ebook img

F. R. Adler and J. M. C. Pearce-Duvet and M. D. Dearing. PDF

17 Pages·2008·0.45 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview F. R. Adler and J. M. C. Pearce-Duvet and M. D. Dearing.

BulletinofMathematicalBiology(2008)70:236–252 DOI10.1007/s11538-007-9251-8 ORIGINAL ARTICLE How Host Population Dynamics Translate into Time-Lagged Prevalence: An Investigation of Sin Nombre Virus in Deer Mice FrederickR.Adlera,∗,JessicaM.C.Pearce-Duvetb,M.DeniseDearingb a DepartmentofMathematicsandDepartmentofBiology,155South1400East, UniversityofUtah,SaltLakeCity,UT84112,USA b DepartmentofBiology,257South1400East,UniversityofUtah,SaltLakeCity, UT84112,USA Received:5January2007/Accepted:22June2007/Publishedonline:16August2007 ©SocietyforMathematicalBiology2007 Abstract HumancasesofhantaviruspulmonarysyndromecausedbySinNombrevirus aretheendpointofcomplexecologicalcascadefromweatherconditions,populationdy- namics of deer mice, to prevalence of SNV in deer mice. Using population trajectories from the literature and mathematical modeling, we analyze the time lag between deer mousepopulationpeaksandpeaksinSNVantibodyprevalenceindeermice.Becausethe virus is not transmitted vertically, rapid population growth can lead initially to reduced prevalence,buttheresultinghigherpopulationsizemaylaterincreasecontactratesand generateincreasedprevalence.Incorporatingthesefactors,thepredictedtimelagranges from0to18months,andtakesonlargervalueswhenhostpopulationsizevarieswitha longerperiodorhigheramplitude,whenmeanprevalenceislowandwhentransmission is frequency-dependent. Population size variation due to variation in birth rates rather thandeathratesalsoincreasesthelag.Predictingfuturehumanoutbreaksofhantavirus pulmonarysyndromemayrequiretakingtheseeffectsintoaccount. Keywords Hantavirus·SinNombrevirus·Timelags 1. Introduction The 1993–1994 outbreak of hantavirus pulmonary syndrome (HPS) in humans in the American southwest was caused by Sin Nombre virus (SNV), and was quickly cor- related with the high rainfall associated with the large El Nino (ENSO) event of the previous year that led to the increased populations of deer mice (Peromyscus manic- ulatus), the primary host of the virus (Schmaljohn and Hjelle, 1997; Engelthaler et al., 1999). However, further study has shown that the link between weather and HPS ∗ Correspondingauthor. E-mailaddress:[email protected](FrederickR.Adler). TimeLagsbetweenHostPopulationDynamicsandDisease 237 cases is quite complex (Glass et al., 2000), involving at best a noisy trophic cascade from weather, plants, deer mouse population size, and deer mouse infection preva- lence before humans are finally affected (Engelthaler et al., 1999; Mills et al., 1999; Yates et al., 2002; Kolivras and Comrie, 2004). The magnitude and timing of the re- sponse at each step depends on the detailed behavior of individual species: the many species of plants, the feeding and reproduction of deer mice, the transmission dy- namics of the virus between deer mice, and the transmission to humans. The ecolog- ical steps, from rain to rodents, have proven to be quite unpredictable (Brown and Ernest, 2002). Indeed, there is debate about whether the 1997 ENSO event led to an increase in HPS cases beginning in the spring of 1998 (Hjelle and Glass, 2000; KolivrasandComrie,2004). Although frequently fatal to humans, the effects of SNV on deer mice are nonexis- tent or weak (Helle and Yates, 2001), although there is evidence of higher mortality in subadults(Douglassetal.,2001).Deer miceapparently remain seropositivethroughout life,andtheinfectioncanbemodeledasifthereisnorecovery(Millsetal.,1999;Kuenzi etal.,2005),althoughantibodylossmaybepossible(Booneetal.,1998).Transmission