ebook img

Far-infrared to millimeter astrophysical dust emission I: A model based on physical properties of amorphous solids PDF

0.37 MB·English
by  C. Meny
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Far-infrared to millimeter astrophysical dust emission I: A model based on physical properties of amorphous solids

Astronomy&Astrophysicsmanuscriptno.meny-1 February5,2008 (DOI:willbeinsertedbyhandlater) Far-infrared to millimeter astrophysical dust emission I: A model based on physical properties of amorphous solids 7 0 0 C.Meny1,V.Gromov1,2,N.Boudet1,J.-Ph.Bernard1,D.Paradis1,andC.Nayral1 2 n 1 Centred’EtudeSpatialedesRayonnements,CNRS,9,AvenueduColonelRoche,31028Toulouse,France a email:[email protected],[email protected] J 2 SpaceResearchInstitute,RAS,84/32Profsoyuznaya,117810Moscow,Russia 9 1 ReceivedJuin2006/Acceptednovember2006? v 6 2 Abstract.Anabstractshouldbegiven 2 1 0 We propose a new description of astronomicaldust emis- 1997, Draine & Li 2001). Most of them require a wide range 7 sion in the spectralregionfromtheFar-Infraredto millimeter ofthedustgrainsizesspanningalmost3ordersofmagnitude, 0 / wavelengths. Unlike previous classical models, this descrip- fromsub-nanometerdimensionstofractionsofamicron.They h tion explicitly incorporates the effect of the disordered inter- also require a minimum of three components with different p nal structure of amorphous dust grains. The model is based chemical composition in order to explain the ultraviolet and - o onresultsfromsolidstatephysics,usedtointerpretlaboratory opticalextinction,alongwithinfraredemission. r data.Themodeltakesintoaccounttheeffectofabsorptionby t s DisorderedChargeDistribution,aswellastheeffectofabsorp- The smallest component is needed to explain the ”aro- a matic” emission features at 3.3, 6.2, 7.7, 8.6 and 11.3µm. : tion by localized Two Level Systems. We review constraints v It is now routinely assigned to large aromatic molecules or on the various free parameters of the model from theory and i Polycyclic Aromatic Hydrocarbons (PAH) (Leger & Puget X laboratoryexperimentaldata.Weshowthat,forrealisticvalues 1984, Allamandola et al. 1985, De´sert et al. 1990). PAH are r ofthefreeparameters,theshapeoftheemissionspectrumwill a transientlyheated afterabsorbingsingle UV andfar-UV pho- exhibitverybroadstructureswhichshapewillchangewiththe tons,andcooldownemittingNIRphotonsinvibrationaltran- temperature of dust grains in a non trivial way. The spectral sitionsrepresentativeoftheiraromaticstructure. shape also depends upon the parameters describing the inter- nal structure of the grains. This opens new perspectives as to A second component, composed of Very Small Grains identifyingthe natureof astronomicaldustfrom the observed (VSG)isrequiredtoexplainthecontinuumemissionintheMid shape ofthe FIR/mm emission spectrum.A companionpaper Infra-Red (MIR). Emission in this range still requires signifi- will provide an explicit comparison of the model with astro- canttemperaturefluctuationsofthegrains,whichnecessitates, nomicaldata. underconditionsprevailingintheInter-StellarMedium(ISM), grainssizesinthenanometerrange.VSGscouldbecomposed ofcarbonaceousmaterialwhoseabsorptioncouldalsoexplain 1. Introduction the 2200ÅUV bump in the extinctioncurve(see for instance ItisnowwellestablishedthattheSpectralEnergyDistribution De´sertetal.1990). (SED)fromtheInter-StellarMedium(ISM)emissionfromour A third component, composed of Big Grains (BG), with Galaxy and most external galaxies is dominated by thermal sizes from10-20nmto about100nm,is necessaryto account emission from dust grains which spans over almost 3 orders forthelongwavelengthemission(inparticularasobservedin of magnitude in wavelengths, from the Near Infra-Red(NIR) theIRAS100µmbandandabove).TheBGcomponentdomi- to the millimeter wavelengthrange.Severaldustmodelshave natesthetotaldustmassandthe absorptionin the visibleand beenproposedtoexplaintheobservations.Recentdustmodels theNIR.Observationsofthe”silicate”absorptionfeaturenear share many common characteristics (e.g. Mathis at al. 1977, 10µmindicatethattheirmassisdominatedbyamorphoussil- Draine & Lee 1984, Draine & Anderson1985, Weiland et al. icates(seeKemperetal.2004).Suchamorphousstructurefor 1986, De´sert et al. 1990, Li & Greenberg 1997, Dwek et al. thesedustgrainsisexpectedfromtheinteractionwithcosmic Sendoffprintrequeststo:[email protected] rays which should alter the nature of the solid (Brucato et al. 2 C.Menyetal.:Far-infraredtomillimeterastrophysicaldustemission 2004,Ja¨geretal.2003),butalsofromtheformationprocesses tionsregardinggraincollisions,destructionandagglomeration, oftheseBGsbyaggregationofsub-sizedparticles. includingpreplanetarybodiesformationincircumstellardisks. Recentstudiesattemptingtoexplainthesubmillimeterob- InSect.2,wefirstrecallsomebasicsregardingtheFIR/mm servations,revealedtheneedforeithertheexistenceofanad- dust emission and the semi-classical model of light interac- ditionalmostmassivecomponentofverycolddust(e.g.Reach tion with matter. In Sect.3, we gather evidences for spectral etal.1995,Finkbeineretal.1999,Gallianoetal.2003)orfor variationsinastronomicalandlaboratorymeasurements.Then, substantialmodificationsofdustpropertiesinthesubmillime- we present in Sect.4 a model, based on the intrinsic proper- ter with respect to predictions of standard dust models (e.g. tiesofamorphousmaterials,takingintoaccountabsorptionby Ristorcellietal.1998,Bernardetal.1999,Stepniketal.2003a, DisorderedChargeDistributionaswellastheeffectofabsorp- Dupacetal.2001,Dupacetal.2002,Dupacetal.2003). tion by a distribution of TLS. In Sect.5, we propose a new modelofthesubmillimeterandmillimetergrainabsorptionand Similarly,laboratoryspectroscopicmeasurementsofinter- discuss the range of plausible values for the free parameters, stellar grains analogsrevealthat noticeable variationsin their based on existinglaboratorydata. In Sect.5.4, we discuss the optical properties in the Far Infra-red (FIR) and Millimeter