Micron-scale Light Transport Decomposition Using Interferometry: Supplementary Material IoannisGkioulekas AnatLevin Fre´doDurand ToddZickler HarvardUniversity WeizmannInstitute MassachusettsInstituteofTechnology HarvardUniversity Abstract image-basedrendering,imageediting,andmeasuringsceneshape inthepresenceoftranslucencyandinterreflections. Wepresentacomputationalimagingsystem,inspiredbytheopti- EachelementofthetransportmatrixinEquation(1)stillrepresents calcoherencetomography(OCT)framework,thatusesinterferom- asumofdifferentscenepaths.AsdepictedbythebluepathsofFig- etry to produce decompositions of light transport in small scenes ure1,sub-surfacescatteringandinterreflectionsmeanthatthereare orvolumes.Thesystemdecomposestransportaccordingtovarious typicallymanypathsthatoriginateatthesamesourceelementand attributesofthepathsthatphotonstravelthroughthescene,includ- arriveatthesamecameraelementbuttakedifferentroutesthrough ingwhereonthesourcethepathsoriginate,theirpathlengthsfrom thescene. Computationalimagingcanbeusedtoanalyzetheseas sourcetocamerathroughthescene,theirwavelength,andtheirpo- well, by decomposing each entry T of the transport matrix ac- larization. Sinceitusesinterference,thesystemcanachievehigh pl cordingtothecontributionsfromphotonpathsthathavedifferent pathlengthresolutions,withtheabilitytodistinguishpathswhose opticallengthsτ. Thisleadstothenotionofapathlength-resolved lengthsdifferbyaslittleastenmicrons. Wedescribehowtocon- lighttransportmatrixTτ, τ ∈{τ ,...,τ },wherepathlengths structandoptimizeanopticalassemblyforthistechnique,andwe min max arediscretizedintoafinitesetof∆τ-sizedlengthintervals.Thefull buildaprototypetomeasureandvisualizethree-dimensionalshape, lighttransportmatrixcanthenbewrittenas directandindirectreflectioncomponents,andpropertiesofscatter- ing,refractive/dispersive,andbirefringentmaterials. T=(cid:88)Tτ. (2) CRCategories: I.4.1[ImageProcessingandComputerVision]: τ DigitizationandImageCapture—Imaginggeometry; EachentryTτ isthefractionofphotonsoriginatingatthelthsource pl elementthatarriveatthepthcameraelementhavingtraveledpaths Keywords: lighttransport,interference,waveoptics whose optical lengths are in the interval τ ±∆τ/2. There is a growingnumberofmethodsformeasuringeitherentireprojections 1 Introduction orisolatedelementsofthepathlength-resolvedtransportmatrix.In addition to enhancing the applications listed above, these decom- Inimaging,photonsleaveasource,travelthroughascene,andare positionscanbeusedtovisualizelight-in-flightthroughtable-top collectedbyacamera. Aconventionalimagemeasuresthesumof scenes,andfor“imagingaroundcorners.” allphotonsthatarriveateachcamerapixel,regardlessofwhereon the source they originate, or which path they travel from there to Weintroduceanewcomputationalimagingsystemthatusesopti- thecamera(Figure1).Thissummationconflatesinformationabout cal interferometry to produce high-fidelity light transport decom- theshapesandmaterialsinthescene. Inthispaper,weshowhow positions. Our system uses optical configurations that are varia- interferometrycanbeusedtomeasuredecompositionsoftheseper- tions of the classical Michelson interferometer, and our analysis pixelsums,distinguishingbetweenphotonpathsthatdifferintheir buildsontechniquesthathavebeenusedforopticalcoherenceto- lengthandlocationoforigin. mography(OCT).Oursystemiscomplementarytoexistingcompu- tationalphotographymethodsforproducingsuchdecompositions, In discrete terms, where the camera sensor is partitioned into P excellinginusecaseswhereitisnecessarytoimagesmallscenes area elements (“pixels”) and the source is partitioned into L area at very high spatial and pathlength resolutions. In particular, the elements, the energy that is transferred from source to camera is useofinterferometryallowsoursystemtoachievepathlengthres- oftendescribedbyaP×LmatrixTcalledthelighttransportma- olutionsaslowas10µm,whichisnecessarytoanalyzetransport trix.EachentryT inthismatrixrepresentsthefractionofphotons pl eventscausedbymaterialeffectslikedispersionandscattering. followingpathsoriginatingatthelthsourceelementandarrivingat thepthcameraelement. WithreferencetoFigure1,orangeversus OurpaperbeginswithbackgroundontheMichelsoninterferome- bluepathswouldcorrespondtoentriesTpl fordifferentvaluesof terandthenotionsofspatialandtemporalcoherencelength. We