isprimarilythroughbiting(Bottenetal.,2002),althoughthereisevidenceoforal/fecal transmission in burrows (Mills et al., 1999), with no vertical transmission from parents tooffspring.Prevalenceofinfectionisgenerallyhigherinmalesandinolderindividuals, and large older males are particularly likely to carry the infection (Boone et al., 1998; Abbottetal.,1999). Indiseaseswithoutverticaltransmission,populationdynamicscanhavetwoconflict- ingeffectsonprevalence(Millsetal.,1999).Duringperiodsofrapidpopulationgrowth, the lack of vertical transmission leads to dilution and potentially reduced prevalence. However,theresultinghigherpopulationsizeislikelytoincreasecontactratesbetween deermicethatcouldeventuallyleadtoanincreaseinprevalence. Theseconflictingeffectshaveappearedintheliteratureasinconsistentresultsregard- ingthelinkbetweenpopulationsizeandSNVseroprevalence(Table1).Onlyafewstud- ieshavefoundapositiverelationshipbetweencurrentpopulationsizeandseroprevalence, andothershavefoundapositiverelationshiponlyinthepresenceofalag(Davisetal., 2005).Inthesystemunderconsiderationinthispaper,severalstudieshavefoundnolinear relationshipbetweencurrentpopulationsizeandprevalence(GrahamandChomel,1997; Millsetal.,1997;Booneetal.,1998),andourreanalysisofdatapresentedintwootherpa- persshowsthesameresult(Calisheretal.,1999;Rootetal.,1999).Thereisevidencefora thresholdeffectinthatsufficientlysmallpopulationsshowedaprevalenceofzero(Boone etal.,1998).NegativecorrelationswerefoundintwooutoftentimeseriesofSNVsero- prevalenceversuspopulationsizeinMontana(Douglassetal.,2001).Usingmultivariate analysis,onestudyfoundapositiveeffectofdeermousedensityonprevalence(Biggset al.,2000). Studiesofotherhantaviruseshavefoundsimilarlyinconsistentresults.Intheclosely relatedLimestoneCanyonvirus(Sanchezetal.,2001),higherprevalencewasobserved during periods of low population density (Abbott et al., 1999), consistent with a nega- tivecorrelation.Arecentstudyfoundanegativecorrelationbetweendensityandpreva- lence in El Moro Canyon virus in western harvest mice (Calisher et al., 2005). In bank voles,Puumalavirusseroprevalencewaswellpredicted inpartbythephaseofpopula- tion,beinghighestafterthepeak,implyingbothdensity-dependenceanddelayeddensity- dependence(Olssonetal.,2002,2003). 238 Adleretal. Table1 Correlationbetweencurrentdensityandprevalence Meanprevalence(%) Relationshipa Reference 9.5 0 (Calisheretal.,1999) 11.0 0 (Millsetal.,1997) 11.9 − (Calisheretal.,2005) 14.3 0 (Rootetal.,1999) 15.8 − (Douglassetal.,2001) 16.5 + (Biggsetal.,2000) 17.0 0 (GrahamandChomel,1997) 17.8 − (Abbottetal.,1999) 18.5 0 (Booneetal.,1998) a+ indicates a significant positive relationship, − a significant negative relationship,and0thelackofasignificantrelationship In plague, another disease of rodents, one study found that a model with a two year delay performed well in predicting presence or absence of disease as a function of the proportionofburrowsoccupiedbygreatgerbils(Davisetal.,2004).Frequencyofhuman plague cases increased with a one or two year lag as a function of winter or summer precipitation(Enscoreetal.,2002),althoughthiscouldbeduetoadirectnumberseffect ratherthanincreasesinseroprevalence. The interplay between dilution due to births and increased prevalence due to higher contact rates depends sensitively on how contact rates vary with host density. Models range from a constant contact or frequency-dependent model, where the contact rate is independentofpopulationsizeandtheforceofinfectionisproportionaltothefrequency ofinfectedhosts,toamassactionordensity-dependentmodel,wherethecontactrateis proportional to population size and the force of infection is proportional to the number of infected hosts (McCallum