcorrespondingsymmetryofKξξ′,particularly jj Sect.2.6. ′ Kξξ′ = Kξ′ξ, Kξξ′ =0. (21) 2.5.TheLorentzmodelforcrystallineinsulators jj j j jj ′ ′ ′ jξ X′ ′ The Lorentz model applies for crystalline isolators with an LinearEq.(19)with E = 0havesolutionsintheformofa ionic character, and describes the resonant interaction of an sumofdampingoscillations electromagneticwavewiththevibrationsofionswhichactlike bound charges. Such an interaction is caused by the electric u= aκeκ exp( γκt+iωκt), (22) dipoles which arise when positive and negative ions move in · − oppositedirectionintheirlocalelectricfield.Thiskindofdust X where absorption can be clearly identified in astrophysical observa- u=( uξ )isthemultidimensionaldeviationvector,a ··· κj··· κ tionsasemissionorabsorptionbands.Indeed,theopticaldepth areconstants,eκ =(···eκξj···)areeigenvectors,andγκ−iωκare τisproportionaltoopacityκ(Eq.16): eigenvaluesofmatrix 4π ρ ω2γ ω2 κ(ω)= κ κ κ (29) k−mjδjj′δξξ′ +Kξjξj′′ +ibξjξj′′k. (23) cρ Xκ (ω2κ −ω2)2+(γκω)2 C.Menyetal.:Far-infraredtomillimeterastrophysicaldustemission 5 The maximum number of optically active vibrational However the optical behavior of amorphous materials is modes in a crystal is n = 3(s 1), where s is the number different. The disorder of the atomic arrangement leads to a opt − ofatomsin anelementarycellofthe lattice.Theyare usually breakdown of the selection rules for the wavenumber. The classified as branches in dispersion dependenceof oscillation absorption spectra reflects thus the whole density of vibra- frequencyω(k) on wave numberk. All these branchesare re- tional states. This induces in the longest wavelength range a strictedbyrelativelyhighω(k)intheinfraredregion.Another3 broad absorption band due to single phonon processes which brancheswithω(k) 0whenk 0areacousticmodes.They completely dominates over the multiphonon absorption (H. → → areopticallynotactiveincrystalbecauseatotalchargeofcell HenningandH.Mutschke1997).Asaconsequence,suchlat- is zero. Anothersituation for amorphousmatter is considered ticeabsorptiondoesnotvanishatlowtemperaturefortheamor- hereinSect.4.2. phoussolids,incontrasttothecrystallineones. For substances of astrophysical interest, the characteristic frequenciesofbandsfallinregionλ<50µm.Therefore,inthe 2.6.TheDrudemodelforconductingmaterials FIR/mmwavelengthrange,the asym∼ptoticω 0 ofEq.(29) → canbeused: For free charge carriers the previous semi-classical equa- tion of motion (Eq.19) can still be used, setting all restor- 4π ρ γ κ(ω)=ω2 κ κ (30) ing force coefficients K to zero, equaling all the masses cρ κ ω2κ mj to the effective mass of the free carriers mc ( mj = X m ), and using a constant value for the damping parameters c Thus, the Lorentz model formally applied to dust in the b /m =const=γ .ThereforeEq.(25)forthesusceptibilitysim- j j c FIR/mmwavelengthrangegivesaspectralindexβ=2,avalue plifies as χ = ω2 (ω2 iγ ω) 1, where ω is the so-called oftenusedin”standard”dustmodels. plasmafreqouen−cyωp2 = N−q2/cm −,andN isthpenumberoffree p c c c c Manydustmodelshaverelatedthelongwavelengthabsorp- carriersperunitvolume. tionbyinterstellarsilicatesandices(λ>100µm)tothedamp- In metals, the numberof free electronsper unitvolume is ingwingoftheinfrared-activefundamentalvibrationalbands, independentof temperature,andis of the same orderofmag- visibleatshorterwaves(seeforexampleAndriesseetal.1974 nitudethanthenumberofatoms(N 1022cm 3).Thisleads c − andreferencestherein). to a frequency ω 1015s 1 locate∼d in ultraviolet or in the p − Laboratory infrared data are satisfactorily described (see visible,andtocorre∼spondinglyhighconductivityσ=ω2/γ . p c forexampleRast1968)bya sumofresonantLorentzprofiles In the long wavelength range, far from the plasma fre- (or reststrahlen bands) as described by Eq.(25) and Eq.