ebook img

Extinction curves expected in young galaxies PDF

0.54 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Extinction curves expected in young galaxies

Mon.Not.R.Astron.Soc.000,1(2005) Printed2February2008 (MNLATEXstylefilev2.2) Extinction curves expected in young galaxies Hiroyuki Hirashita1,2⋆†, Takaya Nozawa3, Takashi Kozasa3, 4 5 Takako T. Ishii †, and Tsutomu T. Takeuchi ‡ 5 1GraduateSchoolofScience,NagoyaUniversity,Nagoya464-8602,Japan 0 2SISSA/InternationalSchoolforAdvancedStudies,ViaBeirut4,34014Trieste,Italy 0 3DivisionofEarthandPlanetarySciences,GraduateSchoolofScience,HokkaidoUniversity,Sapporo060-0810,Japan 2 4KwasanObservatory,KyotoUniversity,Yamashina-ku,Kyoto607-8471,Japan n 5Laboratoired’AstrophysiquedeMarseille,TraverseduSiphonBP8,13376MarseilleCedex12,France a J 0 Accepted2004December10;Submitted2004September8 1 1 ABSTRACT v We investigatethe extinctioncurvesof younggalaxiesin which dustis suppliedfromType 8 II supernovae(SNe II) and/or pair instability supernovae(PISNe). We adopt Nozawa et al. 5 (2003)forcompositionsandsizedistributionofgrainsformedinSNeIIandPISNe.Wefind 1 1 thattheextinctioncurveisquitesensitivetointernalmetalmixinginsupernovae(SNe).The 0 extinctioncurvespredictedfromthemixedSNearedominatedbySiO2 andischaracterised 5 bysteeprisefrominfraredtoultraviolet(UV).ThedustfromunmixedSNeshowsshallower 0 extinctioncurve,becauseofthecontributionfromlarge-sized(∼0.1µm)Sigrains.However, / the progenitormass is importantin unmixed SNe II: If the progenitormass is smaller than h ∼ 20M ,theextinctioncurveisflatinUV;otherwise,theextinctioncurverisestowardthe p ⊙ - shortwavelength.Theextinctioncurveobservedinahigh-redshiftquasar(z = 6.2)favours o thedustproductionbyunmixedSNeII.Wealsoprovidesomeusefulobservationalquantities, r sothatourmodelmightbecomparedwithfuturehigh-zextinctioncurves. t s a Key words: dust, extinction — galaxies: evolution — galaxies: high-redshift— galaxies: : v ISM—supernovae:general—quasars:individual:SDSSJ104845.05+463718.3 i X r a 1 INTRODUCTION IIorPISNemaytriggertheformationoflow-massstars(Schneider etal.2003). Dust grains play a crucial role in the formation and evolution Sincedustisimportantevenintheearlystageofgalaxyevolu- of galaxies. Dust grains absorb stellar light and reemit it in far tion,itiscrucialtoknowhowmuchdustandwhatspeciesofdust infrared (FIR), controlling the energy balance in the interstellar form. Todini &Ferrara(2001), following the method by Kozasa, medium (ISM) and protostellar gas clouds. Also, the surface of Hasegawa,&Nomoto(1989,1991),showthatdustmassproduced dustgrainsisasiteforanefficientformationofH molecules(e.g. 2 Cazaux&Tielens2002,2004),whichactasaneffectivecoolantin by a SN II is roughly 0.1–0.4 M⊙. They also find that SNe II formamorphouscarbonwithsizearound300A˚ andsilicategrains metal-poorISM.Thoseeffectsofdustturnoneveninaverymetal- around10–20A˚.Schneider,Ferrara,&Salvaterra(2004)extendthe poorenvironment(∼1%ofthesolarmetallicity;Hirashita&Fer- rara2002;Morgan&Edmunds2003),anditisarguedthatthestar progenitormassrangetotheregimeofPISNe(140–260M⊙)and formationrateisenhancedbecauseofthefirstdustenrichmentin findthat30–60M⊙ofdustformsperPISN.Thegrainradiiaredis- tributedfrom0.001to0.3µm,dependingonthespecies.Themoti- thehistoryofgalaxyevolution.Thefirstsourceofdustintheuni- vationforconsideringPISNecomesfromsomeevidenceindicating verseisTypeIIsupernovae(SNeII)orpairinstabilitysupernovae (PISNe),sincethelifetimeoftheirprogenitorsisshort(∼106yr). that the starsformed frommetal-free gas, Population III (PopIII) stars,areverymassivewithacharacteristicmassofafewhundred Inthelocaluniverse,dustgrainsarealsoproducedbyevolvedlow solarmasses(Bromm&Larson2004,andreferencestherein).Such massstars(Gehrz1989), but thisproduction mechanism requires massivestarsareconsideredtobeginpaircreationofelectronand muchlonger(& 1Gyr)timescales.ThefirstdustsuppliedbySNe positronaftertheheliumburningphase,andfinallyendtheirlives withexplosive nuclear reaction disrupting thewhole stars(Fryer, Woosley,&Heger2001).ThisexplosioniscalledPISN. ⋆ E-mail:[email protected] Nozawaetal.(2003)alsocalculatethedustmassintheejecta † PostdoctoralFellowoftheJapanSocietyforthePromotionofScience (JSPS). of PopIII SNe II and PISNe, carefully treating the radial density ‡ PostdoctoralFellowoftheJSPSforResearchAbroad. profileandthetemperatureevolution.Sinceitisstilldebatedhow 2 H. Hirashitaet al. mechanisminthecourseofgalaxyevolution.Thehighest-redshift Table1.Summaryofgrainspecies. BAL quasar in their sample, SDSS J104845.05+463718.3 (here- Species conditiona Refb d(egnscimty−(δ3j)) raefstetfrraSmDeSSwaJ1v0el4e8n+g4th63λ7)<at1z7=006A˚.2. (sIhnowthsisapraepders,peaclltrtuhme watavthee- lengthsareshownintherestframeofobservedgalaxies.)However, C u 1 2.28 at λ > 1700 A˚, there is no indication of reddening. Then they Si u 2 2.34 suggest the extinction curve tobe flat at λ & 1700 A˚ and rising SiO2 m/u 3 2.66 at λ . 