et al., 2001). Intermediate models, where the contact rate saturatesashostdensitybecomeslarge,canresultfrombehavioralchangesatlowden- sity (Ramsey et al., 2002) or from host heterogeneity (Barlow, 2000). Such models can produce substantially different predictions about disease dynamics and persistence, and may be distinguishable with field data (Caley and Ramsey, 2001). The contact rate de- pends on the territorial behavior of hosts (Wolff, 1985). As density increases from low levels, deer mice decrease home range size, thus potentially leaving contact rates un- changed.Asdensityincreasesfurther,deermiceincreaseaggressionandperhapseffective contactrateswithoutfurtherdecreaseinhomerangesize. Mathematical models of the temporal dynamics of hantaviruses have yet to explic- itly consider lags. The models have focused instead on spatial spread and the role of refugia for the virus when population sizes are small (Abramson and Kenkre, 2002). Furtheranalysisshowedthatseasonalitycanpromotediseasepersistenceandcauseout- breaks(Bucetaetal.,2004).Inparticular,themaximuminfectedpopulationoccursnear theendoftheharshseason,andthussubstantiallydelayedfromtheperiodofoptimalre- production.Arecentpapershowsthathumanoutbreakscanbeinducedbypopulationsize increasesinrodentsthatquicklygeneratemanyhighlyinfectiousnewinfections(Sauvage etal.,2007). Thispaperidentifiesasimpleepidemiologicalmodelthatcancapturethemajortrends inprevalence,andusesthatmodeltostudytherelationshipbetweenpopulationsizeand TimeLagsbetweenHostPopulationDynamicsandDisease 239 prevalence.Thekeyparametersarebirth,death,andtransmissionrates,whichwehypoth- esizecreatecharacteristictimelagsbetweenpopulationsizeandprevalence.Webeginby fittingpublisheddata(Yatesetal.,2002)withasimplemodel,andillustratethesensitiv- ityoftheresultstothemodelparameters,particularlythosedescribingtransmission.We thenusethissimplemodeltoshowthatthelaghasacomplexrelationshipwithpopula- tiondynamicswhichdependsonthedetailsofthetransmissionprocessinadditiontohost demographicparameters. 2. Modelandparameterestimates Our model is an SI model of susceptible and infected individuals (Anderson and May, 1992) dS =−cg(N)pS+bN−δS, dt dI =cg(N)pS−δI, dt whereS,I andN representthedensityofsusceptible,infected,andtotalhosts,respec- tively,andp= I istheprevalence.Theparameterc describestheeffectivecontactrate N per day, and b and δ give the birth and death rates, respectively, and can be functions of time. Table 2 gives a complete description of the parameters in the model and their baselinevalues. The function g(N) describes the dependence of contact rate on density. We chose a variantofasymptotictransmission(McCallumetal.,2001)withtheform (cid:2) (cid:3)(cid:2) (cid:3) N +K N g(N)= d . (1) N N+K d HereK givesthedensitywherecontactis50%ofmaximum,andN isascalingfactor d equal to the density where g(N)=1. If K =0, g(N)=1 for all N, corresponding to amodelwithconstantcontactratesandfrequency-dependenttransmission.AsK→∞, Table2 Variablesandparametersinthemodel Symbol Description Baselinevalue N Densityofdeermice I Densityofinfecteddeermice S Densityofsusceptibledeermice p Prevalenceofinfection δ Mortalityrateperday 0.01 b Birthrateperday(afternatalmortality) 0.02 c Effectivecontactrateperday 0.0105withvariationinbirths 0.022withvariationindeaths (cid:4) (cid:5)(cid:4) (cid:5) g(N) Dependenceofcontactrateondensity g(N)= NdN+dK NN+K K Densitywherecontactis50%ofmaximum 50mice/ha Nd Densitywhereg(N)=1 7mice/ha 240 Adleretal. g(N)→N/N ,correspondingtoamassactionmodelanddensity-dependenttransmis- d sion. TheequationscanberewrittenintermsoftheprevalencepandtotaldensityN as dp =cg(N)p(1−p)−bp, (2) dt dN =bN−δN. (3) dt Mortality does not differ between