(29), quency(ω ω )andwhenthemodulusofǫ islargecompare p inwhichthevariousconstantsρκ, ωκ, γκ aredeterminedfrom to1,theasy≪mptoticbehavioroftheopacityisgivenby spectroscopic measurements. This model gives a satisfactory 9γ2 approximationfortheinfraredregion,notonlyforioniccrys- κ(ω)=ω2 c , (31) tals, butalsoforcovalentonesandfortheir amorphouscoun- cρω4 p terpartswithanappropriatechoiceofρ ,ω ,γ . κ κ κ whichalsogivesaspectralindexβ=2.Metallicmaterialsand The situation is more complicated for the low frequency high conductivity semiconductors are expected to follow this region,whereabsorptionisdefinedbydampingconstantγ,in model.Possible dustabsorbentsofsuchtypearegraphiteand contrasttoIRbands,whereabsorptionisweaklydependenton metalliciron. γ. The damping constants b introduced in the semi-classical j Therefore, both the Lorentz and the Drude models in the model (Eq.19) and therefore γ in Eq.(29) have no simple κ low frequencylimit yieldβ=2 in Eq.(9). These very different microscopicexplanation.The dampingis linked to heating or modelshavecommonfeatures.Theircharacteristictimes(ω 1, distribution of energy to all modes of grain vibrations. So γ −κ ω 1)arefarfromFIR/mmregion.Inthiscaseagoodapprox- characterizes intermode interactions which are frequency and −p imationisobtainedbyasymptoticexpansionoftheabsorption temperaturedependentingeneral.Incontrasttosinglephonon coefficientα(ω)onevenpowersoffrequencyω2n,n>0.Inthe absorptionofresonantIRphotons,awingabsorptionisatwo generalcase the first term is dominating(n = 1) and then we phonondifferenceprocess.Duetotheconservationofenergy, haveβ=2. the energy of the absorbed low frequency photon is equal to Othervalues(e.g.n=2,β=4)arepossibleifphysicalmech- the energy difference of the two phonons in the fundamen- anisms suppressingthe n = 1 term are present, as in the case tal vibrational bands (Rubens and Hertz 1912, Ewald 1922). of screening considered in Sect.4.2. Intermediate values of β In fact in crystals, any combination of acoustical and optical provideaclearevidenceforspecificprocesseswhichtimecon- phononswhich satisfies the energy and momentumconserva- stantsareoftheorderofω 1. tion rules can take part to the absorption . This is the main − source of infrared absorption in homoatomic crystals. In the FIRwavelengthrangethetwo-phonondifferenceprocessesare 3. Temperatureandspectralvariationsofdust responsiblefortheabsorptioninioniccrystals.Becausetheef- opticalproperties ficiency of such processes are entirely determined by the dif- 3.1.Astronomicalevidences ferencebetweenthephononoccupationnumbersofthetwoin- volvedphonons,thecorrespondingabsorptiondecreasesdras- Analyses of millimeter and submillimeter emission from ticallyatdecreasingtemperatures(Hadni1970). molecular clouds have found spectral indices between β=1.5 6 C.Menyetal.:Far-infraredtomillimeterastrophysicaldustemission (Walker,Adams&Lada,1990)andβ=2(Gordon1988,Wright surementsintheIRandFIRevidencedastrongmillimeterex- etal.,1992).Howeversomevaluesin excessof 2canalso be cess towardsa set of fourblue compactgalaxy(NGC1569,II found in the literature (Schwartz 1982, Gordon 1990). A few Zw40,He2-10andNGC1140).Theyattributedthisexcessto studies of dense clouds have yielded spectral indices around thepresenceofverycolddust(T = 5 7K)witha veryflat d − 1 (Gordon1988,Woodyetal. 1989,Oldhametal. 1994),but emissivity index (β = 1) which would have to be concentrat- observationsof disks of gas and dust around young stars can ingintoverydenseclumpsspreadalloverthegalaxy.Thisvery indicate values sometimes less than 1 (Chandler et al. 1995). colddustwouldthenaccountforabouthalformoreofthetotal A submillimetercontinuumstudyofthe Oph1 cloud(Andre, dustmassofthosegalaxies. Ward-Thompson& Barsony 1993)found a typical value of β equal to 1.5 but attributed changes in observed ratios to tem- 3.2.Laboratoryevidences peraturevariations.Withoutappropriatetemperaturedata, the authorscouldnotbeconclusiveonthisissue. 