implicationsofthemodel,inparticularregardingtheexpected (mm) wavelength range can occur (Agladze et al. 1994, variationsof the FIR/mm emission spectra with the dusttem- Agladzeetal.1996,Mennellaetal.1998,Boudetetal.2005). perature.Sect.6 is devotedto conclusions.The determination They pointed out the possible role of two phonons differ- of the model parameters applicable to astronomical data will ence processes, disorder-induced one-phonon processes, res- addressedinacompanionpaper. onant or relaxation processes in the presence of Two-Level Systems(TLS)inamorphousdust(seeSect.4.3).Theinfluence ofsuchTwo-LevelSystemsoninterstellargrainabsorptionand 2. BasicknowledgeontheFIR/mmdustemission emission properties was first proposed to the astronomers’s 2.1.Interstellardustemissionandextinction community by Agladze et al. 1994. More recently, a prelim- inary investigations by Boudet et al. 2002 showed that opti- Theintensityofthermalemissionfrominterstellardustattem- calresonantandrelaxationtransitionsinadistributionofTLS peratureT is d couldqualitativelyexplaintheanticorrelationbetweenthetem- perature and the spectral index of dust as observed by the Iω(ω,T)=ǫe(ω) Bω(ω,Td) (1) · PRONAOSballoonexperiment(e.g.Dupacetal.2003). whereI isenergyfluxdensityperunitarea,angularfrequency ω A precise modeling of the long wavelength dust emission andsolidangle(orspecificintensity),ǫ thedustemissivityand e is important in order to accurately subtract foreground emis- B thePlanckfunctionatangularfrequencyω. ω sion in cosmological background anisotropy measurements, Accordingto the Kirchhoff law, the emissivity ǫ is equal e especially for future missions for space CMB measurements totheabsorptivity (Lamarre et al. 2003) and for surveys of foregroundcompact sources(seeGromovetal.2002).Anumberofcomprehensive ǫe(ω)=1 e−τ(ω). (2) − foregroundanalysispapers(Bouchet&Gispert1999,Tegmark where the optical depth τ is related to the dust mass column etal.2000,Bennettetal.2003,Barreiroetal.2006,Naselsky densityonthelineofsightM andthedustmassopacityκas d et al. 2005and other)did not pay attention to dustemissivity modelaccuracy.In addition,precise modelingofthe FIR/mm τ(ω)=κ(ω) M (3) d · dust emission is also importantto derive reliable estimates of Forsphericalgrainsofradiusaanddensityρ,thedustopac- the dust mass, to trace the structure and density of pre-stellar ity(effectiveareapermass)isgivenby cold cores in molecular clouds. Indeed the dust governs the cloud opacity,and influencesthe size of the cloud fragments. 3 Q(ω) Inaddition,theefficiencyofstarformationshouldberelatedto κ(ω)= , (4) 4ρ a thedustproperties,whichareexpectedtovarybetweenthedif- fusemediumandthedensercoldcores.Itisthusofimportance wheretheabsorptionefficiencyQ(ω)=σ(ω)/(πa2)istheratio toknowhowsomephysicalorchemicalpropertiesofdustcan of the absorption cross section σ(ω) to the geometrical cross influencetheirFIR/mmemission. sectionofthegrainπa2.ThegrainequilibriumtemperatureT d Formodelsofthesubmillimeterelectromagneticemission isdeducedfromthebalancebetweentheemittedandabsorbed of dust, consideringthe intrinsic mechanicalvibrationsof the radiationfromtheInter-StellarRadiationField(ISRF) grainstructureis naturalsince theyfallin the rightfrequency range(typicallyinthefrequencyrangeν 1011 1013Hz,i.e. ∞B (ω,T )Q(ω)dω= ∞IISRFQ(ω)dω (5) ∼ − ω d ω λ 30µm 3mm).Observationsinthisspectralregionpoten- Z0 Z0 ∼ − tiallyprovidesnewtoolsforinvestigatingtheinternalstructure The Mie theory,using the Maxwell equationsof the elec- ofdustgrainmaterial.Theinternalmechanicsofgrainsisalso tromagnetictheory,leadstoanexactsolutionfortheabsorption important for chemistry in the ISM. The dust vibrations sup- andscatteringprocessesbyanhomogeneoussphericalparticle plyanenergysinkfornewlyformedmoleculeswhichareusu- ofradiusa whosematerialischaracterizedbyitscomplexdi- allyformedinunstableexcitedstates.Understandingthegrain electric constant ǫ(ω) = ǫ (ω)+iǫ (ω). In that case, the ab- ′ ′′ structure and intrinsic movementsis necessary for considera- sorption coefficient Q(ω) writes as an infinite series of terms C.Menyetal.:Far-infraredtomillimeterastrophysicaldustemission 3 related to the complex dielectric constant. For particles small wherek isthecomplexvalueofthewavenumberk =ω√ǫ/c compared with the wavelength such as √ǫ(ω) 2πa/λ 1 andǫ isthecomplexdielectricconstantThereforeforǫ ǫ , ′′ ′ | |· ≪ ≪ (whereλ=2πc/ωisthewavelengthandcthespeedoflightin ωǫ vacuum),theabsorptioncoefficientcanbeapproximatedby α= ′′ (12) c√ǫ ′ 8πa ǫ(ω) 1 Q(ω)= Im − (6) Industandporousmaterialmeasurements,amassabsorp- λ · ǫ(ω)+2 " # tioncoefficientα/ρisalsooftenused. IntheFIR/mmwavelengthrange,fornonconductingmate- rials of astronomicaldust particles , the conditionǫ′′ ǫ′ is Inthefollowinganalysis(Sect.2.4andother)wewilllink ≪ generally satisfied, and in this case the absorption coefficient themacroscopicvalueǫ tothevalueofthelocalsusceptibility reducesto χ =χ +iχ definedonmicroscopicscale. o ′o ′o′ Q(ω) ω 12 Becausesmallastronomicalparticlescannotalwaysbecon- = ǫ , (7) a c (ǫ +2)2 ′′ sideredasacontinuousmedium,theelectrodynamicequations ′ ofcontinuousmediamustbeappliedwithcare.Sowedetailin As a consequence, following Eq.(7) the dust opacity thefollowingtheequationsused,andwediscusstheirrangeof rewrites application. ω 9 ǫ κ(ω)= ′′. (8) TheEquationsofmotiondescribestheresponseofcharges c (ǫ′+2)2 ρ toalocalelectricfieldE0,whichpermitstodetermineadipole momentperunitvolumeas P = χ E .Itshouldbetakeninto 0 0 2.2.Assumptionofaλ-independentemissivity accountthatthelocalelectricfield E0 differsfromanexternal spectralindex field E due to additional field produced by other parts of the dielectric.Inthecaseofisotropicdielectricmaterials, Intheabsenceofspecificknowledgeaboutrealisticdependen- 4π cies for ǫ(ω), a simple power law approximationfor FIR/mm E = E+ P. 0 dustemissionisoftenassumed 3 ω β ThedielectricconstantǫlinkstheexternalfieldEandtheelec- κ(ω)=κ(ω0) ω , (9) tric inductance D = E+4πP through D = ǫE. In this case, 0! ǫ canbederivedfromthesusceptibilityχ ,usingthesocalled 0 whereβisreferredtoastheemissivityspectralindex. Clausius-Mossottiequation The intensity of thermal emission from interstellar dust, 4πχ assuming an optically thin medium, at a given wavelength ǫ =1+ 0 . (13) λ=2π/ωlocatedintheFIR/mmrangeis 1− 34πχ0 ω β Whenǫ′′ ǫ′,wehave I (ω,T)=ǫ (λ ) B (ω,T ) (10) ≪ ω e 0 · ω0! · ω d ǫ (ǫ′+2)2 4πχ , (14) where ǫ (λ ) is the dust emissivity at a reference wavelength ′′ ≈ 9 ′o′ e 0 λ =2πc/ω . 