susceptible and infected deer mice and thus plays no directroleintheequationforprevalence.Ahigherbirthratebreducesprevalencebecause thereisnoverticaltransmission.Ifcontactratesincreasewithincreasingpopulationsize, ahigherbirthratewillleadtoincreasedpopulationsizeandadelayedincreaseinpreva- lence.Thediseasewillpersistinanisolatedpopulationwithconstantcoefficientsifthe averageeffectivecontactratecg(N)exceedstheaverageofthebirthrateb. Ourparameterestimatesforthebaselinebirthanddeathratescomefromstudiesthat deducedeathratesfrompopulationchangeduringthenonbreedingwinterseason(roughly δ ≈0.008) and birth rates from the growth during the breeding season (r =b−δ ≈ 0.007)(PetticrewandSadleir,1974;Fairbairn,1977).ThebaselinevalueofKwaschosen basedontheassumptionthatmousebehaviorchangesatdensitiesofover30deermice perhectare(Wolff,1985).ThescalingfactorN isthemeandensityfoundinYatesetal. d (2002).Thetransmissionratescwerefoundbymatchingtheobservedmeanprevalence in Yates et al. (2002). With a large value of K, our model approximates “pseudo mass actionmodel”inastudyofcowpoxinbankvoles(Begonetal.,1998),whichfound,in theunitsofthecurrentwork,cintherangefrom0.006to0.008,slightlylowerthanour estimates. 3. Comparingthemodelwithdata WeextracteddataonthedensityofdeermiceandofseropositivedeermicefromYates etal.(2002),andshowtherawdataandsmootheddataoveran87monthperiod(created with the supsmu function in R (R Development Core Team, 2005)) in Fig. 1a. We use smoothed data in the following analyses to average over factors creating noise in the originaldataandtointerpolatevaluesformissingdatapoints. We examined the correlations between prevalence and lagged population size. We found the strongest correlation with population size 15 months earlier, although there wassignificantcorrelationwithalagof12monthsasfoundbyYatesandothers(Fig.1b). Usingthetimeseriesforthedensityofallmice,wecomputedthegrowthrater=b−δ asafunctionoftimethatexactlymatchesthesmootheddensitytrajectory.Wecreatedtwo versionsofourmodel: • Variablebirthrates:Setthedeathrateδ(t)tobeconstantandsolveforthebirthrate b(t)asafunctionoftime. • Variabledeathrates:Setthebirthrateb(t)tobeconstantandsolveforthedeathrate δ(t)asafunctionoftime. TimeLagsbetweenHostPopulationDynamicsandDisease 241 Fig.1 (a)ComparisonofrawdataandsmootheddatafromYatesetal.(2002)showingthedensityof deermiceandofseropositivedeermiceoveran87monthperiod.(b)Plotofprevalenceagainstdensity withtheoptimallagof15months,chosenasthelagthatmaximizesr2. Thisfitdoesnotuseanyinformationaboutseroprevalence.Withourbaselineparameter values, the model predicts the dynamics of the infection reasonably well (Fig. 2). The modelwithvaryingdeathratesrequiresalargervalueofthecontactrate c becauseour baselinebirthrateishigherthanthebaselinedeathrate(Fig.2b). 242 Adleretal. Fig.2 Modeleddensityofseropositivemicewith(a)variablebirthrates,and(b)variabledeathrates.The modeleddensityofallmiceissettoexactlymatchthesmootheddata.ParametervaluesasinTable2. The two cases make slightly different predictions about the correlations with lagged populationsizeandgrowthrate.Themodelwithvariablebirthratesmatchestheobserved lag somewhat better (Fig. 3) but has lower r2 values. It generates a significant positive correlationwhenthelagisatleast6months,andasignificantnegativecorrelationwhen TimeLagsbetweenHostPopulationDynamicsandDisease 243 Fig.3 Thecoefficientofdeterminationr2ofprevalenceasafunctionoflaggeddensityforarangeoflags fortheactualdata(opencircles),andthetwosimulationsshowninFig.2(b’swithvariablebirthrates,d’s withvariabledeathrates). thelagis0or1month.Themodelwithvariabledeathratesgeneratesasignificantpositive correlationwhenthelagisatleast2months. The model results are extremely sensitive to the choice of the contact rate c. Small increasesordecreasesleadnotonlytolargechangesinthenumberofinfectedindividuals, butalsotochangesinthelagbetweenpeaksofpopulationdensityandofseropositivity, withhighercontactratesgeneratingasubstantiallyshorterlag(Fig.4). 