3.2.1. Comparinglaboratoryandastronomicaldata More recent observations have evidenced that the actual As it was shown in Sect.2.3, laboratory data on absorption spectral energydistribution of dust emission could be signifi- spectralindexcouldbeusedforinterpretingastronomicalob- cantlymorecomplicatedthandescribedabove.Analysisofthe servations,takingintoaccountthequantitativelimitationscon- FIRAS results have shown that, along the galactic plane, the sideredhere.Someotherlimitationsshouldbeconsidered. emissionspectrumissignificantlyflatterthanexpected,witha First,thereisadifferencebetweenbulklaboratorysamples slope roughly compatible with β = 1 (see Reach et al. 1995, andthesmallcosmicdust.Thelatterprobablyhasahighsur- in particular their Fig. 7). They attributed the flattening com- facetovolumeratio,andsurfaceeffectsareimportantforspec- paredtotheβ = 2canonicalvaluetoanadditionalcomponent troscopyasforthephysicsandthechemistryofdust. peakingin the millimeter range and favored that the millime- Second, samples used for laboratory measurements are ter excess could be due to the existence of very cold dust at generally synthesized in very small amounts. Along with the T = 5 7K inourGalaxy.However,theoriginofsuchvery d − small values of the absorption coefficients it requires high- cold dust remainedunexplained,and the poor angularresolu- sensitivity dedicatedinstrumentssuch as 3He-cooledbolome- tionoftheFIRAS data( 7 )didnotallowfurtherinvestiga- ◦ ≃ tersor/andhighpowersourcesofradiation. tions. In the laboratory indirect IR/FIR/mm spectroscopy meth- Finkbeineretal.1999lateradoptedasimilarmodel.They ods are also used, such as Kramers-Kronigspectroscopy.The showedthatagoodfitoftheoverallFIRASdatacouldbeob- dielectric constant counterparts (ǫ 1) and ǫ are Hilbert tainedusingamixtureofwarmdustatT 16Kandverycold ′ ′′ d − ≃ transformsofeachotherandarerelatedthroughtheKramers- dustatT 9K.Thetemperatureofthewarmcomponentwas d set using a≃fit to the DIRBE data near λ = 200µm while the Kronigrelations(seeLandau&Lifshits1982)by temperatureof the very-coldcomponentwas set assuming an independent dust component immersed in the same radiation 1 ǫ (x) fieldbutwithdifferentabsorptionproperties.Theyimpliedthat ǫ′(ω) = ∞ ′′ dx+1, π x ω these two componentscould be graphite (warm) and silicates Z−∞ − (32) (very cold). However, they gave no quantitative argument to 1 ǫ (x) supportthishypothesis ǫ (ω) = ∞ ′ dx, ′′ −π x ω PRONAOS was a french balloon-borne experiment de- Z−∞ − signed to determine both the FIR dust emissivity spectral in- wherebothintegralsaretheCauchyprincipalvalues. dex and temperature, by measuring the dust emission in four AsimpleformofEq.(32)isforω=0: broadspectralbandscenteredat200,260,360and580µm(see Lamarre et al.1994, Serra at al.2002, Pajot et al.2006). The 2 ǫ (0)= ∞ǫ (x)dlnx+1. (33) analysis of the PRONAOS observations towards several re- ′ π ′′ gionsoftheskyrangingfromdiffusemolecularcloudstostar Z0 formingregionssuchasOrionorM17haveevidencedananti- Theuseoftheserelationstogetherwithreflectionmeasure- correlation between the dust temperature and the emissivity ments R(ω)= (√ǫ 1)/(√ǫ+1)2 allows to resolve the sys- | − | spectral index (see Dupac et al. 2003). The dust emissivity temofequationwithrespecttoǫ (ω)andǫ (ω)andtherefore ′ ′′ spectralindexvariessmoothlyfromhighvalues(β 2.5)for to calculate an absorption spectrum. Possible method inaccu- ≃ colddustatT 12K tomuchlowervalues(β = 1)fordust racies due to inverse problem solution should be considered d ≃ athighertemperature(uptoT 80K)instarformingregions carefully.Inparticular,itissometimesassumedasapriorthat d ≃ like Orion. Dupac et al. (2003) showed that these variations thesolutionhastheformofapowerspectrum.Inpractice,the werenotcausedbythefitprocedureusedandwereunlikelyto most reliable approach should be to use the same model for beduetothepresenceofverycolddust.Theyconcludedthat interpretationofboththeastrophysicalandlaboratorydata. thesevariationsmaybeintrinsicpropertiesofthedust. Extragalactic observations have also revealed unexpected 3.2.2. Spectralindexvariationsindisorderedsolids behavior of dust emission at long wavelength. For instance, Gallianoetal.