1700 A˚. Maiolino et al. (2004b) find that the extinction Fe u 4 7.95 curve of SDSS J1048+4637 is different from that of low-z BAL FeS u 5 4.87 quasarsandisinexcellent agreement withtheSNIIdustmodels Fe3O4 m 6 5.25 by Todini &Ferrara(2001). It isinteresting toextend their work Al2O3 m/u 7 4.01 MgO u 8 3.59 tovariousdustformationmodelsinNozawaetal.(2003).Theex- MgSiO3 m/u 9 3.20 tinctioncurveshouldbedifferentfromSNeIItoPISNeandfrom Mg2SiO4 m/u 10 3.23 mixedSNetounmixedSNe.Dustproductioninsuchvariouscon- ditionsisextensively investigated inNozawa et al.(2003); hence weaimatinvestigatingtheextinctioncurvebasedontheirresults. a The classifications “m”, “u”, and “m/u” mean that the species is In addition to Maiolino et al. (2004a), evidence for dust en- formedinmixed,unmixed,andbothsupernovae,respectively. richmenthasbeenobtainedatveryhighz(>5),wherethecosmic b Referencesforopticalconstants:(1)Edo(1983);(2)Edward(1985); age is less than 1 Gyr, by the recent sub-mm and millimetre ob- (3) Philipp (1985); (4) Lynch & Hunter (1991); (5) Semenov et al. servations of distant quasars (Bertoldi et al. 2003; Priddey et al. (2003);(6)Mukai(1989)(forλ < 0.14µm,weadoptthevalues at 2003). At lowerz (. 5), direct indicationsof high-z dust comes λ = 0.14 µm);(7) Toon,Pollack, & Khare (1976); (8) Roessler & fromthereddeningofbackgroundquasars(Fall,Pei,&McMahon Huffman(1991);(9)Dorschneretal.(1995);(10)Ja¨geretal.(2003). 1989;Zuoetal.1997).Thedepletionofheavyelementsinquasar absorptionlinesystemsalsosupportsthepresenceofdustindistant efficiently the mixing of atoms within supernovae (SNe) occurs, systems (Pettini et al. 1994; Molaro, Vladilo, & Centurion 1998; Nozawaetal.(2003)treattwoextremecasesforthemixingofel- Levshakov et al. 2000; Vladilo 2002; Ledoux, Petitjean, & Sri- ements: one is the unmixed case in which the original onion-like anand2003).Thereareseveralobservationsofextinctioncurvesup structureofelementsispreserved,andtheotheristhemixedcase toz ∼1bytakingadvantageofthegravitationallensing(Falcoet inwhichtheelementsareuniformlymixedwithintheheliumcore. al.1999;andMun˜ozetal.2004).Spectropolarimetricobservations Afterexamining thosetwocases, they show that theformed dust of two radio galaxies at z ∼ 1.4 reveal the 2200-A˚ dust feature speciesdependlargelyonthemixingofseedelementswithinSNe, inscatteredlight(Solo´rzano-In˜arreaetal.2004).However,mostof because the dominant reactions change depending on theratioof theobservationsofextinctioncurvesarelimitedtorelativelylowz, availableelements(seeSection2.1formoredetaileddescription). wheredustisnotonlyproducedbySNeII,butalsobyevolvedlate- Nozawaetal.(2003)predictlargerdustmassthanTodini&Ferrara typestars.Inthefuture,observationalsamplesofextinctioncurves (2001)forSNeII.Howmuchandwhatkindofgrainspeciesform couldbeextendedtohigh-z primevalgalaxies,wheredustispre- in SNeII and PISNeisstill amatter of debate, partly depending dominantlyproducedinSNeIIand/orPISNe.Thisworkcouldbe onthedegreeof mixingwithintheHe-core, andonthemodel of appliedtosuchfutureobservationstorevealthesizeandcomposi- SNeemployed inthecalculations; Woosley&Weaver(1995) for tionofdustoriginatingfromSNeIIorPISNe. SNe II in Todini & Ferrara (2001), Heger & Woosley (2002) for Wefirstdescribeourtheoreticaltreatmenttocalculatetheex- PISNeinSchneideretal.(2004),andUmeda&Nomoto(2002)for tinctioncurvesofSNIIandPISNdustinSection2.Weexamine PopIIISNeinNozawaetal.(2003). Theformedgrainspeciesin ourresults,andprovidesomeobservationallyconvenientquantities thecalculationofNozawaetal.(2003)arelistedinTable1. inSection3.Wediscussourresultsfromtheobservational view- Someobservationshavedetectedinfraredradiationfromex- pointinSection4,andfinallygivetheconclusionofthispaperin tragalactic SNe II (e.g. Dwek et al. 1983; Moseley et al. 1989; Section5. Kozasa,Hasegawa,&Nomoto1989).Thisradiationhasbeeninter- pretedtobeoriginatingfromdustformedinSNeII.FIRandsub- millimetre (sub-mm) observations of Galactic SN remnants also 2 MODEL have recently put further constraints on the dust mass formed in SNe II (Cas A: e.g. Arendt, Dwek, & Moseley 1999; Dunne et Ouraimistoderivethetheoretical extinctioncurvesofdust pro- al.2003; Hinesetal.2004; Kepler: e.g.Morgan etal.2003). Al- ducedinSNeIIandPISNe.Weadopt thedust productionmodel thoughFIRandsub-mmobservationsareusefultoknowthedust byNozawaetal.