0 0 whichleadsto Simple semi-classical models of absorption such as the Lorentz model for damping oscillators and the Drude model forfreechargecarriers(Sect.2.4)provideanasymptoticvalue α(ω) = 4πω (ǫ′+2)2 χ (ω), (15) β = 2 when ω 0. Such a value of the spectral index was c√ǫ 9 ′o′ → ′ in satisfactory agreementwith the earliest observationsof the ω4πχ κ(ω) = ′o′. (16) FIR/mmSEDofinterstellardustemission,butnotnecessarily c ρ withthemostrecentones. The emissivity spectral index β is equal to the slope of a In Eq.(15), the term (ǫ′ + 2)2/9 is the local field correction plotofthedustopacityversuswavelengthinlogarithmicscale. factor,theterm √ǫ istherefractionindex. ′ Inthegeneralcase,thepower-lawassumptionisnotvalid,and Thus,therelationbetweentheabsorptioncoefficientαde- the spectral index has to be considered as a wavelength and duced from transmission measurements in the laboratory and temperaturedependentparameter.Similarly,ǫ (λ )inEq.(10) the absorption efficiency Q or opacity κ, for small spherical e 0 shouldbeconsideredafunctionofT. grainsofradiusaanddensityρcanbeobtainedfromequations Eq.7and12,andwrites 2.3.Relationsbetweenabsorptionpropertiesofbulk Q(ω) 12a √ǫ = · ′ (17) materialanddust α(ω) (ǫ +2)2 ′ The absorption coefficient defined as the optical depth in the andasaconsequence bulkmaterialperunitlengthis κ(ω) 9 √ǫ α=2Im(k), (11) α(ω) = ρ (ǫ· +2′)2 (18) · ′ 4 C.Menyetal.:Far-infraredtomillimeterastrophysicaldustemission AsolutionofEq.(19)withE(t)= Eˆe iωt isu=uˆe iωt, − − The condition ǫ ǫ is valid for dust materials in the FIR/mm wavelength′′ra≪nge,′implying that the real part of the uˆ = qjEˆ ·e∗κjω2κ . (24) dielectricconstantǫ′ canbeconsideredtofirstorderasacon- Xκ j ω2κ −ω2−iγκω stant, leading to dǫ /dω = 0. This comes from the coupling ′ Dielectric propertiesof a substance can be describedby a between the real part ǫ and the imaginary part ǫ through ′ ′′ susceptibilityχ ,whichisthedipolemomentperunitvolume theKramers-KronigrelationsexposedinSect.3.2.Thisimplies 0 generatedbyaunitylocalstrenght Eˆ =1electricalfield, that,inthatspectralrange,theabsorptioncoefficientα,theab- | | sorptionefficiencyQandtheopacityκaresimplyproportional. ρ ω2 χ = κ κ . (25) Thustheslopesofα(ω),Q(ω)andκ(ω)arethesame.Asforthe o ω2 ω2 iγ ω emissivity,anabsorptivityspectralindexcanthenbedefinedby Xκ κ − − κ theslopeofthespectralplotoftheabsorptionα(ω)inlogarith- Forisotropicmaterials,constants micscale.Thisabsorptivityspectralindexdeducedfromlabo- ρ = q q e (Eˆ e ) (26) ratorytransmissionmeasurementscanbedirectlycomparedto κ j′ j κj′ · ∗κj theemissivityspectralindexdeducedfromastrophysicalmea- (cid:12)Xj j′ (cid:12) (cid:12) (cid:12) surements. does(cid:12)(cid:12)notdependuponthe(cid:12)(cid:12)directionofEˆ. In the extreme case where ω γ the spectrum of the κ κ ≫ dielectric absorption can be described as a collection of non- 2.4.Thesemi-classicalmodels overlappingresonantLorentzprofiles Thewellknownsemi-classicalmodeloflightinteractionwith ρ ω2γ ω chargecarriersinmatter(electronsandions)considersthemo- χ = κ κ κ . (27) ′o′ (ω2 ω2)2+(γ ω)2 tionofchargedparticlesdrivenbythetime-dependentelectric κ − κ field of a monochromatic plane wave, magnetic forces being It is the case of infrared absorption bands, especially in neglectedcomparedwithelectricalforces. ionic crystals (”reststralen” bands). This corresponds to the Theequationsofmotionofinteractingchargecarriersare: thirdtermofEq.(19)beingsmall. Intheoppositecase(ω γ )thisleadstoaDebyerelax- κ κ ≪ ationspectrumwhenω ω : m u¨ξ+ Kξξ′uξ′ + bξξ′u˙ξ′ =q Eξ(t), (19) ≪ κ j j jj j jj j j ′ ′ ′ ′ ρ (ωτ ) Xj′ξ′ Xj′ξ′ χ′o′ = 1+κ (ωτκ)2, (28) κ wherem ,q aremassesandchargesofparticles,Kξξ′ arecon- stantsofjelasjticinteraction,Eξ isξ-thcomponentojfj′electrical whereτκ = γκ/ω2κ isa relaxationconstant.Thisis usuallythe caseofpolardielectricliquids.Itcorrespondstothefirstterm field vector E, uξ are components of the 3-dimensional vec- j ofEq.(19)beingnegligible. torof j-thiondisplacement.Dampingparametersb describes j Thisspectrumcorrespondsto situationswhere the inertial dissipationofenergy.ForceconstantsK arethecoefficientsof effects (first term in Eq.19) are comparatively small. If this powerexpansionofthepotentialenergyU. condition is satisfied, the time constant in Eq.(28) can usu- ally be determined by measuring or calculating the timescale 1 of energydissipation duringreturn to equilibriumstate, with- U = Kξξ′uξuξ′ +... (20) 2 jj′ j j′ outsolvingEq.(19). jξ X′ ′ Athirdextremecase,correspondingtothesecondtermof U( uξ ) dependsonlyon relativedeviations(uξ uξ) Eq.(28) being negligible is usually refered to as the Drude ··· j··· j − j′ approximation.It applies to free carriers and is considered in withcorrespondingsymmetryofKξξ′,particularly jj Sect.2.6. ′ Kξξ′ = Kξ′ξ, Kξξ′ =0. (21) 2.5.TheLorentzmodelforcrystallineinsulators jj j j jj ′ ′ ′ jξ X′ ′ The Lorentz model applies for crystalline isolators with an LinearEq.