(2003,2005),combiningJCMTdataat450and Ithasbeenknownformorethan25years,thatdisorderedsolids 850µm,IRAM30mdataat1.2mmwithISOandIRASmea- (glassesand mixedcrystals)have significantlyhighersubmil- C.Menyetal.:Far-infraredtomillimeterastrophysicaldustemission 7 limeterabsorptionthanperfectcrystalsofsimilarchemicalna- range of temperature and revealed a variation of the spectral ture. behavioroftheabsorptioncoefficientwithtemperature. Monetal.(1975)performedfirstabsorptionmeasurements Agladzeetal.(1996)performedabsorptionmeasurements ontypicalinterstellaranaloggrains(crystallineandamorphous on various amorphous dielectric materials in the millimeter silicategrains)atlowtemperature(1.2-30K)inthemillimeter wavelength range (1mm - 5mm) and at low temperature (in the range 0.5K - 10K). A strong temperature-dependenceof range (700 µm- 2.9mm). They found an unusual behavior of the millimeterabsorptionofamorphoussilicates :the absorp- theabsorptionwasobserved,leadingtoanmillimeterabsorp- tionexcessatlowtemperature.Theyalreadyattributedthisef- tioncoefficientdecreaseswithtemperaturedowntoabout20K andthenincreasesagainwithdecreasingtemperature.Theyde- fect to the presence of a distribution of Two-levelSystems in scribedthefrequencydependenceoftheabsorptioncoefficient thestudiedmaterials. using a temperature-dependent spectral index. Depending on Others experimental results on bulk materials at frequen- the samples, the spectral index can decrease from β = 2.6 at ciesω/2πcbetween0.1and150cm 1andT between10Kand − 10K down to β = 1.8 near 30K. They referred to tunneling 300K were discussedby Strom& Taylor(1977). The spectra effectinTwoLevelsSystemstoexplainthisbehavior. follow a generalempiricalrelation α = Kω2 between 15 and Mennella et al. (1998) measured the temperature depen- 150cm 1, where the temperature independentconstant K de- − dence of the absorption coefficients between 295K and 24K pendsonthematerialconsideredanditsinternalstructure.At and for wavelength between 20µm and 2mm on different lower frequenciesω/2π <15cm 1 (λ > 700µm) the slope of − kindofcosmicgrainanalogs(amorphouscarbongrains,amor- thespectraisvariable(βbetween0and3)andtemperaturede- phous and crystalline silicates ). They reported a significant pendentasshowninStrom&Taylor(1977). temperature-dependenceofthespectralindexoftheabsorption Bo¨sch(1978)performedabsorptionmeasurementsfortem- coefficient,particularlystrongfortheiramorphousiron-silicate perature between 300K and 1.6K in the FIR/mm range sample.Theirmeasurementsshoweda systematicdecreaseof (500µm - 10mm) on amorphous silicates mainly composed thespectralindexwithincreasingtemperature. of SiO2. The studied silicate is not a typical grain analog. Boudetetal.(2005)performedmeasurementsondifferent However,measurementsperformedoversuch a wide spectral types of amorphous silicates (typical analog grains and SiO 2 and temperature range are particularly appropriated to study samples) for temperature between 10K and 300K and wave- physicsgoverningabsorptionprocesses.Bo¨schfoundastrong lengthfrom100µmto2mm.Theyfoundastrongtemperature temperatureandfrequencydependencyoftheabsorptioncoef- andfrequencydependencyofthe absorptioncoefficient.They ficient in the millimeter range (λ > 500µm). The absorption definedtwospectralindexdependingonthewavelengthrange coefficientwascharacterizedbyanincreaseofthespectralin- considered. For