sourcelocationl. Conventionalimagingsimplymeasurestheim- then introduce a mathematical model of interferometry in terms agei(aP-vector)forsomepatternl(anL-vector)projectedfrom of(acontinuousversionof)thepathlength-resolvedlighttransport thesourceaccordingtothelighttransportequation[Ngetal.2003] matrix. We use it to show how sources with different coherence propertiesenabledifferentkindsoflighttransportdecompositions, i=Tl. (1) differentiatinglightpathsintermsoftheirendpointlocations,their opticallengths, orcombinationsofthesetwo. Wealsocharacter- There are a variety of computational imaging methods for mea- izeresolutionandnoiseperformance, andpresentaperformance- suring elements of the transport matrix. This has applications in optimized optical design that additionally allows resolving trans- port in terms of wavelength and polarization. Our prototype has threespectralchannels,twopolarizationchannels,aworkingvol- ume of 2cm H×2cm W×1cm D, and spatial and pathlength resolutions that are both 10µm. We use this prototype to obtain micron-scale decompositions of light transport in scenes contain- ingreflection,refraction,dispersion,scattering,andbirefringence. 2 Related Work Lighttransportdecomposition. Methodsfordecomposinglight transport, both spatially and in terms of pathlength, can be de- scribedascapturingdifferentimagesiofastaticsceneunderuni- adaptive function w(τ) that selects for each such non-zero entry mirror theshortestpathlengthτ forwhichtransportisnon-zero. Inthese reflection cases, thepathlengthresolution∆τ determineshowcleanthere- sulting separations are, with sharper resolutions allowing less of theglobalcomponent—suchasthatcausedbysub-surfacescatter- inginFigure1—tobleedintothedirectone.Secondisthetemporal direct paths diffusewall frequencyprobingmethodofO’Tooleetal.[2014b]. Thisallows decompositionswithmoregeneralchoicesofmatrixMandfunc- tionw(τ),forinstancecapturingtransientimagescorrespondingto fixedspatialprobingpatternsM. backscattering Interferometry. Optical interferometry refers to a large set of Figure 1: Differentiating light paths. A pixel in a conventional imagingtechniquesthatexploitinterferencebetweenoneormore image measures the sum of all lights paths arriving at that pixel. electromagneticfields[Hariharan2003].Despitetheirpopularityin Entriesofalighttransportmatrixdistinguishpathswithdifferent otherdisciplines,interferometrictechniqueshaverarelybeenused startinglocations(orangevs.blue),andentriesofa“pathlength- forcomputergraphics. AnexceptionisCossairtetal.’s[2014]use resolved” light transport matrix additionally distinguish paths of ofaMichelsoninterferometerforrefocusing. differentlengths(e.g.,lightvs.darkblue). Many interferometric techniques can be interpreted using Equa- formilluminationl=1accordingtotheequation tion (3). Abramson [1983] used holographic techniques to cre- atevisualizationsoflight-in-flightsimilartorecenttransientimag- i=(cid:88)w(τ)(M(cid:12)Tτ)1. (3) ing; andtheconnectionbetweeninterferometryandtime-of-flight sensorshasbeendiscussedelsewhere[Schwarteetal.1995;Luan τ 2001]. Here,were-establishthisrelationship,andweexpanditto relateinterferometrytoothertypesoflightpathdecompositions. Thisisapathlength-resolvedvariantofthetransportprobingequa- tionofO’Tooleetal.[2012]. Theoperator(cid:12)representspointwise Amonginterferometrictechniques,theonemostcloselyrelatedis multiplication(Hadamardproduct). MisaP ×Lbinarymatrix: optical coherence tomography (OCT) [Huang et al. 1991], which setting M to zero removes contributions of paths beginning at pl is used for range scanning and visualizing volume cross-sections pointl onthesourceandarrivingatpixelponthesensor. Simi- atmicronresolutions. Therearemanyvariantsbasedonsingleor larly, w(τ)isascalarbinaryfunctionthatcanbeusedtoremove multipleshots(Fourier-domainvs.time-domainOCT)andsingle- contributionsfrompathsoflengthτ. Inconventionalimaging,M orfull-fieldillumination. Inourpaper,weadaptafull-field,time- andw(τ)areequalto1everywhere, andEquation(3)reducesto domainOCTconfigurationforbroadercomputationalimaging.We thestandardlighttransportEquation(1)withuniformillumination. re-interpret conventional OCT measurements using Equation (3), Computationalimagingmethodsforlighttransportdecomposition