(19)with E = 0havesolutionsintheformofa ionic character, and describes the resonant interaction of an sumofdampingoscillations electromagneticwavewiththevibrationsofionswhichactlike bound charges. Such an interaction is caused by the electric u= aκeκ exp( γκt+iωκt), (22) dipoles which arise when positive and negative ions move in · − oppositedirectionintheirlocalelectricfield.Thiskindofdust X where absorption can be clearly identified in astrophysical observa- u=( uξ )isthemultidimensionaldeviationvector,a ··· κj··· κ tionsasemissionorabsorptionbands.Indeed,theopticaldepth areconstants,eκ =(···eκξj···)areeigenvectors,andγκ−iωκare τisproportionaltoopacityκ(Eq.16): eigenvaluesofmatrix 4π ρ ω2γ ω2 κ(ω)= κ κ κ (29) k−mjδjj′δξξ′ +Kξjξj′′ +ibξjξj′′k. (23) cρ Xκ (ω2κ −ω2)2+(γκω)2 C.Menyetal.:Far-infraredtomillimeterastrophysicaldustemission 5 The maximum number of optically active vibrational However the optical behavior of amorphous materials is modes in a crystal is n = 3(s 1), where s is the number different. The disorder of the atomic arrangement leads to a opt − ofatomsin anelementarycellofthe lattice.Theyare usually breakdown of the selection rules for the wavenumber. The classified as branches in dispersion dependenceof oscillation absorption spectra reflects thus the whole density of vibra- frequencyω(k) on wave numberk. All these branchesare re- tional states. This induces in the longest wavelength range a strictedbyrelativelyhighω(k)intheinfraredregion.Another3 broad absorption band due to single phonon processes which brancheswithω(k) 0whenk 0areacousticmodes.They completely dominates over the multiphonon absorption (H. → → areopticallynotactiveincrystalbecauseatotalchargeofcell HenningandH.Mutschke1997).Asaconsequence,suchlat- is zero. Anothersituation for amorphousmatter is considered ticeabsorptiondoesnotvanishatlowtemperaturefortheamor- hereinSect.4.2. phoussolids,incontrasttothecrystallineones. For substances of astrophysical interest, the characteristic frequenciesofbandsfallinregionλ<50µm.Therefore,inthe 2.6.TheDrudemodelforconductingmaterials FIR/mmwavelengthrange,the asym∼ptoticω 0 ofEq.(29) → canbeused: For free charge carriers the previous semi-classical equa- tion of motion (Eq.19) can still be used, setting all restor- 4π ρ γ κ(ω)=ω2 κ κ (30) ing force coefficients K to zero, equaling all the masses cρ κ ω2κ mj to the effective mass of the free carriers mc ( mj = X m ), and using a constant value for the damping parameters c Thus, the Lorentz model formally applied to dust in the b /m =const=γ .ThereforeEq.(25)forthesusceptibilitysim- j j c FIR/mmwavelengthrangegivesaspectralindexβ=2,avalue plifies as χ = ω2 (ω2 iγ ω) 1, where ω is the so-called oftenusedin”standard”dustmodels. plasmafreqouen−cyωp2 = N−q2/cm −,andN isthpenumberoffree p c c c c Manydustmodelshaverelatedthelongwavelengthabsorp- carriersperunitvolume. tionbyinterstellarsilicatesandices(λ>100µm)tothedamp- In metals, the numberof free electronsper unitvolume is ingwingoftheinfrared-activefundamentalvibrationalbands, independentof temperature,andis of the same orderofmag- visibleatshorterwaves(seeforexampleAndriesseetal.1974 nitudethanthenumberofatoms(N 1022cm 3).Thisleads c − andreferencestherein). to a frequency ω 1015s 1 locate∼d in ultraviolet or in the p − Laboratory infrared data are satisfactorily described (see visible,andtocorre∼spondinglyhighconductivityσ=ω2/γ . p c forexampleRast1968)bya sumofresonantLorentzprofiles In the long wavelength range, far from the plasma fre- (or reststrahlen bands) as described by Eq.(25) and Eq.(29), quency(ω ω )andwhenthemodulusofǫ islargecompare p inwhichthevariousconstantsρκ, ωκ, γκ aredeterminedfrom to1,theasy≪mptoticbehavioroftheopacityisgivenby spectroscopic measurements. This model gives a satisfactory 9γ2 approximationfortheinfraredregion,notonlyforioniccrys- κ(ω)=ω2 c , (31) tals, butalsoforcovalentonesandfortheir amorphouscoun- cρω4 p terpartswithanappropriatechoiceofρ ,ω ,γ . κ κ κ whichalsogivesaspectralindexβ=2.Metallicmaterialsand The situation is more complicated for the low frequency high conductivity semiconductors are expected to follow this region,whereabsorptionisdefinedbydampingconstantγ,in model.Possible dustabsorbentsofsuchtypearegraphiteand contrasttoIRbands,whereabsorptionisweaklydependenton metalliciron. γ. The damping constants b introduced in the semi-classical j Therefore, both the Lorentz and the Drude models in the model (Eq.19) and therefore γ in Eq.(29) have no simple κ low frequencylimit yieldβ=2 in Eq.(9). These very different microscopicexplanation.The dampingis linked to heating or modelshavecommonfeatures.Theircharacteristictimes(ω 1, distribution of energy to all modes of grain vibrations. So γ −κ ω 1)arefarfromFIR/mmregion.Inthiscaseagoodapprox- characterizes intermode interactions which are frequency and −p imationisobtainedbyasymptoticexpansionoftheabsorption temperaturedependentingeneral.Incontrasttosinglephonon coefficientα(ω)onevenpowersoffrequencyω2n,n>0.Inthe absorptionofresonantIRphotons,awingabsorptionisatwo generalcase the first term is dominating(n = 1) and then we phonondifferenceprocess.Duetotheconservationofenergy, haveβ=2. the energy of the absorbed low frequency photon is equal to Othervalues(e.g.n=2,β=4)arepossibleifphysicalmech- the energy difference of the two phonons in the fundamen- anisms suppressingthe n = 1 term are present, as in the case tal vibrational bands (Rubens and Hertz 1912, Ewald 1922). of screening considered in Sect.4.2. Intermediate values of β In fact in crystals, any combination of acoustical and optical provideaclearevidenceforspecificprocesseswhichtimecon- phononswhich satisfies the energy and momentumconserva- stantsareoftheorderofω 1. tion rules can take part to the absorption . This is the main − source of infrared absorption in homoatomic crystals. In the FIRwavelengthrangethetwo-phonondifferenceprocessesare 3. Temperatureandspectralvariationsofdust responsiblefortheabsorptioninioniccrystals.Becausetheef- opticalproperties ficiency of such processes are entirely determined by the dif- 3.1.Astronomicalevidences ferencebetweenthephononoccupationnumbersofthetwoin- volvedphonons,thecorrespondingabsorptiondecreasesdras- Analyses of millimeter and submillimeter emission from ticallyatdecreasingtemperatures(Hadni1970). molecular clouds have found spectral indices between β=1.5 6 C.Menyetal.:Far-infraredtomillimeterastrophysicaldustemission (Walker,Adams&Lada,1990)andβ=2(Gordon1988,Wright surementsintheIRandFIRevidencedastrongmillimeterex- etal.,1992).Howeversomevaluesin excessof 2canalso be cess towardsa set of fourblue compactgalaxy(NGC1569,II found in the literature (Schwartz 1982, Gordon 1990). A few Zw40,He2-10andNGC1140).Theyattributedthisexcessto studies of dense clouds have yielded spectral indices around thepresenceofverycolddust(T = 5 7K)witha veryflat d − 1 (Gordon1988,Woodyetal. 