wavelengths between 500µm and 1mm they dexwith temperaturefromβ = 1.6at300K to β = 3 at10K foundapronounceddecreaseofthespectralindexwithincreas- andbyastrongtemperaturedependence.Todescribethistem- ingtemperaturewhereas,forwavelengthsbetween100µmand peratureandfrequencybehavior,Bo¨schalsoreferredtotheex- 200µm,thespectralindexwasfoundtobeconstantwithtem- istenceofTwoLevelSystemsinthematerial. perature. They put some SiO sample through a strong ther- 2 Therefore,laboratoryspectroscopyshowsevidencesforde- maltreatmenttoremovemostSiOHgroups,andobservedthat viationofabsorptionspectralindexfromthecanonicalβ=2in thetemperature-dependentabsorptiondisappearstotally.They theFIR/mm.Thetemperatureindependentabsorptionprocess thus identified the silanol groups as the defects that, in their whichprovidesβ = 2 inthe spectralregionλ < 700µmdoes silicate sample, are at the origin of the behavior. Considering notseemtodominatetheabsorptionatlongerwavelengths.We that the OH groups can not simply increase the coupling be- will see in Sect. 4 that the model proposedhere includes this tweenthephotonandthebulkphonons,theyassumedreason- phenomenoninanaturalmanner. able that the defects induce closely spaced local energy min- ima, which correspond to the dynamics of a ”particle” in an asymetricdouble-wellpotential. 3.2.3. Spectralvariationsindustanalogues Theselaboratorystudiesprovidestrongindicationsthatthe absorption coefficients of amorphous grain analog materials FIR/mmopticalpropertiesofsolidswithchemicalcomposition varysubstantiallybothwithtemperatureandfrequency. andstructureconsideredasanaloguesofinterstellardustwere investigated in a few laboratory studies (for example Koike et al. 1980, Agladze 1996), Henning and Mutschke 1997, 4. Amodeltoexplaintemperatureandspectral Mennellaetal.1998,Boudetetal.2005).Particularinteresthas variationofdustopticalproperties beengiventolowtemperatureinvestigationsofamorphousor 4.1.Modelingdisorderedstructure otherdisorderedmaterials,whichrevealsystematicdeviations from the phonon theory of crystal solids and was interpreted Two mechanisms have to be considered when dealing with usingtheTLStheory(seeBo¨sch1978,Phillips1987andKu¨hn amorphousmaterials,inordertotakedisorderintoaccount. 2003). First, one should consider the acoustic oscillation excita- A few laboratory measurements have been performed on tionbasedupontheinteractionofsolidswith electromagnetic amorphous solids in the FIR/mm range at low temperature. wavesduetoDisorderedChargeDistribution(SeeSchlo¨mann However, some of these studies were performed over a wide 1964). This effect takes place not only in amorphous media, 8 C.Menyetal.:Far-infraredtomillimeterastrophysicaldustemission but also in disordered crystals like mixed and polycrystals, spondstoEq.(19)withb = 0.Dissipationeffectsariseinthe j andinsomemonocrystalswithinversespinelstructure,forex- phononconceptastheresultofphononinteraction,takinginto ample.Thisabsorptionis temperatureindependent.TheDCD accountanharmonicterms in Eq.(20). Their role was pointed model introduces a correlation length l which quantifies the firstbyDebye(1914). c scale over which the atomic structure of the material realizes For harmonic oscillations u = uˆe iωt with electrical field − chargeneutrality.Theabsorptionspectrumofsuchastructure E(t)= Eˆe iωt Eq.