andthenbuildonthistomeasureotherlighttransportdecomposi- collectmeasurementswithdifferentMandw(τ).WewilluseFig- tionswithdifferentMandw(τ)choices.Wefocusontime-domain ure1tovisualizepathscapturedbyvariousapproaches. OCT,asopposedtoFourier-domain,becauseitadditionallyallows SpatialdecompositionmethodsinducedifferentmatricesMwhile decomposingtransportaccordingtowavelengthandpolarization. keepingw(τ) = 1everywhere. WithreferencetoFigure1,these Comparison and trade-offs. The main advantage of using in- methodscanbeusedtorecordcontributionsfromonlytheblueor terferometrytodecomposetransportishighpathlengthresolution. onlytheorangepaths. Byusingdifferentarrangementsofacam- Fempto-secondlasersandtime-of-flightsensorscanachievepath- era and a projector, and different sensor and illumination coding lengthresolutionsofabout600µmand10,000µm, respectively. strategies,thesemethodscaptureindividualelementsofthetrans- Bycomparison,weachievepathlengthresolutionsofabout10µm. portmatrix,orsparseorlow-rankapproximationstoit[Senetal. Otherinterferometrictechniquescouldbeusedtoproduceresolu- 2005;Peersetal.2009;Wangetal.2009;Baietal.2010;O’Toole tionsthatareevenhigher,reachingsub-micronscales,forinstance andKutulakos2010;O’Tooleetal.2012;O’Tooleetal.2014a]. usingverywide-bandsourcesandpost-captureprocessingthatin- There are also methods that decompose according to pathlength cludes phase shifting. However, this would come at the expense only,usingamatrixM = 1andcontrollablefunctionsw(τ). Re- of the ability to probe different spectral channels. Since we are ferringtoFigure1, thisallowsmeasuringthesuperpositionofall interestedinmeasuringwavelength-dependenteffects,suchasdis- paths(blueandorange)thathavethesamelength. Thishasbeen persion, birefringence, and scattering, we do not attempt to push dubbedtransientimagingandcanbeusedtoproducelight-in-flight pathlengthresolutiontothoselimitshere. visualizationsofphotonspropagatinginascene. Implementations include using a combination of pulsed laser and ultra-fast detec- This increased pathlength resolution is valuable in cases where it tor [Velten et al. 2013; Wu et al. 2014b; Wu et al. 2014a], or a isnecessarytoobtainhigh-fidelityscansofsmallvolumes,suchas combinationofsourceandcamera(time-of-flightsensor)thatare inlaboratorymaterialmeasurementsorinsceneswithnaturalmi- synchronouslymodulatedatradio-frequenciesintime[Heideetal. crostructures. Whilemacrophotographyreadilyprovidesawayto 2013;Kadambietal.2013;O’Tooleetal.2014b;Heideetal.2014]. imagesuchscenesatspatialresolutionsthatapproachthediffrac- Inthelattercase,theperformancecriticallydependsonthemethod tionlimit(afewmicrons),comparablepathlengthresolutionscan- usedtosolvetheso-called“multi-pathinterference”problem[Dor- notbeachievedwithouttheuseofinterferometry. rington et al. 2011; Heide et al. 2014]. The equivalence of path- The main disadvantages of using interferometry to decompose lengthdecompositionandlightpropagationhasalsobeenexploited transportarereductionsinfieldofview,depthoffield,andspeedof forefficientrenderingoflight-in-flight[Jaraboetal.2014]. capture.Ourworkingvolumecanonlyaccommodatematerialsam- Finally, there exist methods that provide simultaneous decompo- plesorsmallobjects,andoursystemisnotappropriatefortable-top sitions of space and pathlength. In the computer graphics liter- orroom-scalescenes. AsweexplaininSection3,ourmethodop- ature, these fall into two categories. First are methods that de- erates by slicing a volume in micron-sized depth intervals. This compose transport into a direct component (“one-bounce paths”) meansthatmeasuringa1cmdeepvolumerequires10,000images and an indirect or global component (“multi-bounce paths”) [Na- andseveralhours,duringwhichthescenemustremainstill. This yaretal.2006;Gupta,M.andAgrawal,A.andVeeraraghavan,A. isexacerbatedbythefactthatouropticalsetupisverysensitiveto and Narasimhan, S.G. 2011; Reddy et al. 2012]. These imply a vibrationsinducedbyenvironmentsources,andevenmicron-scale matrixMthathasonlyonenon-zeroentryperrow,andaspatially- vibrationscanseverelyaffectourmeasurements. Ms scene scene z x1 oγo1γ2 ooγ4γ3 x1 τ d Mr Mr zo uin,θ us,θ uin,θ ur,τ,θ x source s d(cid:48) d r r x (a) (b) (c) (d) (e) iii.obliqueillumination beamsplitter Figure3:NotationandcoordinatesystemusedinSections3and4. (a)ThepartsoftheMichelsoninterferometercorrespondingtothe camera