(2003),whoinvestigatevariousprogenitormass amount,theemissivity,whichreflectsthecomposition,andthedust ofSNeIIandPISNewithacarefultreatmentofphysicalprocesses amountaredegeneratedintheobservedFIRandsub-mmluminos- (internalmixing,temperatureevolution,etc.). ity.Therefore,inordertoconstrainthemodelofdustformationin SNeII, another independent information on the dust amount and compositionisnecessary. 2.1 DustproductioninSNeIIandPISNe Extinctioncurvesareoftenusedtoinvestigatethedustprop- erties(e.g.Mathis1990).Recently,byusingasampleofbroadab- Nozawaetal.(2003)investigatetheformationofdustgrainsinthe sorption line(BAL) quasars, Maiolino et al. (2004a) have shown ejecta of PopIII SNe (SNe II and PISNe, whose progenitors are thattheextinctionpropertiesofthelow-redshift(z<4,wherezis initiallymetal-free).Thecalculationtreatssomedetailscompared theredshift)sampleisdifferentfromthoseofthehigh-z(z>4.9) withTodini&Ferrara(2001):(i)theradiativetransferequationin- sample.Thisresultissuggestiveofachangeinthedustproduction cludingtheenergydepositionofradioactiveelementsissolvedto Extinctioncurves of younggalaxies 3 calculatethetimeevolutionofgastemperature,whichstronglyaf- InFigure1,weshowthesizedistributionadoptedinthispa- fectsthenumberdensityandsizeofnewlyformedgrains;(ii)the per, where the size distribution function fj(a) is defined so that radial profile of density of various metals is considered; (iii) un- fj(a)daisproportionaltothenumberofgrainsinaradiusinterval mixedanduniformlymixedcaseswithintheheliumcorearecon- [a, a+da](jindicatesthespecies).Thefourfigurescorrespondto sidered. thefourcasesinTable2.Thenormalisationoffj(a)isdiscussedin In the unmixed case, Nozawa et al. (2003) assume that the Section3.4,andweonlyapplyanarbitrarynormalisationtoeach originalonion-likestructureofelementsispreserved.Ontheother figure. hand,inthemixedcase,theyuniformlymixalltheelementsinthe heliumcore.TheyalsoassumethecompleteformationofCOand 2.2 CalculationofExtinctionCurves SiO molecules, neglecting the destruction of those molecules: no carbon-bearinggraincondensesintheregionofC/O < 1andno Inordertocalculateextinctioncurves,theopticalconstantsforthe Si-bearinggrain,except foroxidegrains,condenses intheregion grainsarenecessary.WeadoptthereferenceslistedinTable1for ofSi/O<1.TheformationofCOandSiOmaybeincompletebe- theopticalconstants.Byusingthoseopticalconstants,wecalculate causeofthedestructionbyenergeticelectronimpactwithinSNe. theabsorptionandscatteringcrosssectionsofhomogeneousspher- Todini & Ferrara (2001) treat both formation and destruction of icalgrainswithvarioussizesbasedontheMietheory(Bohren& COandSiO,findingthatbotharemostlydestroyed.Thedecrease Huffman 1983). The efficiency factor of extinction, which is de- ofCOleadstotheformationofcarbongrains,whichcouldfinally finedasthecrosssectiondividedbythegeometricalcrosssection, be oxidised with available oxygen. The destruction of SiO could isdenotedasQext,j(λ,a).Thisefficiencyfactorisafunctionof decreasetheformationofgrainscomposedofSiO2,MgSiO3,and thewavelengthλandthedustsizea(jdenotesthegrainspecies). Mg2SiO4,andincreaseotheroxidisedgrainsandSigrains.Obser- Theopticaldepthofgrainjasafunctionofwavelength,τλ,j, vationally,itisstilldebatedifCOandSiOareefficientlydestroyed iscalculatedbyweightingthecrosssectionsaccordingtothesize ornot.AdetaileddiscussiononthisissuecanbefoundinAppendix distributionasshowninFigure1: BofNozawaetal.(2003). ∞ In the unmixed ejecta, a variety of grain species (Si, Fe, τλ,j =Z πa2Qext,j(λ, a)Cfj(a)da, (1) Mg2SiO4, MgSiO3, MgO, Al2O3, SiO2, FeS, and C) condense, 0 while in the mixed ejecta, only oxide grains (SiO2, MgSiO3, whereC isthenormalisationconstant relatedtothecolumnden- Mg2SiO4,Al2O3,andFe3O4)form.Thespeciesaresummarised sityofdust.ThedeterminationofCisnotimportantfortheextinc- inTable1.Thedifferenceintheformedspeciesbetweenmixedand tioncurvebecausetheextinctioncurveispresentedintheformof unmixedcasesaremainlyderivedbytheformationofmolecules. Aλ/AV (Aλ istheextinctioninunitsofmagnitudeatwavelength Thecarbondust isnot produced intheirmixedcase, because the λ,andtheV-bandwavelengthis0.55µm),wheretheconstantC carbonandoxygenaremixedandcombinedtoformCOmolecules. iscanceled.ThedeterminationofCisnecessarywhenwequantify Onthecontrary,itformsinunmixedSNe,sincethereisacarbon- thecolumndensity(equation5).Theextinctioninunitsofmagni- rich region at a certain radius of SNe. The formation of SiO tudeisproportionaltotheopticaldepthas moleculesalsoaffectstheformedspecies:inthemixedejectaonly A =1.086τ , (2) oxidesilicategrainsform,whileintheunmixedejectanon-oxide λ,j λ,j grainscanforminoxygen-poorregions. where A is the extinction of species j in units of magnitude λ,j Thesizeofthegrainsonthelocationofformationsiteinthe as a function of λ, and the factor 1.086 comes from 2.5log e. 10 ejecta spans a range of 3 orders of magnitude, depending on the ThetotalextinctionA iscalculatedbysummingA forallthe λ λ,j grain species. The size distribution function summed up over all concerningspecies: the grain species is approximated by a broken power law. This size distributionis different from that of the SN II calculation of Aλ= Aλ,j. (3) Todini & Ferrara (2001), which has a typical sizes of 300 A˚ for Xj amorphouscarbonand10–20A˚ foroxidegrains.Thedifferenceis mainly comes from thedifferent treatment of the ejecta: Nozawa etal.