(19)takestheform − presentstwoasymptoticbehaviors.Towardsshortwavelengths, q theabsorptionischaracterizedbyaspectralindexβ=2andin ω2uˆξ+ Dξξ′ uˆξ′ = j Eˆξ, (34) thelongestwavelengthrange,thespectralindextendstowards − j jξ jj′ j′ mj X′ ′ β=4.Thelocationofthespectralrangeinwhichthetransition wherethecoefficientsofthedynamicsmatrixare between the two regimes is directly related to the correlation Dξξ′ = Kξξ′/m . length.TheDCDmodelisdescribedinSect.4.2. jj jj j ′ ′ The second mechanism describes the disorder at atomic Thesolutionofthedispersionequation scale, as a distribution of tunneling states, which leads to a temperature-dependentoptical absorption, and enables to ex- ω2eξ+Dξξ′ eξ′ =0 (35) plain the temperature dependence of the spectral index ob- − j jj′ j′ served in laboratory experiments. This model was originally leadsto resonantfrequenciesωκ andcorrespondingeigenvec- elaborated to explain the unusual thermal and optical proper- tors eκ = (···eκξj···). In an orthonormal basis of vectors eκ, ties of amorphousmaterial at low temperatures and has been when dVeasrcmriabe(1d9i7n2d)e(tsaeielsablsyoPPhhilillilpipss(11997827)f,oArnadreervsoienw,)H.aInlpeprairnti&c- eξκje∗κ′ξj =δκκ′, (36) ξ j ular, the TLS model was developed to explain the fact that, X atlowtemperatures,thespecificheatofamorphoussolidsex- theequation(34)hasasimpleform ceedswhatisexpectedfromtheDebyetheoryforsolids.This (ω2 ω2)uˆ = g Eˆ, (37) anomalousbehavioriscommontoallamorphousmaterialsand κ − κ κ· thereforeappearsindependentoftheirdetailedchemicalcom- whereuˆ areamplitudesofnormaloscillations, κ positionandstructure.Theexistenceofsuchtwolevelssystems hasbeenpointedoutbymeansofmicrowaveandsubmillime- gξκ = qjm−j1e∗κξj, terspectroscopyexperiments(e.g.Agladzeetal.1996,Bo¨sch Xj 1978 and reference therein). The TLS model is described in and denotescomplexconjugates. ∗ Sect.4.3. ThesusceptibilitycorrespondingtoEq.(37)isgivenbythe Thetwomechanismsconsideredherefortheabsorptionby tensor interstellardustprobablydominateinthe FIR/mmand longer wavelengthsdomain.Both havea largedegreeof universality χξξ′ = qj′qjm−j1e∗κξjeξκ′j′ , (38) withoutspecific signaturescharacterizingthe chemicalnature 0 ω2 ω2 iωγ of the absorbing substance. On the other hand, they are sen- Xκj′j κ − − κ sitive to the internal structure of the solids, in particular their orinthemacroscopicallyisotropiccasebythescalar degreeofordering,andtomechanicalpropertiessuchasden- sityandelasticity. χ0 =(χ0xx+χy0y+χz0z)/3 andtherefore, 4.2.DCDabsorption 4.2.1. DCDTheory χ′0′ =Imχ0 = 31 (ωωγ2κqjω′q2j)m2−+j1e(ω∗κξjγeξκ)j′2. (39) κXj′jξ κ − κ In amorphousmaterials, the lack of long-range order permits singlephonon/photoninteractionswithexcitationofanymodes Dampingfactorsγκ were introducedhere to get a station- arysolution.γ valuesdependsonphononinteractions,asdis- of mechanical vibrations. Low frequency vibrations are not κ cussedabove.IntheFIR/mmregion,overlappingofresonance linked to molecular vibrational bands like is the case for ice curvesproducesa quasi continuousabsorptionspectrum.The or silicate bands. In infinite media they correspond to travel- integratedspectruminEq.(39)canbesimplifiedreplacingthe ingacousticwaves.Infinitebodieslikeinterstellardustgrains, integral of the sum of weak individualprofiles by the sum of thesemodescanbedescribedasstandingwaves.Soweusethe theirintegratedvalues. term”phonon”hereforquantumofvibrationalmotionnotre- strictingit(ifnotstatedotherwise)toperiodiclatticeorinfinite + dω π/2 media. ∞Im = . (40) Theconceptofphononquasiparticles(Tamm,1930)arises Z−∞ ω2κ −ω2−iωγκ ω2κ −γκ2 amsotnhiecraepspurlotxoifmqautiaonnt,izwahtiiocnhotafkveisbirnattoioancaclomunottioonnlyinquthaedrhaatirc- χ (ω) = π qpj′qjm−j1e∗κξjeξκj′, (41) terms(onatom displacements)ofenergyin Eq.(20). Itcorre- ′0′ 6ω ∆ω D E |ω−ωXκ|<∆ω/2 C.Menyetal.:Far-infraredtomillimeterastrophysicaldustemission 9 where∆ωisanaveragingintervalsatifying Here designate an ensemble average, ∆r= r r . j j h i − ′ Parametersq2, q2 are describedbelow anddo notdependon ω ∆ω γ . (42) 1 m ≫ ≫ κ ∆r. Thecorrelationfunctioncanbedeterminedfromaphysical Anumberofstatesisproportionalto∆ω,thereforethere- modelofconsideredmaterial.Thefirst,simplestmodelhasan sultdoesnotdependon∆ωandγ whenconditioninEq.