scene and reference arms. (b-e) The scene and reference arms shown unfolded in the same coordinate system. (b) and (c) show i:d(cid:48) ii:d r r thetargetarms,withlightingandcamerarespectively. (d)and(e) Figure 2: Michelson interferometer. An input beam is split by a showthereferencearms,withlightingandcamerarespectively. beamsplitterintotwocopiesthattraversetomirrorsM andM at r s distancesd andd fromthesplitter,respectively. Thetwocopies r s M .Bydetectinginterferencepatternsinthemeasuredimages,we reflectbackandrecombineatthebeamsplitterbeforebeingimaged. r canseparatelightpathsofdifferentpathlengths,uptoaresolution Insets(i)and(ii)showimagesfortwopositionsofmirrorMr that equal to the temporal coherence length. We can additionally use eitherinduceinterference(d(cid:48)r ≈ds)ordonot(dr (cid:54)=ds).Inset(iii) sourceswithsmallspatialcoherencetoseparatepathsbylocation. showsasetupthatcanbeusedtoachieveobliqueillumination. Thisisbecauseonlylight-pathsthatbeginsufficientlyclosetoeach otheronthesource(i.e.,arelessthanonespatialcoherencelength Anotherlimitationofourapproachrelativetonon-interferometric apart) and combine at the same sensor pixel will interfere. Note techniquesisreducedflexibilityinthespatialprobingpatternsM. that this discussion is based on the coaxial interferometer design Wecontrolthesepatternsbyusingmirrorsofdifferentshapes(Fig- ofFigure2, whichisthedesignweuseexclusivelyinthispaper. ure 6). This means that we can only induce patterns that corre- Obliqueilluminationisachievable,butitwouldrequireadditional spondtomanufacturablemirrors,andthatchangingthepatternM componentsasshowninFigure2.iii. requires substantial manual reconfiguration. This is in stark con- trasttospatialprobingmethods[O’Tooleetal.2012;O’Tooleetal. Thisdiscussionhighlightstheimportanceoftemporalandspatial 2014a;O’Tooleetal.2014b]thatallowcomplexpatternsandsim- coherence,whichwewillnowdescribeanalytically.Theyarewave plereconfigurationinsoftware. phenomena, butscalarwavetheoryissufficienttodescribethem, without having to employ the full complexity of electromagnetic The third limitation of our approach is shared by all methods for theory. To simplify notation, and without loss of generality, we pathlengthdecomposition,namely,thereducedsignal-to-noisera- consideratwo-dimensionalworld,withspatialpointsrepresented tiowhenmultiplepathswithwidelyvaryingenergiesarriveatthe bytheir(x,z)coordinates.Figure3showsthecoordinatesystem. samepixel. Inextremecases,thismakesitdifficultorimpossible toresolvelow-energypaths,andunlikeconventionalHDRphotog- 3.1 TemporalCoherence raphy,thiscannotbesolvedbycapturingmultipleexposures. Webeginbyassumingthatthesourceproducesaplanewaveprop- 3 Optics Background agating in the z direction, so that the electromagnetic field is in- dependentofx. Suchawavecanbeproducedbytransferringthe Wefirstpresentthebackgroundnecessaryforunderstandinginter- outputofapointsourcethroughalens,asinFigure8. Ifthewave ferometry and our interpretation of it as decomposing transport. ismonochromaticatwavelengthλ,theelectromagneticfieldatpo- Our description of temporal coherence follows Goodman [2000], sition(x,z)andtimetcanbedescribedas andourdescriptionofspatialcoherencefollowsLevinetal.[2013]. u(x,z,t)=a·exp(ik(−zη+ct)), (4) InterferometrybeginswiththeMichelsoninterferometer,shownin Figure2,withalightsourceofsimultaneouslysmalltemporalco- wherecisthespeedoflightinvacuum,ηistherefractiveindexof herenceandspatialcoherence. Wewillexplainthesenotionsand themedium,k = 2π/λisthewavenumber,andaisthecomplex theoperationoftheMichelsoninterferometerintuitively,andthen amplitudeofthesource. describe them analytically. The setup uses a beamsplitter to split thelightwaveemittedfromthelightsourceintwoparts. Onepart Real waves are not perfectly monochromatic, but are better de- istransmittedtowardsareferencemirrorMrplacedonatranslation scribedassuperpositionsofplanewavesofdifferentwavelengths, stage.Theotherpartisreflectedtowardsthetargetscene,whichfor (cid:90) ourintuitiveexplanationisanothermirrorM ,butcangenerallybe s u(x,z,t)= a ·exp(ik(−zη+ct)) dk, (5) anyarbitraryscene.Werefertothesidesofthesetupcontainingthe k k referenceandtargetmirrorasthereferencearmandtargetarm,re- spectively.Bothwavesarethenreflected,recombinedatthebeam- where the complex number ak is the amplitude