(2003)considerthedensityandtemperaturestructureswithin 3 RESULTS theheliumcore,whileTodini&Ferrara(2001)donot.Schneideret 3.1 ExtinctioncurvesofvariousSNe al.(2004),basedonthemodelofTodini&Ferrara(2001),findfor PISNealargerangeofdustsize,depending onthespecies.Their In Figure 2a, we show the extinction curves of the four cases in resultissimilartothemixedcaseinNozawaetal.(2003). Table2:(a)mixedSNeII;(b)unmixedSNeII;(c)mixedPISNe; Weadopt therepresentativeprogenitor massofSNeIIas20 (d)unmixedPISNe.Thecontributionofeachspeciesisalsoshown. M⊙ andthat of PISNeas170 M⊙. Thesizedistributionof each TheextinctioncurveisnormalisedtoAV. grainspeciesisalmostindependent oftheprogenitor mass,ifthe Theextinctioncurvesofdust produced bythemixedSNeII SNtypeisfixed(SNIIorPISN),exceptforunmixedSNeII(Sec- and PISNe are dominated by SiO (Figures 2a and c). Actually, 2 tion3.1).Therefore,weconcentrateonlythosetwomassesinthis SiO2isthemostabundantdustcomponentinamixed20M⊙ SN paper. However, therelativemassratioamongspecies mildlyde- II.However,ina30M⊙ SNII,theproductionofMg2SiO4isen- pendsontheprogenitormass,andwecommentonitlatershowing hancedby2.7timesrelativelytothatofSiO ,andinthiscase,the 2 the contribution of each species to the extinction curve (Section contributionofMg SiO totheextinctioncurvebecomes2.7times 2 4 3.1).Wealsoinvestigatethemixedandunmixedcases.Therefore, larger.Asaresult,theextinctioncurveisdominatedbythesteep wetreatfourcases:(a)mixedSNeII;(b)unmixedSNeII;(c)mixed risingcurveofMg2SiO4forλ.0.14µm.Forthemixed170M⊙ PISNe;(d)unmixedPISNe,assummarisedinTable2.Allthefor- PISN,theextinctioncurveisalsodominatedbySiO .Nozawaet 2 mulationandtheresultscanbeseeninNozawaetal.(2003).Inthis al.(2003)alsoexaminealargerprogenitormass(200M⊙),where paper,weassumethegrainstobeuniformandspherical. SiO is the dominant species in dust mass. Therefore, we expect 2 4 H. Hirashitaet al. Table2.Modelsofdustproductioninsupernovae. Model Progenitormass Mixing RV hσd(V)/mdi hσd(0.3µm)/mdi (M⊙) (104cm2g−1) a 20 mixed 2.4 0.98 2.8 b 20 unmixed 3.3 2.2 4.4 c 170 mixed 1.4 0.75 3.0 d 170 unmixed 5.0 2.1 4.1 Galactica — — 3.1 3.4 6.3 a QuantitiesderivedfromobservationalpropertiesoftheGalacticextinctionproperties(Spitzer1978;Cardellietal.1989;Mathis1990).We shouldnotethatitisnotnecessarytoexplaintheGalacticpropertieswithourmodels,becausetheorigin,composition,andsizeofdustare different. Figure1.Sizedistributionfunctionofeachgrainspeciesin(a)themixedejectawiththeprogenitorof20M⊙,(b)theunmixedejectawiththeprogenitorof 20M⊙,(c)themixedejectawiththeprogenitorof170M⊙,and(d)theunmixedejectawiththeprogenitorof170M⊙.Thecorrespondencebetweenthe speciesandlinesisshowninthefigures. thattheextinctioncurveofmixedPISNealwaysshowacurvesim- SNe II, because a significant amount of large (a & 0.1 µm) Si ilartotheoneinFigure2c. grainsefficientlyabsorblong-wavelengthphotons.Inamoremas- siveSNIIwiththeprogenitor massof30M⊙,theproduction of TheextinctioncurveofdustproducedbytheunmixedSNeII Mg SiO is enhanced by 2.2 times compared with Si, while the 2 4 (Figure2b)isdominatedbyMg2SiO4andFeSforλ.0.5µm.At amount of FeS isalmost thesame; consequently thecontribution thelongerwavelength,(λ&0.5µm),Sidominatesthecurve.The ofMg SiO totheextinctioncurveisenhancedbyafactorof2.2 2 4 extinctioncurvesofunmixedSNeIIareflatterthanthoseofmixed Extinctioncurves of younggalaxies 5 Figure2.ExtinctioncurvescalculatedforthedustproductionmodelslistedinTable2:(a)themixedejectawiththeprogenitorof20M⊙;(b)theunmixed ejectawiththeprogenitorof20M⊙;(c)themixedejectawiththeprogenitorof170M⊙;and(d)theunmixedejectawiththeprogenitorof170M⊙.The contributionofeachspeciesisalsoshown.EachcurveisnormalisedtotheV-band(λ=0.55µm)valueofthetotalextinctioncurve.Thecorrespondence betweenthespeciesandlinesisshowninthefigures. relative to the Si contribution, and the extinction curve becomes (SMC) (Pei 1992). It is not necessary that our theoretical curves steeper.Ontheotherhand,inlessmassiveunmixedSNe,thepro- explaintheGalacticandSMCcurves,sinceinthosetwoenviron- duction of amorphous carbon isenhanced, leadingtothecarbon- ments, dust grains are also produced by late-type stars withlong dominatedflatextinctioncurve.Therefore,theextinctioncurveof lifetimes. unmixedSNeIIissensitivetotheprogenitormass,andtheprogen- Wedonotenterdeeplytheinfraredregime.Theinfraredprop- itormassdependenceisshowninSection3.2. ertiesofdustgrainsareaddressedinTakeuchietal.