1989,Oldhametal. 1994),but emissivity index (β = 1) which would have to be concentrat- observationsof disks of gas and dust around young stars can ingintoverydenseclumpsspreadalloverthegalaxy.Thisvery indicate values sometimes less than 1 (Chandler et al. 1995). colddustwouldthenaccountforabouthalformoreofthetotal A submillimetercontinuumstudyofthe Oph1 cloud(Andre, dustmassofthosegalaxies. Ward-Thompson& Barsony 1993)found a typical value of β equal to 1.5 but attributed changes in observed ratios to tem- 3.2.Laboratoryevidences peraturevariations.Withoutappropriatetemperaturedata, the authorscouldnotbeconclusiveonthisissue. 3.2.1. Comparinglaboratoryandastronomicaldata More recent observations have evidenced that the actual As it was shown in Sect.2.3, laboratory data on absorption spectral energydistribution of dust emission could be signifi- spectralindexcouldbeusedforinterpretingastronomicalob- cantlymorecomplicatedthandescribedabove.Analysisofthe servations,takingintoaccountthequantitativelimitationscon- FIRAS results have shown that, along the galactic plane, the sideredhere.Someotherlimitationsshouldbeconsidered. emissionspectrumissignificantlyflatterthanexpected,witha First,thereisadifferencebetweenbulklaboratorysamples slope roughly compatible with β = 1 (see Reach et al. 1995, andthesmallcosmicdust.Thelatterprobablyhasahighsur- in particular their Fig. 7). They attributed the flattening com- facetovolumeratio,andsurfaceeffectsareimportantforspec- paredtotheβ = 2canonicalvaluetoanadditionalcomponent troscopyasforthephysicsandthechemistryofdust. peakingin the millimeter range and favored that the millime- Second, samples used for laboratory measurements are ter excess could be due to the existence of very cold dust at generally synthesized in very small amounts. Along with the T = 5 7K inourGalaxy.However,theoriginofsuchvery d − small values of the absorption coefficients it requires high- cold dust remainedunexplained,and the poor angularresolu- sensitivity dedicatedinstrumentssuch as 3He-cooledbolome- tionoftheFIRAS data( 7 )didnotallowfurtherinvestiga- ◦ ≃ tersor/andhighpowersourcesofradiation. tions. In the laboratory indirect IR/FIR/mm spectroscopy meth- Finkbeineretal.1999lateradoptedasimilarmodel.They ods are also used, such as Kramers-Kronigspectroscopy.The showedthatagoodfitoftheoverallFIRASdatacouldbeob- dielectric constant counterparts (ǫ 1) and ǫ are Hilbert tainedusingamixtureofwarmdustatT 16Kandverycold ′ ′′ d − ≃ transformsofeachotherandarerelatedthroughtheKramers- dustatT 9K.Thetemperatureofthewarmcomponentwas d set using a≃fit to the DIRBE data near λ = 200µm while the Kronigrelations(seeLandau&Lifshits1982)by temperatureof the very-coldcomponentwas set assuming an independent dust component immersed in the same radiation 1 ǫ (x) fieldbutwithdifferentabsorptionproperties.Theyimpliedthat ǫ′(ω) = ∞ ′′ dx+1, π x ω these two componentscould be graphite (warm) and silicates Z−∞ − (32) (very cold). However, they gave no quantitative argument to 1 ǫ (x) supportthishypothesis ǫ (ω) = ∞ ′ dx, ′′ −π x ω PRONAOS was a french balloon-borne experiment de- Z−∞ − signed to determine both the FIR dust emissivity spectral in- wherebothintegralsaretheCauchyprincipalvalues. dex and temperature, by measuring the dust emission in four AsimpleformofEq.(32)isforω=0: broadspectralbandscenteredat200,260,360and580µm(see Lamarre et al.1994, Serra at al.2002, Pajot et al.2006). The 2 ǫ (0)= ∞ǫ (x)dlnx+1. (33) analysis of the PRONAOS observations towards several re- ′ π ′′ gionsoftheskyrangingfromdiffusemolecularcloudstostar Z0 formingregionssuchasOrionorM17haveevidencedananti- Theuseoftheserelationstogetherwithreflectionmeasure- correlation between the dust temperature and the emissivity ments R(ω)= (√ǫ 1)/(√ǫ+1)2 allows to resolve the sys- | − | spectral index (see Dupac et al. 2003). The dust emissivity temofequationwithrespecttoǫ (ω)andǫ (ω)andtherefore ′ ′′ spectralindexvariessmoothlyfromhighvalues(β 2.5)for to calculate an absorption spectrum. Possible method inaccu- ≃ colddustatT 12K tomuchlowervalues(β = 1)fordust racies due to inverse problem solution should be considered d ≃ athighertemperature(uptoT 80K)instarformingregions carefully.Inparticular,itissometimesassumedasapriorthat d ≃ like Orion. Dupac et al. (2003) showed that these variations thesolutionhastheformofapowerspectrum.Inpractice,the werenotcausedbythefitprocedureusedandwereunlikelyto most reliable approach should be to use the same model for beduetothepresenceofverycolddust.Theyconcludedthat interpretationofboththeastrophysicalandlaboratorydata. thesevariationsmaybeintrinsicpropertiesofthedust. Extragalactic observations have also revealed unexpected 3.2.2. Spectralindexvariationsindisorderedsolids behavior of dust emission at long wavelength. For instance, Gallianoetal.(2003,2005),combiningJCMTdataat450and Ithasbeenknownformorethan25years,thatdisorderedsolids 850µm,IRAM30mdataat1.2mmwithISOandIRASmea- (glassesand mixedcrystals)have significantlyhighersubmil- C.Menyetal.:Far-infraredtomillimeterastrophysicaldustemission 7 limeterabsorptionthanperfectcrystalsofsimilarchemicalna- range of temperature and revealed a variation of the spectral ture. behavioroftheabsorptioncoefficientwithtemperature. Monetal.(1975)performedfirstabsorptionmeasurements Agladzeetal.