of each compo- splitter,andimagedbyacamera.Wedenotebyd ,d thedistance nent. Typicalrealworldsourcescanbemodeled[Goodman2000] r s betweenthebeamsplitterandmirrorsMrandMs,respectively. bfoyrmaslsyuamnidngpothwaetrask|aare|2rsaanmdopmledvafrroiamblaesGwaiutshspiahnasweisthsammepalnedk¯uannid- k Thesmalltemporalcoherenceofthelightsourcemeansthat,when standarddeviation∆ , k |d −d | is larger than an amount called the temporal coherence r s leernagwthilolfmtehaesusoreuracne,imthaegteweoqwuaalvteostdhoensuomtinotfertfheeretwanodimthaegceasmo-f |ak|2 ∝e−(k2−∆k¯2k)2. (6) the mirrors, as shown in Figure 2.ii. If instead we use the trans- lationstagetorepositionMr toapositiond(cid:48)r sothat|ds−d(cid:48)r|is Thestandarddeviation∆kisthespectralbandwidthofthesource: smallerthanthecoherencelength,thetwowaveswillinterfereand smallervaluesof∆kindicateamoremonochromaticsource. thecamerawillmeasureafringepattern,asshowninFigure2.i. NowsupposeasensorrecordsatpixelxameasurementI(x)ofthe WhenwereplacemirrorM withageneralscene,wecancapturea superpositionoftwocopiesofthewaveufromEquation(5)that s sequenceofimagesatdifferenttranslationsofthereferencemirror havetraveleddifferentdistanceszandz+τ. Themeasurementis averagedoverexposuretime,producing thephaseshift,resultinginEquation(10).(cid:3) I(x)=(cid:10)|u(x,z,t)+u(x,z+τ,t)|2(cid:11)t (7) 3.2 SpatialCoherence =2I (x)+2Re{corr(x,τ)}, (8) o Sofarwehaveconsideredthecaseofaperfectplanewavepropa- where(cid:104)·(cid:105) denotesexpectationovertime,I (x)=(cid:10)|u(x,z,t)|2(cid:11) gatingalongthezaxis.Suchawavehasperfectspatialcorrelation, istheintetnsityoftheoriginalwave,and o t inthesensethatifweknowthefieldvalueu(x,z,t),wecanalso predictitsvalueatanyspatialshiftu(x+ξ,z,t). Thisisonlyre- corr(x,τ)=(cid:104)u(x,z,t)∗·u(x,z+τ,t)(cid:105) (9) alizablebyusingalenstocollimatetheoutputofasourcethathas t infinitesimalarea. However, manyrealsourceshavelargereffec- is the correlation of the two waves. If zero correlation exists be- tive areas. This induces another effect known as spatial incoher- tweenuanditsshiftedcopy,themeasurementwillsimplybeequal ence[Levinetal.2013],whichalsoaffectsinterferencecontrast. to twice the intensity of the original wave, 2I (x). If positive o correlation (constructive interference) or negative correlation (de- Eachpointonanareasourceemitsanindependentwave,resulting structive interference) exists, the measurement will vary between cumulativelyinacollectionofindependentplanewavesu (x,z,t) θ 0and4Io(x),dependingontherelativeshiftτ ofthetwocopies. overasmallangularrangeθ ∈ [−Θ/2,Θ/2]. Asintheprevious Themaximumvalueisachievedwhenthereisperfectcorrelation section,weconsidertwocopiesofthecumulativewave,butinthis (τ =0).Wewillrefertotherealpartofthefieldcorrelation,equal casewithonecopyshiftednotonlyinthez,butalsointhexdirec- tothedifferenceI(x)−2Io(x),astheinterferencecontrast. The tion. Theintensityatapixelonthesensorisgivenbyintegrating temporalcoherencelengthofthesource,whichwedenotebyLc, theintensitiesfromEquation(7)forallindependentwaves, isthelargestvalueofτ forwhichsignificantcorrelationexistsand thereforesignificantinterferencecontrastismeasured. Toevaluate (cid:90) Θ/2 thetemporalcoherencelength,weusethefollowingclaim. I(x)= (cid:10)|uθ(x,z,t)+uθ(x+ξ,z+τ,t)|2(cid:11)t dθ. (14) −Θ/2 Claim1. ThefieldcorrelationmagnitudeisaGaussianwithstan- darddeviationinverselyproportionaltothespectralbandwidth∆ , Thisimpliesthatthecorrelationis, k corr(x,τ)=eik¯τG∆−k1(τ), (10) corr(x,ξ,τ)=(cid:90) Θ/2(cid:104)uθ(x,z,t)∗·uθ(x+ξ,z+τ,t)(cid:105)tdθ, (15) −Θ/2 where G∆−1(τ)=e−21(∆kτ)2. (11) andsimilarlyforthefieldintensityIo(x)andtheinterferencecon- k trastI(x)−2I (x). Toevaluatehowfasttheinterferencecontrast o decaysasafunctionofspatialshift,weusethefollowingclaim. Beforeprovingtheaboveproperty, weconsiderandexperimental visualization of the result. Figure 4 shows the interference com- Claim 2. For an area light source with an angular range θ ∈ ponent we measured using the Michelson interferometer setup of [−Θ/2,Θ/2],thecorrelationdecaysas Figure2,plottedasafunctionofpathlengthdifference. Asshown in the close-up plot, the profile looks like a fringe pattern, which corr(x,ξ,τ)≈W (ξ)eik¯(τ)G (τ), (16) variesasafunctionofthephasedifferenceintroducedbyτ. When ∆c ∆−1 k k¯τ = (2p + 1)π (p any integer), we observe