(2004,inprepa- The extinctioncurve of unmixed PISNeisalso flat,because ration;seealsoTakeuchietal.2003). ofSicontribution.Thecurvemildlyrisestowardultraviolet(UV) because of contribution fromMg SiO . If theprogenitor mass is 2 4 3.2 ProgenitormassdependenceofunmixedSNeII 200 M⊙, the production of Si is enhanced by twice relative to Mg2SiO4,andthecontributionofSibecomescomparabletothatof As mentioned in Section 3.1, the progenitor mass dependence is Mg2SiO4eveninUV.Thismakestheextinctioncurveflatterthan significantinthecaseofunmixedSNeII.Therefore,weexamine thatshowninFigure2d. variousprogenitormassesexaminedbyNozawaetal.(2003);i.e. In general, the extinction curves of mixed cases are steeper theprogenitor massesof13,20,25,and30M⊙.InFigure3,we thanthatofunmixedcases.Thisisbecausethedustopacityofthe presentthesizedistributionforeachspecies(Figures3a,b,c,and mixedSNeIIisdominatedbysmall(a ∼ 0.01µm)SiO2 grains. dcorrespond totheprogenitor massesof13,20,25,and30M⊙, Onthecontrary, largeSigrainsproducedinunmixedSNehavea respectively).Basedonthosesizedistributions,wecalculatetheex- largecrosssectionuptothenearinfrared(NIR). tinctioncurvesbythemethoddescribedinSection2.2.Theextinc- AllthefourextinctioncurvesarecomparedinFigure5a.We tioncurveaswellasthecontributionfromeachspeciesisshownin alsoshow theextinction curves of theGalaxy (Cardelli,Clayton, Figure4.Weseethatthe13M⊙extinctioncurveisdominatedby &Mathis1989withRV = 3.1)andtheSmallMagellanicCloud carbongrains,whosetypicalsizeislarge(∼ 0.1µm).Suchlarge 6 H. Hirashitaet al. Figure3.Sizedistributionfunctionofeachgrainspeciesintheunmixedejectawiththeprogenitormassesof(a)13M⊙,(b)20M⊙,(c)25M⊙,and(d)30 M⊙.Thecorrespondencebetweenthespeciesandlinesisshowninthefigures. carbongrainsproduceaflatextinctioncurveaspresentedinFigure afactorof∼ 2.Thentheastronomicalsilicatepredictsanextinc- 4a.Astheprogenitor massbecomes larger,thecontributionfrom tioncurveswithashallowerslopeinNIR.However,thedifference Si becomes larger. Although the Si extinction curve is flat, other does not affect our results, since the contribution of Mg SiO is 2 4 speciessuchasMg SiO ,FeS,Fe,andSiO contributetotheris- important in UV. The Mg SiO data presented in Scott & Duley 2 4 2 2 4 ingcurveatshortwavelengthsinacomplexway.Asaresult,ifthe (1996) has a similar optical constants to Draine & Lee(1984) in dustproductionoccursintheunmixedSNeII,theextinctioncurve UVandtoouradoptedvaluesinopticalandNIR. tendstobesteeperastheprogenitormassbecomeslarger.Thefour extinctioncurvesarecomparedinFigure5b. 3.3 Comparisonwithstandardsilicateandgraphite The contribution of carbon grains is small in the four cases Itisusefultocompareourpredictionwithastandard“astronomi- presentedinFigure2.Ifweusetheopticalconstantofgraphitein calsilicate”inDraine&Lee(1984).TheiropticalconstantsinUV Draine&Lee(1984)andthesizedistributionofcarbongrainsin arebasedonolivine(Mg,Fe) SiO (Huffman&Stapp1973),and Nozawaetal.(2003),weseeaweakbumparound2200A˚ andthe 2 4 thenearestspeciesinourmodelisMg SiO .Ouropticalconstant overall contribution of carbon isreduced by afactor of two. The 2 4 assumedforMg SiO isalmostthesameasthatof“astronomical changeofcarbonopticalpropertiesdoesnotaffectthetotalextinc- 2 4 silicate” in UV, but the astronomical silicates have a larger cross tion.However, Nozawaetal.(2003) show thatcarbonbecomesa section in the optical and NIR than our Mg2SiO4. We calculate principalspeciesiftheprogenitormassisaround13M⊙.Inpartic- the extinction curve of the astronomical silicate by using the op- ular,theproductionofMg2SiO4ismuchreducedina13M⊙ SN ticalconstant ofDraine&Lee(1984)andthesizedistributionof II.Indeed,carbongrainsdominatetheextinctioncurvein13M⊙ Mg SiO calculatedbyNozawaetal.(2003).Theextinctioncurve unmixed SNe.Regardlessof whichoptical constant weadopt for 2 4 calculated by this method is the same as our extinction curve of carbongrains, weobtainaflatUVextinctioncurve fora13M⊙ Mg SiO inUV,butattheV band,thedifferencebecomesatmost unmixedSNII(seeSection4.1). 2 4 Extinctioncurves of younggalaxies 7 Figure4.ExtinctioncurvescalculatedforthedustproductionmodelsofunmixedSNIIejectawiththeprogenitormassesof(a)13M⊙,(b)20M⊙,(c)25 M⊙,and(d)30M⊙.EachextinctioncurveisnormalisedtothevalueattheV band(λ=0.55µm)ofthetotalextinctioncurve.Thecontributionofeach speciesisalsoshown.Thecorrespondencebetweenthespeciesandlinesisshowninthefigures. 