(42) κ uncorrelatedchargedistributionandthereforeadelta-function issatisfied, whichthereforealso definesthe validityregionof correlation theresultsofVinogradov(1960)andSchlo¨mann(1964). In macroscopicallyuniformandisotropiccases the eigen- φ(∆r)=δ(∆r)=δ(∆x)δ(∆y)δ(∆z). (49) vectorsofEq.(35)intheformofplanewavesare Ingeneralcaseacross-correlationfunction,Eq.(49)gives eξκj =e˜kξηexp(ik·rj). (43) aflatspatialspectrumwithintensitynotdependingonk: Themanyfoldofsolutionsofthedispersionequationisor- q2 =q2, (50) dered here in accordance with vector |k| and splits into sev- m k m eralbrancheslabeledherebyindexη.Eachbranchhasadiffer- (cid:28) (cid:29) andtherefore entdispersioncurveω = ω (k).Mostbranchesarerestricted η | | ω to high frequencies(infrared)and only three branches extend χ (ω)= q2 (51) down to the FIR/mm region. They are so called ”acoustical” ′0′ 12πυ3 m t modes. For such low frequencies, these have a linear disper- Here,weomittedthesecondterminEq.(46)sinceυ 3 2υ 3. siondependance −l ≪ −t Anautocorrelationfunctionshouldbeusedform=const ωη =υηk, (44) φ (∆r)= q(r )q(r) (q2) 1, (52) a h j i i 1 − where k = k, and υ is speed of sound. One branch corre- sponds to lo|ng|itudinalηpropagation (η = l), the two others to withaflatspatialspectrumhq2ik =q21forδcorrelation(Eq.49) leadingtoEq.(51)withaconstantq2 =q2/m. 2 polarizationsof transverse propagation(η = t). Numericaly, m 1 Inperfectcrystalsthechargedistributionisentirelycorre- υ < υ. Displacementsofneighborionsin soundoscillations t l are synchronous and e˜ξ does not depend on j. The vectors lated forlong distances(long rangeorder)and the absorption kη mechanism described by Eq.(46) and Eq.(51) does not take of displacements e = [e˜ x,e˜y,e˜z] are oriented such that kη kη kη kη place. Nevertheless even for crystals with a perfect lattice, a e k, e k.Theirabsolutevaluesaredefinedbythenor- kl k kt ⊥ disorderedchargedistributionispossibleif thelattice permits malizationequationEq.(36).Thenumberofnormaloscillation anonuniqueconfigurationofthechargesinanelementarycell, perunitvolumeinthefrequencyinterval∆ωisN ∆ω,where ω as is the case, for example of the cubic lattice of salt (NaCl). ω2 Insuchcases,onlystochasticallydistributedchargesshouldbe Nω = 4π2υ3η (45) includedinthecalculationofq21,whichcanthenbedefinedas andtherefore 1 N1 1 N1 q2 = (∆q )2 < q2, (53) 1 N j N j ωN 2 q2 1 q2 1 j=1 1 j=1 χ (ω)= + , (46) X X ′0′ 24πυ3t *m+ω/υt υ3l *m+ω/υl wheresummingistobedoneonlyforionsinvolvedinthedis- whereN isnumberofionsperunitvolumeand ordereddistributionand∆q denotesdeviationsfromthemean chargevalue,whichisdifferentfordifferentnodesofthecrystal lattice.Theorderedpartofthechargedistributionislinkedonly q2 1 N q q m = N2 mj j′ exp(ik·(rj−rj′)). (47) to the spectralcomponentswith ω>υη/d, where d is the lat- * +k j,j=1 j tice period.This frequencyrangecorrespondsto mid infrared X′ absorptionbandsandarenotconsideeredhere. The equation derived here is a generalization of the In amorphous media the corresponding coefficient q2 Schlo¨mann’s(1964)expressionforonetypeofdisorderedions m shouldalso excludethe regularpartof the chargedistribution in a perfect crystal q2 m 1, which was defined by a spatial h ik − producedbytheshortrangeorderinthemedium.Anequation powerspectrumofchargedistribution q2 only. h ik similar to Eq.(53) cannot be written in the general case. The effectofthisshortrangescreeningcanbeexpressedbythein- 4.2.2. SpectrumofDCDabsorption equality TheabsorptionspectrumcorrespondingtoEq.