destructive inter- ference(zerointensity); andwhenk¯τ = (2p)π, weobservecon- where (cid:18) ξ (cid:19) λ¯ structiveinterference(twicethesignalintensity). Asshowninthe W∆c(ξ)=sinc ∆ , ∆c = 2Θ. (17) zoomed-outplot,thecontrastofthefringepatterndecaysandeven- c tually becomes almost zero once the pathlength difference τ ex- ceeds some amount. We can define this amount as the temporal Weseethat,forareasources,theinterferencecontrastdecaysvery coherencelengthofthesource,whichfromClaim1isthestandard fast as the spatial shift ξ increases, and no significant contrast is deviationofthecorrelationwindow,Lc =1/∆k. Weobservethat measured for values of ξ larger than the quantity ∆ of Equa- Lc isinverselyproportionaltospectralbandwidth. Thelargerthe tion(17).Analogouslytotheprevioussection,wedefince∆ asthe c bandwidthofthesource,thesmallerthetemporalcoherencelength, spatialcoherencelength. Thespatialcoherencelengthisinversely andthereforethehighertheresolutionatwhichwecandiscriminate proportional to the angular extent of the source. The wider the betweenpathsofdifferentlengths. source,thesmallerthespatialcoherencelength,andthereforethe Proof of Claim 1. To evaluate the correlation, we note from highertheresolutionatwhichwecandiscriminatebetweenpaths Equation(5)thattheFouriertransformofu(x,z,t)overthetime withdifferentpointsoforiginonthelightsource. domain is the signal a eikz. Similarly the Fourier transform of k ProofofClaim2.Aplanewavepropagatinginangleθis u(x,z+τ,t)isa eikτeikz. UsingParseval’stheorem, theinner k productsinthetemporalandfrequencydomainsareequivalent, (cid:90) u (x,z,t)= a ·exp(−ik(sin(θ)x+cos(θ)z−ct)) dk, θ k,θ (cid:28)(cid:90) (cid:29) k corr(x,τ)= |a |2·eikτdk . (12) (18) k whereweassumedη =1forsimplicityandwithoutlossofgener- ality.Forsmallθ,sin(θ)≈θandcos(θ)≈1,therefore Then,usingalsoEquation(6),wehave (cid:90) corr(x,τ)=(cid:90) e−(k2−∆k¯2k)2 ·eikτdk. (13) uθ(x,z,t)= ak,θ·exp(−ik(θx+z−ct)) dk. (19) Thetimedelaybetweentheshiftedwaveu (x+ξ,z+τ,t)and θ Equation(13)is(uptoaconstant)theFouriertransformofaGaus- theoriginaloneu (x,z,t)istheprojectionoftheshift(ξ,τ)on θ sian with s.t.d ∆k. For a Gaussian centered at zero, the Fourier thepropagationdirection(sin(θ),cos(θ))≈(θ,1), transformisaGaussianwithinverses.t.d. 1/∆ . AstheGaussian k isnotcenteredatzero,thisismultipliedbyasinusoidrepresenting u (x+ξ,z+τ,t)=u (x,z,t−(θξ+τ)/c). (20) θ θ 2µm AsmalladaptationofClaim1showsthat,foreveryθ, 0.9 3nm 0.8 10nm corrθ(x,ξ,τ)=eik¯(θξ+τ)e−12(∆k(θξ+τ))2, (21) sity00..76 25nm wheretheshiftbetweenthewavesisnowθξ+τ insteadofτ as en0.5 in Claim 1. If this shift is large, the interference contrast for ev- nt0.4 ery θ decays as a Gaussian with width equal to the temporal co- i0.3 herence length 1/∆ . However, even if the temporal coherence 0.2 k lengthislargerelativetothespatialshift,sothatinEquation(21) 0.1 e−21(∆k(θξ+τ))2 ≈ 1,theobservableinterferencestilldecaysifξ −20 −10 0pathl1en0gth2d0iffer−en8c.0e−τ7(µ.5m−)7.0 −6.5−6.0 is larger than ∆ . To see this, we compute the total interference c Figure4: Measuringtheopticalcoherencelength. Thegraphto contrastbyintegratingEquation(21)overanglesinthesource, theleftshowstheintensitymeasuredbythecamerainFigure2for corr(x,ξ,τ)=(cid:90) eik¯(θξ+τ)e−12(∆k(θξ+τ))2dθ. (22) gdrifafeprhentot vthaelureisghotfsphaotwhlsenagcthlosdeif-fuepreonvceerτar=ang|deso−f2dµr|m, a.nWdhthene θ thepathlengthdifferenceiszero,maximalconstructiveinterference exists. Apathlengthshiftofλ/2resultsindestructiveinterference ThoughwecancomputeEquation(22),toobtainasimplerexpres- sionweapproximatetheGaussiantermbyitscentralvalue, (zerointensity). Asthepathlengthdifferenceincreases,correlation betweenthe wavesis reducedand thefringe contrastdecays, be- corr(x,ξ,τ)≈e−12(∆kτ)2(cid:90) eik¯(θξ+τ)dθ cTohmeidnigffearlemnotlsytczoerlooroedncpeloτtsexshceoewdsmtehaesutermempoenratslfcoorhderifefnerceenltesnpgetch-. θ tral bandwidths. Using a white light source with color filters of =W∆c(ξ)eik¯(τ)G∆−1(τ). (23) spectralbandwidthof3,10and25nmproducestemporalcoher- k encelengthsof50,25,and10µm,respectively.Themeasurements Thelastequalityfollowsfromthefactthatthetermeik¯θξisasinu- forthisfigureweretakenataresolutionof10nm. soidvaryingwithθ,whoseintegralisasinc. Therefore,forlarge ξ,integratingoverθcancompletelyeliminatethecorrelation.