3.4 Usefulquantities ratio,andδj isthematerialdensityofgrainspeciesj.Wecalculate The extinction curve is often characterised by the parameter RV (δ1j9f6r8o)manthdethraedmiuassspeorfuantoitmmsoavleecrualgeedliswteidthitnheRiosboiteop&erWataioldibnauSmN definedas ejecta.Thematerialdensityδj foreachspeciesislistedinTable1. RV ≡ AV , (4) Torelatethedustcrosssectiontothedustmass,wedefinethe E(B−V) crosssectionperunitdustmass,hσ (λ)/m i,as d d ∞ wtlienhncegtrtiehonE(0c(.uB4r4v−eµiVmn))t.h≡ReoVApBtrioc−uaglA.hTlVyh,eqavunaadlnuBteifyicnadtlhciceualiatnetecsdltihnfeaotrBioe-nabcaohnfdththweeoarveexet--- hσ (λ)/m i≡ Xj Z0 πa2Qext,j(λ, a)fj(a)da. (6) d d ∞ icaleIxttiisncatlisoonucsuerfvueltiossrehloawtenthineTexabtilnec2ti.ontothedustamount,be- Xj Z0 34πa3δjfj(a)da causedustmassalsoconstrainthedustproductionmodelingalax- Then, the following expression of extinction is derived by using ies(e.g.Hirashita&Ferrara2002).Forthisaim,weshoulddeter- equations(1),(2),(3),(5),and(6): minethenormalisationconstantCinequation(1).TheconstantC isdeterminedtorealisethetotaldustcolumndensityas A =1.086µm N Dhσ (λ)/m i. (7) λ H H d d ∞ µmHNHD=C Z 43πa3δjfj(a)da, (5) bWaendprpoevriduenittheduvsatlumesasosf)hiσndT(aVb)le/m2.dBiy(thuesincrgosthsissevcatilouneitnhethdeuVst Xj 0 amountcanbequantifiedifweknowN fromotherobservations H whereµisthegasmassperhydrogennucleus(assumedtobe1.4in (for example, observations of Lyα absorption line). Then, AV is thispaper;Spitzer1978),m isthemassofahydrogenatom,N obtainedobservationallyforprimevalgalaxies(asysteminwhich H H isthecolumndensityofhydrogennuclei,Disthedust-to-gasmass dustispredominantlysuppliedbySNeIIorPISNe),weobtainthe 8 H. Hirashitaet al. Figure5.Comparisonbetweentheextinctioncurvescalculatedbyourmodels.(a)Extinctioncurvesofvarioustypesofprogenitors.Thethicksolid,dotted, dashed,anddot-dashedlinescorrespondtoModelsa,b,c,anddinTable2,respectively.(b)ExtinctioncurvesforvariousprogenitormassesofunmixedType IISNe.Thethicksolid,dotted,dashed,anddot-dashedlinescorrespondtotheprogenitormassesof13,20,25,and30M⊙,respectively.Wealsoshowthe extinctioncurvesoftheGalaxy(dot-dot-dot-dashedline)andtheSmallMagellanicCloud(SMC)(thindashedline)onlyforthereference.Itisnotnecessary thatourmodelexplainstheGalacticorSMCcurve. dust-to-gasratio.ThecolourexcessE(B−V)maybemoreeasily at λ < 0.17 µm. The plausible range derived by Maiolino et al. obtained, and inthis case, RV listed inTable 2 could be used to (2004b)isshownbytheshadedareasinFigure6.InFigure6a,the derivetheextinctionAV. fourtheoreticalcurvescalculatedbyourmodelareshown.Theex- IntheGalacticISM,NH/AV =1.9×1021cm−2mag−1and tinctioncurvescalculatedwiththemixedSNmodelsaretoosteep D = 6×10−3 (Spitzer1978). Byusingequation (7),weobtain toexplaintheobservationaldata. hσd(V)/mdi=3.4×104cm2g−1fortheGalacticdust.Wehave ThemodelswiththeunmixedSNeagreesquitewellwiththe obtainedsimilarvaluesinModelsbandd(bothassumeunmixed observational data. The extinction curve of unmixed SNe II de- SNe)andsignificantlysmalleronesinModelsaandc(bothassume pendsontheprogenitormassasshowninSection3.2.InFigure6b, mixedSNe). weshowtheUVextinctioncurvesofunmixedSNeIIwiththepro- The dust cross section per mass is also calculated for a UV genitormassesof13,20,25,and30M⊙(solid,dotted,dashed,and wavelength(0.3µm).InTable2,welisthσd(0.3µm)/mdi.The dot-dashed lines, respectively). The flat behaviour of 13 M⊙ ex- difference between the models is relatively small. Therefore, the tinctioncurvecomesfromthecarboncontribution,whichproduces UV dust extinction is a better tracer of the dust column density aslightbumparound1/λ ∼ 4µm−1.Therisetowardtheshorter thantheopticalextinction. wavelength is mainly caused by Mg SiO . Since the production 2 4 ofMg SiO isenhancedinthemassiveprogenitors,theextinction 2 4 curvebecomessteeperformoremassiveprogenitors.Theunmixed SNIImodelsareroughlyconsistentwiththecurrentobservational 4 OBSERVATIONALDISCUSSION dataathighz.Itisinterestingtonotethattheobservationalranges 4.1 Comparisonwithhigh-zdata liebetweentheflatcurvepredictedforlow-mass(13M⊙ and20 M⊙) progenitors and thesteepcurve predicted by high-mass (25 At present, there are few observational works of the extinction M⊙ and30M⊙)progenitors. Therefore,themixtureofunmixed curves at z > 5, where the cosmic age is shorter than 1 Gyr. SNeIIwithvariousprogenitormassmayexplaintheobservational Withthisshorttimescale,thedustispredominantlyformedbySNe extinctioncurve. II and PISNe, since their progenitors have short lifetimes while Therefore,wecalculateextinctioncurvesweightedbyIMF: evolvedlowmassstarsrequirelongertimescalestoevolveandpro- ducedust.Maiolinoetal.