(47)canbecal- 1 N q2 culated using correlation functions. It is a cross-correlation q2m < N mj, functionforgeneralcase j=1 j X φ (∆r)= qjqj′ q2 −1 (48) ThesecondmodelofSchlo¨mann(1964)canbeinterpreted c m m asscreeningoverlargescales.Large-scaleelectricalneutrality j (cid:28) (cid:29)(cid:16) (cid:17) 10 C.Menyetal.:Far-infraredtomillimeterastrophysicaldustemission ofcrystalsandglassescouldbearesultofhighchargemobility in solutions or melts from which the correspondingmaterials weremanufactured. The corresponding correlation function should be written ingeneralizedcaseas 1 φ(∆r)=δ(∆r) exp(∆r/l ), (54) − 8πl3 | | c c where l defines the correlation length. The corresponding c spectraaregivenby lc=0.1nm 0.3 1 3 10 q2 =q2g(kl ), (55) h ik 1 c where g(x)=1 (1+x2) 2 (56) − − Fig.1. Absorption spectrum due to a Disordered Charge Distribution.Theabsorptioncoefficientα is giveninarbi- and DCD trary units, normalized at λ = 100µm and l = 10nm. The c ω χ (ω)= q2 g(ω/ω ), (57) solid,dot,dash,dash-dotanddash-dot-dotlinescorrespondto ′0′ 12πυ3t m c lc =0.1,0.3,1,3and10nmrespectively,assumingatransverse soundvelocityυ =3 105cm/s. where t · ω =υ/l . c t c of solids linked to disordering. Vacancies unavoidable in dis- orderedlatticesproduceinfirstapproximationapossibilityfor ThespectraldependenceofEq.(56)is chaoticdistributionofsomecharges,whichwasconsideredin ω ω2/ω2 forω ω the previoussection. This distribution is consideredas frozen g ∼ c ≪ c (58) (cid:18)ωc(cid:19)(≈1 forω≫ωc icnietshienlcaottmicpeadruiseontowthitehltahregeavhaeiliagbhlteotfhebramrraielrendeivrgidyi.nTghveaTcaLnS- This is also true of other often used correlation function theorytakesintoaccounttransitionsofchargesduetoquantum shapes,suchasstepcorrelationfunctions: tunnelingpossibleatanytemperature. The TLS theoryis the result of a macroscopicanalysis of δ(r) 3/(4πl3) for r <l , φ(r)= − c | | c (59) phenomenaasopposedtoanexactmicroscopicdescription.It 0 for r l . ( | |≥ c is based on the hypothesis of a flat distribution of tunneling stateswithenergyleveldifferencessufficientlylowwithrespect ThespectraldependenceinEq.(58)iscommonforcharge totheusualvibrationalenergy.Thetemperaturedependanceof distributions, which are uncorrelatedover short distances and two-level system properties results from deviations from the respectneutralityoverlargerscales. model of harmonic oscillator, which is a good approximation The DCD absorption is temperature independent. The for the description of crystal lattice vibrations. The origin of corresponding absorption coefficient α(ω) ωχ (Eq.15) ∼ ′o′ TLSisvacanciesin the lattice whichgivesthe possibility,for presentstwoasymptoticsbehaviorsonbothsidesofω which c atomsorgroupsofatoms,tohavedifferentequilibriumspatial dependsonthecorrelationlength.Inthehighfrequencyrange, configurations. As a result, the potential curve has at least a thespectralindextakesthevalueβ=2,andforthelowerfre- double-wellform(DWP, see Fig. 2) in contrastto single-well quency range, the spectral index is equal to β=4. This fre- potential(SWP)ofharmonicoscillatorsincrystalwithoutva- quencydependenceabsorptionis shownon Fig. 1 forvarious cancies. valuesofl . c IntheTLSmodeldescribede.g.by(Phillips1987),theen- ergydistributionofstatesisdefinedundertheassumptionthat 4.3.TLSAbsorption theasymmetry∆ofDWPandtheheightV oftheDWPpoten- tialbarrierarestochasticvaluesandtheirprobabilitydistribu- 4.3.1. PhenomenologicalTLSTheory tioncan beassumedconstantovera certainrangeofV and∆ At low temperatures, the thermal and dielectric properties of values. Like forthe well knowntunnelingprobability,the en- disordered solids (e.g. glasses and mixed crystals) show defi- ergy splitting ∆ has an exponential dependence with barrier 0 nitedeviationsfromthepredictionsofthephonontheorydevel- widthd: opedforperfectlyorderedcrystals. Mostof these phenomena can be describedin the formalismof the so called Two Level ∆ =~Ωexp[ d(2mV)1/2/~], (60) 0 − Systems(TLS),whichisthesimplestmodeloftunnelingstates. IncomparisontoDCD itcouldbeconsideredasasecondap- where ~Ω = (E + E )/2 is the average energy of levels and 1 2 proximation for the description of electromagnetic properties m is the effective mass. This exponential dependence along