(cid:3) bundleofmultiplepinholelasersources,orusingspeciallymanu- 3.3 CoherencePropertiesofDifferentSources factured,large-arealasersemiconductors(diodebarsandstacks). There are many types of light sources with different coherence Practical coherence values. To illustrate how these calculations properties. Aswewillseeinthenextsection(e.g. Figure5),these translate into practice, consider the coherence lengths of an LED properties determine the type of transport decomposition that our sourcecoupledwithacolorfilterandaperture. interferometerprovides. Wediscussvarioussourceshere,limiting ourattentiontothoseinthevisiblespectrum. With respect to temporal coherence length, note that broadband Lasersourcesareatoneextremeendofcoherence.Thesearehigh- sources and color filters are often described by the width ∆ of powersourcesthatcantypicallybemodelledasidealpoints(zero thevariationaroundthecentralwavelengthλ¯,ratherthanthevλari- area), while also having very narrow, effectively monochromatic, ation∆ aroundthewavenumber.UsingsimpleTaylorexpansion, spectralwidths. Asaresult, theirtemporalandspatialcoherence k wecanrelatethistothetemporalcoherencelengthas lengths can reach a few meters, implying poor spatial and path- length resolution. For this reason, lasers are not appropriate for λ¯2 micron-scalelighttransportdecompositions,butcanbeusedwhen L =1/∆ ≈ . (24) micron-scaleresolutionisnotnecessary[Abramson1983]. c k 2π∆λ Attheotherextremearelight-emittingdiode(LED)sources.These Imagine a broadband LED, emitting in the entire visible range can be either “colored”, with a spectral bandwidth of a few tens [400,700] nm. Ignoring any ultraviolet and infrared energy, we ofnanometersaroundtheircentralwavelength,orverybroadband, can set λ¯ = 550nm and ∆ = 150nm, resulting in coherence λ coveringtheentirevisiblespectrum. Necauseoftheirlowerpower lengthLc ≈ 0.3µm. Inpractice, thisveryfineresolutioncomes density,LEDsourceshavelargeremittingareas,withwidthsrang- atthecostofveryreducedinterferencecontrast,duetochromatic ingfromseveralmillimeterstoafewcentimeters.Asaresult,they aberration of optics. Alternatively, we can couple such a source have micron-scale temporal and spatial coherence lengths. Their withacolorfilter,ordirectlyuseacoloredLEDsource. Theseal- exactvaluescanbecontrolledbymodulatingthesourceoutputwith ternatives give spectral widths in the range of 1−50nm, which anopticalcolorfilter,andplacinganaperturebetweenthesource correspond to temporal coherence lengths of a few microns. Ad- and the collimating lens: A narrower spectral filter means longer ditionally, asmentionedinSection2, thesenarrowerbandsallow temporalcoherence,andasmalleraperturemeanslargerspatialco- capturingmeasurementsatmultiplespectralchannels. InFigure4, herencelength. Theincreaseincoherencecomesattheexpenseof we use the Michelson interferometer of Figure 2 to measure the lowerlightoutput,andthereforelongerexposuretime. temporalcoherencelengthsofsuchacombination,usingthreedif- ferentcolorfilters. Usingafilterofbandwidth25nm,wemeasure Between the two extremes, there are two source categories. The atemporalcoherencelengthofabout10µm.Thisistheresolution firstcategoryincludessuperluminescentdiode(SLD)sources,and weuseinmostofourexperimentsinthepaper. supercontinuumlasersources.Likestandardlasers,thesearehigh- powersourcesthathaveinfinitesimaleffectivearea,butatthesame time,theyarepolychromaticlikestandardLEDs.SLDshaveband- Intermsofspatialcoherencelength,asindicatedbyEquation(17), widths comparable to colored LEDs, and supercontinuum lasers thevalueswecanachieveinpracticeareafunctionoftheangular spantheentirevisiblespectrum. Therefore,thesesourcescombine extent of the source. For visible wavelengths, assuming that we themeter-sizespatialcoherencelengthsoflaserswiththemicron- cancollimatethesourceoutputtohaveanangularrangeof4◦,we scaletemporalcoherencelengthsofLEDs. have ∆c ≈ 8µm. With an angular extent of 1◦ the coherence lengthincreasesto∆ ≈ 32µm. Inanaturalenvironmentwhere c Finally,theoppositecombinationcorrespondstoamonochromatic illuminationarrivesfrommultipledirectionsoverthehemisphere, areasource. Suchasourcecanbecreatedusingaspatiallydense coherencelengthcanapproachthewavelengthoflight. 