(2004b)usetheextinctioncurveofSDSS mu J1048+4637totestthehypothesisthatdustispredominantlysup- A (φ)≡ A (m)φ(m)dm, (8) λ Z λ pliedbySNeII.Theyexplaintheextinctioncurvebythedustpro- ml duction model of Todini & Ferrara (2001). They also investigate various initial stellar metallicities from 0 to solar after averaging wheremistheprogenitormass,m andm are,respectively,the l u the grain properties for different SNe II over the Salpeter stellar lowerandupper masslimitsofstarswhichcauseSNeII,A (m) λ initialmassfunction (IMF),and findthat their theoretical extinc- is the extinction calculated for the progenitor mass m (correctly tioncurvesagreewiththeobservationaldataofSDSSJ1048+4637 weightedforproduced dustmass;i.e.,A (m)islargeifthepro- λ inthewholemetallicityrange. genitorproducesalargeamountofdust),andφ(m)istheIMF(the We also use the restframe UV extinction curve of SDSS numberofstarswiththemassrangeof[m, m+dm]isproportional J1048+4637showninFigure2ofMaiolinoetal.(2004b).Theex- toφ(m)dm).Thenormalisationofφ(m)isnotimportantinthis tinctioncurveisflatatλ>0.17µm,anditincreaseswithasmaller paper,becausetheextinctioncurveisalwaysshownafterbeingnor- ratethantheSMCextinctioncurvetowardtheshorterwavelength malisedbyAV andthenormalisingconstantofφ(m)iscancelled Extinctioncurves of younggalaxies 9 Figure 6. Ultraviolet extinction curves normalised to the extinction at 0.3 µm. The range observationally derived by Maiolino et al. (2004b) for SDSS J1048+4637isshownbytheshadedareaineachfigure.(a)Modelpredictionsforvarioussupernovamodels(Modelsa–dinTable2).(b)Resultsforvarious progenitormassesunmixedSNeII.Thesolid,dotted,dashed,anddot-dashedlinescorrespondtotheprogenitormassesof13,20,25,and30M⊙,respectively. (c)AveragedextinctioncurvesofunmixedSNeII.Theweightofeachprogenitormassisdeterminedbyinitialmassfunctions,whichareparameterisedby thepower-lawindex(x)andthelowerandupperstellarmasses(mlandmu,respectively).Thethicksolid,dotted,anddashedlinesrepresenttheresultsfor x= 1.35,0.35,and2.35,respectively,with(ml,mu)= (8M⊙,40M⊙)(ModelsA,B,andCinTable3,respectively).Thethinsolidanddottedlines showtheresultsfor(ml,mu)=(13M⊙,40M⊙),and(8M⊙,30M⊙),respectively,withx=1.35(ModelsDandEinTable3,respectively). out.Weassumethefollowingpower-lawformoftheIMF: (8 M⊙, 30 M⊙), respectively. All the examined IMFs are sum- marisedinTable2,andarelabeledasModelsA–E. φ(m)=Km−(x+1), (9) As expected from Figure 6b, the contribution from massive SNe II tends to increase the slope of the extinction curve. Then, ModelsBandDpredictsteeperextinctioncurvesthanthedataof whereK isthenormalising constant. TheSalpeter IMFisrepro- Maiolinoetal.(2004b).Therefore,thecontributionfromtheSNeII duced by x = 1.35. We examine x = 1.35, 0.35, and 2.35. An whoseprogenitormassisaround13M⊙isnecessarytoobtainthe appropriate stellar mass range for SNe II (core collapse SNe) is flatextinction curve consistent withtheobservational data. How- selected as ml = 8 M⊙ and mu = 40 M⊙ (Heger & Woosley ever,inordertoreproducetherisetowardtheshorterwavelength 2002).WeusethecalculatedextinctioncurvesofunmixedSNeII λ.0.15µm,thecontributionfrommassiveSNeIIisnecessary.In withm = 13, 20, 25, 30 M⊙, and interpolate or extrapolate the particular,ModelCpredictsanextinctioncurveslightlyinconsis- valuestoobtaintheextinctioncurvesofarbitraryprogenitormass. tentaround1/λ∼8µm−1.WeshouldemphasizethattheSalpeter The slopes x = 0.35 (2.35) represents the case where massive IMF(ModelA)reproducestheobserveddataverywell. (lessmassive)starsareselectivelyproduced.Theextinctioncurves weighted for the IMFs are shown in Figure 6c, where the thick solid,dotted,anddashedlinesrepresenttheresultswithx=1.35, 4.2 Observationalstrategy 0.35,and2.35,respectively.Wealsoinvestigatetheeffectofvary- ingm andm withx=1.35:thethinsolidanddottedlinesinFig- Alargesampleofhigh-zquasarsandgalaxieswillbeobtainedby l u ure6cshow theresultswith(ml, mu) = (13M⊙, 40M⊙)and futureobservations.Sincethecosmicageatz =5isabout1Gyr, 10 H. Hirashitaet al. Wehavealsoderivedthedustcrosssectionperunitdustmass. Table3.Initialmassfunctions. This quantity is useful to estimate the dust column density from Model x ml mu extinction.TheUVextinctiontracethedustcolumndensitybetter (M⊙) (M⊙) thantheopticalextinction.Theextinctionalsoaffectstheobserv- abilityofothermolecularoratomiclines.Theresultofthispaper A 1.35 8 40 canbeusedtoestimatetheextinctioneffectinhigh-zgalaxies. B 0.35 8 40 Finally, our results are compared with a high-z extinction C 2.35 8 40 curve observationally derived for SDSS J1048+4637 at z = 6.2 D 1.35 13 40 E 1.35 8 30 byMaiolinoetal.