(1996)performedabsorptionmeasurements ontypicalinterstellaranaloggrains(crystallineandamorphous on various amorphous dielectric materials in the millimeter silicategrains)atlowtemperature(1.2-30K)inthemillimeter wavelength range (1mm - 5mm) and at low temperature (in the range 0.5K - 10K). A strong temperature-dependenceof range (700 µm- 2.9mm). They found an unusual behavior of the millimeterabsorptionofamorphoussilicates :the absorp- theabsorptionwasobserved,leadingtoanmillimeterabsorp- tionexcessatlowtemperature.Theyalreadyattributedthisef- tioncoefficientdecreaseswithtemperaturedowntoabout20K andthenincreasesagainwithdecreasingtemperature.Theyde- fect to the presence of a distribution of Two-levelSystems in scribedthefrequencydependenceoftheabsorptioncoefficient thestudiedmaterials. using a temperature-dependent spectral index. Depending on Others experimental results on bulk materials at frequen- the samples, the spectral index can decrease from β = 2.6 at ciesω/2πcbetween0.1and150cm 1andT between10Kand − 10K down to β = 1.8 near 30K. They referred to tunneling 300K were discussedby Strom& Taylor(1977). The spectra effectinTwoLevelsSystemstoexplainthisbehavior. follow a generalempiricalrelation α = Kω2 between 15 and Mennella et al. (1998) measured the temperature depen- 150cm 1, where the temperature independentconstant K de- − dence of the absorption coefficients between 295K and 24K pendsonthematerialconsideredanditsinternalstructure.At and for wavelength between 20µm and 2mm on different lower frequenciesω/2π <15cm 1 (λ > 700µm) the slope of − kindofcosmicgrainanalogs(amorphouscarbongrains,amor- thespectraisvariable(βbetween0and3)andtemperaturede- phous and crystalline silicates ). They reported a significant pendentasshowninStrom&Taylor(1977). temperature-dependenceofthespectralindexoftheabsorption Bo¨sch(1978)performedabsorptionmeasurementsfortem- coefficient,particularlystrongfortheiramorphousiron-silicate perature between 300K and 1.6K in the FIR/mm range sample.Theirmeasurementsshoweda systematicdecreaseof (500µm - 10mm) on amorphous silicates mainly composed thespectralindexwithincreasingtemperature. of SiO2. The studied silicate is not a typical grain analog. Boudetetal.(2005)performedmeasurementsondifferent However,measurementsperformedoversuch a wide spectral types of amorphous silicates (typical analog grains and SiO 2 and temperature range are particularly appropriated to study samples) for temperature between 10K and 300K and wave- physicsgoverningabsorptionprocesses.Bo¨schfoundastrong lengthfrom100µmto2mm.Theyfoundastrongtemperature temperatureandfrequencydependencyoftheabsorptioncoef- andfrequencydependencyofthe absorptioncoefficient.They ficient in the millimeter range (λ > 500µm). The absorption definedtwospectralindexdependingonthewavelengthrange coefficientwascharacterizedbyanincreaseofthespectralin- considered. For wavelengths between 500µm and 1mm they dexwith temperaturefromβ = 1.6at300K to β = 3 at10K foundapronounceddecreaseofthespectralindexwithincreas- andbyastrongtemperaturedependence.Todescribethistem- ingtemperaturewhereas,forwavelengthsbetween100µmand peratureandfrequencybehavior,Bo¨schalsoreferredtotheex- 200µm,thespectralindexwasfoundtobeconstantwithtem- istenceofTwoLevelSystemsinthematerial. perature. They put some SiO sample through a strong ther- 2 Therefore,laboratoryspectroscopyshowsevidencesforde- maltreatmenttoremovemostSiOHgroups,andobservedthat viationofabsorptionspectralindexfromthecanonicalβ=2in thetemperature-dependentabsorptiondisappearstotally.They theFIR/mm.Thetemperatureindependentabsorptionprocess thus identified the silanol groups as the defects that, in their whichprovidesβ = 2 inthe spectralregionλ < 700µmdoes silicate sample, are at the origin of the behavior. Considering notseemtodominatetheabsorptionatlongerwavelengths.We that the OH groups can not simply increase the coupling be- will see in Sect. 4 that the model proposedhere includes this tweenthephotonandthebulkphonons,theyassumedreason- phenomenoninanaturalmanner. able that the defects induce closely spaced local energy min- ima, which correspond to the dynamics of a ”particle” in an asymetricdouble-wellpotential. 3.2.3. Spectralvariationsindustanalogues Theselaboratorystudiesprovidestrongindicationsthatthe absorption coefficients of amorphous grain analog materials FIR/mmopticalpropertiesofsolidswithchemicalcomposition varysubstantiallybothwithtemperatureandfrequency. andstructureconsideredasanaloguesofinterstellardustwere investigated in a few laboratory studies (for example Koike et al. 1980, Agladze 1996), Henning and Mutschke 1997, 4. Amodeltoexplaintemperatureandspectral Mennellaetal.1998,Boudetetal.2005).Particularinteresthas variationofdustopticalproperties beengiventolowtemperatureinvestigationsofamorphousor 4.1.Modelingdisorderedstructure otherdisorderedmaterials,whichrevealsystematicdeviations from the phonon theory of crystal solids and was interpreted Two mechanisms have to be considered when dealing with usingtheTLStheory(seeBo¨sch1978,Phillips1987andKu¨hn amorphousmaterials,inordertotakedisorderintoaccount. 2003). First, one should consider the acoustic oscillation excita- A few laboratory measurements have been performed on tionbasedupontheinteractionofsolidswith electromagnetic amorphous solids in the FIR/mm range at low temperature. wavesduetoDisorderedChargeDistribution(SeeSchlo¨mann However, some of these studies were performed over a wide 1964). This effect takes place not only in amorphous media, 8 C.Menyetal.:Far-infraredtomillimeterastrophysicaldustemission but also in disordered crystals like mixed and polycrystals, spondstoEq.(19)withb = 0.Dissipationeffectsariseinthe j andinsomemonocrystalswithinversespinelstructure,forex- phononconceptastheresultofphononinteraction,takinginto ample.Thisabsorptionis temperatureindependent.TheDCD accountanharmonicterms in Eq.(20). Their role was pointed model introduces a correlation length l which quantifies the firstbyDebye(1914). c scale over which the atomic structure of the material realizes For harmonic oscillations u = uˆe iωt with electrical field − chargeneutrality.Theabsorptionspectrumofsuchastructure E(t)= Eˆe iωt Eq.