4. Theory:lagsinducedbyoscillatingpopulationsize What aspects of the data produce the observed lags? In this section, we use linear per- turbationtheorytocalculatethelagsinducedbysinusoidalpopulationoscillationswith different periods, and then use Fourier analysis to decompose the observed population sizedataintoasumofsinusoidaloscillationstoidentifykeyaspectsofthedata. 4.1. Linearperturbationtheory AsdescribedindetailintheAppendix,weassumethatthepopulationsizeN(t)variesin asmallamplitudesinusoidaloscillationaroundameanvalueofN ,or 0 N(t)=N +(cid:3)αcos(2πωt). 0 Here,(cid:3) isasmallparameter,α scalesthemagnitudeoftheoscillation,andω isthefre- quencyoftheoscillation.Usingtheequationforpopulationsize(Eq.(3)),wecancompute thesmallamplitudesinusoidaloscillationdescribingthebirthordeathrate,dependingon thecaseunderconsideration. 244 Adleretal. Fig.4 Effectsofchangingthecontactrateconthedynamicsofseroprevalencewith(a)variablebirth rates,and(b)variabledeathrates.ParametervaluesasinTable2. Substitutingtheseoscillationsintothebasicequationforprevalence(Eq.(2)),wecan write (cid:4) (cid:5) p(t)=p∗+(cid:3)Zcos 2πω(t−φ) , TimeLagsbetweenHostPopulationDynamicsandDisease 245 Fig.5 (a)Comparisonofcomputedlagsfromthelineartheorywiththestatisticallyestimatedlagsfrom simulations.Solidsquaresshowsimulationswithα=1,alowamplitudeoscillation,andopensquares simulationswithα=4,anamplitudecomparabletothatintherealdata.Thestatisticallyestimatedlags arethosegivingthehighest r2 value.Parameterswerevariedseparatelyaroundthebaselinevaluesin Table2,withcrunningfrom0.01to0.03inthecasewithvariablebirthratesandfrom0.02to0.06in thecasewithvariablebirthratesand K runningfrom0to1024.Theunderlyingperiodis87months throughout.Allsimulationswererunfor240months.(b)Theeffectofmeanprevalenceontheobserved lag,usingtheparametervaluesinTable2withα=4andanunderlyingperiodof87monthsthroughout. Opencirclesshowthecasewithvariablebirthrates,andsolidcirclesshowthecasewithvariabledeath rates.(c)Theeffectofperiodontheobservedlag,usingperiodsinmultiplesof12monthsfrom12to 84.OtherparametersasinTable2.(d)TheeffectofK onlagsusingtheparametervaluesinTable2 andanunderlyingoscillationwithamplitude4andperiod87months,butadjustingctomatchthemean prevalenceobservedinthedata. wherep∗isthemeanprevalence,Zisthescaledamplitude,andφisthephaseshiftorlag inducedbythedynamics.Wecanusemethodsfromperturbationtheorytosolveexplicitly forZandφintermsoftheparametervalues. Figure5ashowsthattheexactlagfromthelineartheorycompareswellwiththestatis- ticalfitstothesimulation,andthathigheramplitudeoscillations(ofasimilarmagnitude to those observed) produce longer lags than small amplitude oscillations. Much of the variationinlagsforafixedperiodofthepopulationsizeoscillationisgeneratedbytwo factors(Fig.5b).Highermeanprevalenceproducessubstantiallyshorterlagsasdoesat- tributingthevariationinpopulationsizetovariationinthedeathrate.Theobservedlag does not vary linearly with the period of the population size oscillation, but eventually saturatestoafixedvaluethatdependsontheotherparameters(Fig.5c).Ifwecontrolfor themeanprevalencebyadjustingc,largervaluesofK leadtoshorterlagswithsubstan-

Description:
Aug 16, 2007 Prevalence: An Investigation of Sin Nombre Virus ing the link between population size and SNV seroprevalence (Table 1). can lead to desynchronized dynamics over small spatial scales, and movement can lead to.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.