(2004b). Thecomparison favoursSNeIIwith- outinternalmixingassourcesofdustgrains.Thecombinationof variousprogenitormassrangingfrom∼ 10M⊙ to∼ 30M⊙ ex- thedustsuppliedbylate-typestarsdoesnotdominatethetotaldust plainswelltheobservedextinctioncurve.Ourtheoreticalextinction amountatz > 5.Therefore,iffutureobservationscollectalarge curvescouldbefurtherutilisedwhenasampleofhigh-zextinction spectroscopic sampleofquasarsatz > 5,wecandirectlyinves- curvesistakenbyfutureobservations. tigatetheextinctioncurveofdust,whosesourceisprobably SNe IIand/or PISNe.Althoughwehavecalculatedthedust formation basedonthePopIIIprogenitors,wecanapplyourmodeltometal- enriched systems aslong asthedust ispredominantly formed by ACKNOWLEDGMENTS SNeIIand/orPISNe,becausethedustcompositionandsizedistri- butionismuch lesssensitive totheprogenitor metallicitythanto We thank R. Maiolino, the referee, for useful comments, and R. theprogenitormass. Maiolino, S. Bianchi, R. Schneider, and A. Ferrara for kindly The shape of the extinction curve of high-z galaxies can be providing us with their data on the extinction curve of SDSS comparedwiththetheoreticalcurvesinthispapertoconstrainthe J1048+4637.HH,TTI,andTTTaresupportedbytheJapanSociety sizeandcompositionofgrains.Themeasurementofextinctionen- forthePromotionofScience.TKissupportedbyaGrant–in–Aid ablesustomeasurethedust-to-gasratioofhigh-z galaxies,ifwe for Scientific Research from JSPS (16340051). We fully utilized useequation (7)and thecrosssection per dust masslistedinTa- theNASA’sAstrophysicsDataSystemAbstractService(ADS). ble2.Therefore,thedustproductionhistoryinhigh-zuniversecan alsobeinvestigatedbasedonthispaper. Some theoretical works (Bromm & Larson 2004 and refer- ences therein) suggest that first stars born from primordial gas REFERENCES (PopIII stars) are massive. If the gas metallicity is less than ∼ 10−5Z⊙(Z⊙isthesolarmetallicity),massivestarsmayselectively Arendt,R.G.,Dwek,E.,&Moseley,S.H.1999,ApJ,521,234 form(Schneideretal.2003;seealsoOmukai2001),causingPISNe Begemann, B., Dorschner, J., Henning, T., Mutschke, H., & attheendoftheirlives.Therefore,theextinctioncurveofextremely Thamm,E.,1994,ApJ.423,L71 metal-poorgalaxiescouldbecomparedwithourcurvescalculated Bertoldi,F.,Carilli,C.L.,Cox,P.,Fan,X.,Strauss,M.A.,Beelen, with PISN models. The extinction curve of SDSS J1048+4637 A.,Omont,A.,&Zylka,R.2003,A&A,406,L55 (Maiolino et al. 2004b) has been shown to be fitted by the mod- Bohren,C.F.,&Huffman,D.R.1983,AbsorptionandScattering els of SNe II rather than those of PISNe, indicating that SDSS ofLightbySmallParticles(NewYork:Wiley) J1048+4637isformingstarswhosemassis. 30M⊙.Thismass Bromm,V.,&Larson,R.B.2004,ARA&A,42,79 rangeisconsistentwithsomemetallicitystudiesofhigh-zquasars Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, (Venkatesan,Schneider,&Ferrara2003). 245 Wefinallystressthattheabsorptionpropertiesofdustarealso Cazaux,S.,Tielens,A.G.G.M.2002,ApJ,575,L29 important for theobservation ofatomsand molecules, whosede- Cazaux,S.,Tielens,A.G.G.M.2004,ApJ,604,222 tectabilityisaffectedbythedustextinction(e.g.Shibaietal.2001). Draine,B.T.,&Lee,H.M.1984,ApJ,285,89 Therefore, quantifying high-z extinction is crucial to discuss the Dorschner, J., Begemann, B., Henning, Th., Jaeger, C., & explorationofhigh-zuniversebyatomicormolecularlines. Mutschke,H.1995,A&A,300,503 Dunne, L., Eales, S., Ivison, R., Morgan, H., & Edmunds, M. 2003,Nature,424,285 Dwek,E.,etal.1983,ApJ,274,168 5 CONCLUSION Edo,O.1983, PhDDissertation,Dept.ofPhysics,Universityof Wehavetheoreticallyinvestigatedtheextinctioncurvesof young Arizona galaxiesinwhichdustissuppliedpredominantlyfromTypeIIsu- Edward,D.F.1985,inHandbookofOpticalConstantsofSolids pernovae(SNeII)and/orpairinstabilitysupernovae (PISNe).We ed.E.D.Palik,AcademicPress,SanDiego,USAp.547 haveadoptedNozawaetal.(2003)forcompositionsandsizedis- Falco,E.E.,etal.1999,ApJ,523,617 tribution of grains formed in SNe II and PISNe. We have found Fall,S.M,Pei,Y.C.&McMahon,R.G.1989,ApJ,341,L5 thattheextinctioncurveisquitesensitivetotheinternalmixingof Fryer,C.K.,Woosley,S.E.,&Heger,A.2001,ApJ,550,372 SNe.TheextinctioncurvesofmixedSNeIIandPISNearedom- Gehrz, R. D. 1989, in Allamandola L. J., Tielens A. G. G. M., inatedbySiO andarecharachterisedbythesteeprisefromNIR eds,Proc.IAUSymp.135,InterstellarDust,Kluwer,Dordrecht, 2 toUVbecausethemaincontributioncomesfromrelativelysmall p.445 (∼0.01µm)grains.Onthecontrary,theextinctioncurvesofdust Heger,A.,&Woosley,S.E.2002,ApJ,567,532 producedinunmixedSNeIIandPISNearemuchflatter,because Hines,D.C.,etal.2004,ApJS,154,290 ofalargecontributionfromlarge-sized∼0.1µmSigrains. Hirashita,H.,&Ferrara,A.2002,MNRAS,337,921

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.