(19)takestheform − presentstwoasymptoticbehaviors.Towardsshortwavelengths, q theabsorptionischaracterizedbyaspectralindexβ=2andin ω2uˆξ+ Dξξ′ uˆξ′ = j Eˆξ, (34) thelongestwavelengthrange,thespectralindextendstowards − j jξ jj′ j′ mj X′ ′ β=4.Thelocationofthespectralrangeinwhichthetransition wherethecoefficientsofthedynamicsmatrixare between the two regimes is directly related to the correlation Dξξ′ = Kξξ′/m . length.TheDCDmodelisdescribedinSect.4.2. jj jj j ′ ′ The second mechanism describes the disorder at atomic Thesolutionofthedispersionequation scale, as a distribution of tunneling states, which leads to a temperature-dependentoptical absorption, and enables to ex- ω2eξ+Dξξ′ eξ′ =0 (35) plain the temperature dependence of the spectral index ob- − j jj′ j′ served in laboratory experiments. This model was originally leadsto resonantfrequenciesωκ andcorrespondingeigenvec- elaborated to explain the unusual thermal and optical proper- tors eκ = (···eκξj···). In an orthonormal basis of vectors eκ, ties of amorphousmaterial at low temperatures and has been when dVeasrcmriabe(1d9i7n2d)e(tsaeielsablsyoPPhhilillilpipss(11997827)f,oArnadreervsoienw,)H.aInlpeprairnti&c- eξκje∗κ′ξj =δκκ′, (36) ξ j ular, the TLS model was developed to explain the fact that, X atlowtemperatures,thespecificheatofamorphoussolidsex- theequation(34)hasasimpleform ceedswhatisexpectedfromtheDebyetheoryforsolids.This (ω2 ω2)uˆ = g Eˆ, (37) anomalousbehavioriscommontoallamorphousmaterialsand κ − κ κ· thereforeappearsindependentoftheirdetailedchemicalcom- whereuˆ areamplitudesofnormaloscillations, κ positionandstructure.Theexistenceofsuchtwolevelssystems hasbeenpointedoutbymeansofmicrowaveandsubmillime- gξκ = qjm−j1e∗κξj, terspectroscopyexperiments(e.g.Agladzeetal.1996,Bo¨sch Xj 1978 and reference therein). The TLS model is described in and denotescomplexconjugates. ∗ Sect.4.3. ThesusceptibilitycorrespondingtoEq.(37)isgivenbythe Thetwomechanismsconsideredherefortheabsorptionby tensor interstellardustprobablydominateinthe FIR/mmand longer wavelengthsdomain.Both havea largedegreeof universality χξξ′ = qj′qjm−j1e∗κξjeξκ′j′ , (38) withoutspecific signaturescharacterizingthe chemicalnature 0 ω2 ω2 iωγ of the absorbing substance. On the other hand, they are sen- Xκj′j κ − − κ sitive to the internal structure of the solids, in particular their orinthemacroscopicallyisotropiccasebythescalar degreeofordering,andtomechanicalpropertiessuchasden- sityandelasticity. χ0 =(χ0xx+χy0y+χz0z)/3 andtherefore, 4.2.DCDabsorption 4.2.1. DCDTheory χ′0′ =Imχ0 = 31 (ωωγ2κqjω′q2j)m2−+j1e(ω∗κξjγeξκ)j′2. (39) κXj′jξ κ − κ In amorphousmaterials, the lack of long-range order permits singlephonon/photoninteractionswithexcitationofanymodes Dampingfactorsγκ were introducedhere to get a station- arysolution.γ valuesdependsonphononinteractions,asdis- of mechanical vibrations. Low frequency vibrations are not κ cussedabove.IntheFIR/mmregion,overlappingofresonance linked to molecular vibrational bands like is the case for ice curvesproducesa quasi continuousabsorptionspectrum.The or silicate bands. In infinite media they correspond to travel- integratedspectruminEq.(39)canbesimplifiedreplacingthe ingacousticwaves.Infinitebodieslikeinterstellardustgrains, integral of the sum of weak individualprofiles by the sum of thesemodescanbedescribedasstandingwaves.Soweusethe theirintegratedvalues. term”phonon”hereforquantumofvibrationalmotionnotre- strictingit(ifnotstatedotherwise)toperiodiclatticeorinfinite + dω π/2 media. ∞Im = . (40) Theconceptofphononquasiparticles(Tamm,1930)arises Z−∞ ω2κ −ω2−iωγκ ω2κ −γκ2 amsotnhiecraepspurlotxoifmqautiaonnt,izwahtiiocnhotafkveisbirnattoioancaclomunottioonnlyinquthaedrhaatirc- χ (ω) = π qpj′qjm−j1e∗κξjeξκj′, (41) terms(onatom displacements)ofenergyin Eq.(20). Itcorre- ′0′ 6ω ∆ω D E |ω−ωXκ|<∆ω/2 C.Menyetal.:Far-infraredtomillimeterastrophysicaldustemission 9 where∆ωisanaveragingintervalsatifying Here designate an ensemble average, ∆r= r r . j j h i − ′ Parametersq2, q2 are describedbelow anddo notdependon ω ∆ω γ . (42) 1 m ≫ ≫ κ ∆r. Thecorrelationfunctioncanbedeterminedfromaphysical Anumberofstatesisproportionalto∆ω,thereforethere- modelofconsideredmaterial.Thefirst,simplestmodelhasan sultdoesnotdependon∆ωandγ whenconditioninEq.(42) κ uncorrelatedchargedistributionandthereforeadelta-function issatisfied, whichthereforealso definesthe validityregionof correlation theresultsofVinogradov(1960)andSchlo¨mann(1964). In macroscopicallyuniformandisotropiccases the eigen- φ(∆r)=δ(∆r)=δ(∆x)δ(∆y)δ(∆z). (49) vectorsofEq.(35)intheformofplanewavesare Ingeneralcaseacross-correlationfunction,Eq.(49)gives eξκj =e˜kξηexp(ik·rj). (43) aflatspatialspectrumwithintensitynotdependingonk: Themanyfoldofsolutionsofthedispersionequationisor- q2 =q2, (50) dered here in accordance with vector |k| and splits into sev- m k m eralbrancheslabeledherebyindexη.Eachbranchhasadiffer- (cid:28) (cid:29) andtherefore entdispersioncurveω = ω (k).Mostbranchesarerestricted η | | ω to high frequencies(infrared)and only three branches extend χ (ω)= q2 (51) down to the FIR/mm region. They are so called ”acoustical” ′0′ 12πυ3 m t modes. For such low frequencies, these have a linear disper- Here,weomittedthesecondterminEq.(46)sinceυ 3 2υ 3. siondependance −l ≪ −t Anautocorrelationfunctionshouldbeusedform=const ωη =υηk, (44) φ (∆r)= q(r )q(r) (q2) 1, (52) a h j i i 1 − where k = k, and υ is speed of sound. One branch corre- sponds to lo|ng|itudinalηpropagation (η = l), the two others to withaflatspatialspectrumhq2ik =q21forδcorrelation(Eq.49) leadingtoEq.(51)withaconstantq2 =q2/m. 2 polarizationsof transverse propagation(η = t). Numericaly, m 1 Inperfectcrystalsthechargedistributionisentirelycorre- υ < υ. Displacementsofneighborionsin soundoscillations t l are synchronous and e˜ξ does not depend on j. The vectors lated forlong distances(long rangeorder)and the absorption kη mechanism described by Eq.(46) and Eq.(51) does not take of displacements e = [e˜ x,e˜y,e˜z] are oriented such that kη kη kη kη place. Nevertheless even for crystals with a perfect lattice, a e k, e k.Theirabsolutevaluesaredefinedbythenor- kl k kt ⊥ disorderedchargedistributionispossibleif thelattice permits malizationequationEq.(36).Thenumberofnormaloscillation anonuniqueconfigurationofthechargesinanelementarycell, perunitvolumeinthefrequencyinterval∆ωisN ∆ω,where ω as is the case, for example of the cubic lattice of salt (NaCl). ω2 Insuchcases,onlystochasticallydistributedchargesshouldbe Nω = 4π2υ3η (45) includedinthecalculationofq21,whichcanthenbedefinedas andtherefore 1 N1 1 N1 q2 = (∆q )2 < q2, (53) 1 N j N j ωN 2 q2 1 q2 1 j=1 1 j=1 χ (ω)= + , (46) X X ′0′ 24πυ3t *m+ω/υt υ3l *m+ω/υl wheresummingistobedoneonlyforionsinvolvedinthedis- whereN isnumberofionsperunitvolumeand ordereddistributionand∆q denotesdeviationsfromthemean chargevalue,whichisdifferentfordifferentnodesofthecrystal lattice.Theorderedpartofthechargedistributionislinkedonly q2 1 N q q m = N2 mj j′ exp(ik·(rj−rj′)). (47) to the spectralcomponentswith ω>υη/d, where d is the lat- * +k j,j=1 j tice period.This frequencyrangecorrespondsto mid infrared X′ absorptionbandsandarenotconsideeredhere. The equation derived here is a generalization of the In amorphous media the corresponding coefficient q2 Schlo¨mann’s(1964)expressionforonetypeofdisorderedions m shouldalso excludethe regularpartof the chargedistribution in a perfect crystal q2 m 1, which was defined by a spatial h ik − producedbytheshortrangeorderinthemedium.Anequation powerspectrumofchargedistribution q2 only. h ik similar to Eq.(53) cannot be written in the general case. The effectofthisshortrangescreeningcanbeexpressedbythein- 4.2.2. SpectrumofDCDabsorption equality TheabsorptionspectrumcorrespondingtoEq.(47)canbecal- 1 N q2 culated using correlation functions. It is a cross-correlation q2m < N mj, functionforgeneralcase j=1 j X φ (∆r)= qjqj′ q2 −1 (48) ThesecondmodelofSchlo¨mann(1964)canbeinterpreted c m m asscreeningoverlargescales.Large-scaleelectricalneutrality j (cid:28) (cid:29)(cid:16) (cid:17) 10 C.Menyetal.:Far-infraredtomillimeterastrophysicaldustemission ofcrystalsandglassescouldbearesultofhighchargemobility in solutions or melts from which the correspondingmaterials weremanufactured. The corresponding correlation function should be written ingeneralizedcaseas 1 φ(∆r)=δ(∆r) exp(∆r/l ), (54) − 8πl3 | | c c where l defines the correlation length. The corresponding c spectraaregivenby lc=0.1nm 0.3 1 3 10 q2 =q2g(kl ), (55) h ik 1 c where g(x)=1 (1+x2) 2 (56) − − Fig.1. Absorption spectrum due to a Disordered Charge Distribution.Theabsorptioncoefficientα is giveninarbi- and DCD trary units, normalized at λ = 100µm and l = 10nm. The c ω χ (ω)= q2 g(ω/ω ), (57) solid,dot,dash,dash-dotanddash-dot-dotlinescorrespondto ′0′ 12πυ3t m c lc =0.1,0.3,1,3and10nmrespectively,assumingatransverse soundvelocityυ =3 105cm/s. where t · ω =υ/l . c t c of solids linked to disordering. Vacancies unavoidable in dis- orderedlatticesproduceinfirstapproximationapossibilityfor ThespectraldependenceofEq.(56)is chaoticdistributionofsomecharges,whichwasconsideredin ω ω2/ω2 forω ω the previoussection. This distribution is consideredas frozen g ∼ c ≪ c (58) (cid:18)ωc(cid:19)(≈1 forω≫ωc icnietshienlcaottmicpeadruiseontowthitehltahregeavhaeiliagbhlteotfhebramrraielrendeivrgidyi.nTghveaTcaLnS- This is also true of other often used correlation function theorytakesintoaccounttransitionsofchargesduetoquantum shapes,suchasstepcorrelationfunctions: tunnelingpossibleatanytemperature. The TLS theoryis the result of a macroscopicanalysis of δ(r) 3/(4πl3) for r <l , φ(r)= − c | | c (59) phenomenaasopposedtoanexactmicroscopicdescription.It 0 for r l . ( | |≥ c is based on the hypothesis of a flat distribution of tunneling stateswithenergyleveldifferencessufficientlylowwithrespect ThespectraldependenceinEq.(58)iscommonforcharge totheusualvibrationalenergy.Thetemperaturedependanceof distributions, which are uncorrelatedover short distances and two-level system properties results from deviations from the respectneutralityoverlargerscales. model of harmonic oscillator, which is a good approximation The DCD absorption is temperature independent. The for the description of crystal lattice vibrations. The origin of corresponding absorption coefficient α(ω) ωχ (Eq.15) ∼ ′o′ TLSisvacanciesin the lattice whichgivesthe possibility,for presentstwoasymptoticsbehaviorsonbothsidesofω which c atomsorgroupsofatoms,tohavedifferentequilibriumspatial dependsonthecorrelationlength.Inthehighfrequencyrange, configurations. As a result, the potential curve has at least a thespectralindextakesthevalueβ=2,andforthelowerfre- double-wellform(DWP, see Fig. 2) in contrastto single-well quency range, the spectral index is equal to β=4. This fre- potential(SWP)ofharmonicoscillatorsincrystalwithoutva- quencydependenceabsorptionis shownon Fig. 1 forvarious cancies. valuesofl . c IntheTLSmodeldescribede.g.by(Phillips1987),theen- ergydistributionofstatesisdefinedundertheassumptionthat 4.3.TLSAbsorption theasymmetry∆ofDWPandtheheightV oftheDWPpoten- tialbarrierarestochasticvaluesandtheirprobabilitydistribu- 4.3.1. PhenomenologicalTLSTheory tioncan beassumedconstantovera certainrangeofV and∆ At low temperatures, the thermal and dielectric properties of values. Like forthe well knowntunnelingprobability,the en- disordered solids (e.g. glasses and mixed crystals) show defi- ergy splitting ∆ has an exponential dependence with barrier 0 nitedeviationsfromthepredictionsofthephonontheorydevel- widthd: opedforperfectlyorderedcrystals. Mostof these phenomena can be describedin the formalismof the so called Two Level ∆ =~Ωexp[ d(2mV)1/2/~], (60) 0 − Systems(TLS),whichisthesimplestmodeloftunnelingstates. IncomparisontoDCD itcouldbeconsideredasasecondap- where ~Ω = (E + E )/2 is the average energy of levels and 1 2 proximation for the description of electromagnetic properties m is the effective mass. This exponential dependence along

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.