4 Light Path Decomposition siblepaths,withatimedelayproportionaltothepathlength, Equipped with analytical representations of temporal and spatial (cid:90) (cid:90) (cid:18) (cid:96)(o )(cid:19) coherence,wearereadytointroduceamathematicalmodelofin- us,θ(x,t)= α(oγ)uin,θ x+ξ,t− cγ dξ terferometricdecompositionoflighttransport.Thecoreofthissec- ξ {oγ}γ∈A(x+ξ,x) tionisEquation(34),whichrelatesdiscreteinterferencemeasure- (cid:90) (cid:90) (cid:16) ς(cid:17) ments to an underlying pathlength-resolved transport function—a = T(x+ξ,x,ς)uin,θ x+ξ,t− c dςdξ. (27) continuous version of the pathlength-resolved transport matrix of ξ ς Equation(3). Usingthismodel,were-interprettheoutputoftime- The above equation relates the field to the function T(x ,x ,τ) domain,full-fieldOCTasdecompositionbypathlengthτ(transient forthescene.Thetermu (cid:0)x+ξ,t− ς(cid:1)iscomplex-val1ued2and imaging), andwedescribecombinationsofsourcesandreference in,θ c includesthephasedifferencebetweentheintegratedcomponents, mirrorsthatprovideothertypesofdecompositions. duetothedifferentlengthsofpathsineachcomponent. Throughoutthissection, weassumethatweimagewithacamera focusedatdepthz ,asshowninFigure3. Aswerestrictthedis- Interference of reference and scattered fields. Having derived o cussiontopointsonthez = z plane,fromthispointforwardwe expressionsforthereferenceandscatteredfields,wenowcompute o simplifynotationbyomittingthezcoordinateoffields.Wedenote the interference contrast that can be measured by a camera. Ig- byu (x,t)theincomingfieldarrivingatboththereferenceand noringfornowdiffractionblur,acamerafocusedatdepthzo will targeitn,aθrmsattimetafterbeingemittedfromthesource. Thisis measurethesuperpositionofthetwofields, asuperpositionofmonochromaticwaves,asinEquation(18). We (cid:90) (dxen,zoote)bayndusti,mθ(ex,t.t)Stihmeifilaerlldy,swcaettdeerendotbeybtyheusr,cθe,nτe(xa,tts)ptahceerpeofeinr-t Ii,τ(x)= θ(cid:10)|ur,θ,τ(x,t)+us,θ(x,t)|2(cid:11)t dθ (28) encefieldatpoint(x,zo)whenthereferencemirrorispositioned =Is(x)+Ir,τ(x) atdepthz +τ/2.Webeginbyderivingexpressionsthatrelatethe o (cid:26)(cid:90) (cid:27) referenceandscatteredfieldstotheinputfield. +2Re (cid:104)u (x,t)∗·u (x,t)(cid:105) dθ , (29) r,θ,τ s,θ t Referencefield. Thereferencefieldu relatestou through θ r,θ,τ in,θ aspatialtransformationf(x)andatemporalshift, wherebyI (x),I (x)wedenotetheintensitiesofthescattered s r,τ andreferencefields,respectively, u (x,t)=u (f(x),t−τ/c). (25) r,θ,τ in,θ (cid:90) (cid:90) InthestandardMichelsoninterferometerofFigure2,wehavesim- Is(x)= (cid:10)|us,θ(x,t)|2(cid:11)t dθ, Ir,τ(x)= (cid:10)|ur,θ,τ(x,t)|2(cid:11)t dθ. plyf(x)=x.Wecanproducemoregeneraltransformationsf(x) θ θ (30) withothermirrorconfigurations(Figure6). Theformoff(x)will TheintensitycomponentsI andI correspondtotheimagesthe determinethenon-zeroentriesofthematrixMfromEquation(3). s r,τ camerawouldmeasureifweblockedthemirrororscenearmsofthe Scattered field. The scattered field u relates to the input field setup, respectively, and measured the other. By subtracting these s,θ throughamoregeneraltransformation,whichisafunctionofthe components,weremainwiththeinterferencecontrast,equaltothe scene’s geometric, refractive, and material properties. To derive realpartofthecorrelationofthereferenceandscatteredfields, its form, we introduce some additional notation. We denote by (cid:90) {(xoγ,}zγ∈)At(ox1p,xo2in)tth(xes,ezto)fa(slleepoFsisgiubrleep3afthosritnhethceassecexnef=romxp),oibnyt Cτ(x)= (cid:104)ur,θ,τ(x,t)∗·us,θ(x,t)(cid:105)t dθ. (31) 1 o 2 o 1 2 θ (cid:96)(o )theopticallengthofeachpath,andbyα(o )theenergyloss γ γ alongthepath—thislossisafunctionofthepropagationdistance Cτ(x)isacorrelationsignal, analogoustocorr(x,ξ,τ)inEqua- andvolumetricabsorptionalongthepath.Dependingonthescene, tion(15). Wedenoteitbyadistinctsymbolbecauseofitsimpor- suchpathscanbeofmanyforms: directpathstravelingfromthe tanceinourapplication. Usingthecoherencepropertiesforcorre- sourcetotheobjectandthenthecamera,multiplereflections,mul- lationsignalsfromSection3,wecanprovethefollowingclaim. tiple scattering, and so on. In the simple case that the scene is a Claim3. Thecorrelationofthereferenceandscatteredfieldsis perfectplanarmirror,therearepathswithnon-zeroabsorptiononly if the start and end point are the same, x1 = x2, and for every (cid:90) x(x11o,nzloy).aFsoinrgalepastuhchinpaaitrh,wexhiesrtes—thteheredfriarecctitvpeaitnhdferxomη ≈(x11,,z(cid:96)o()oγto) Cτ(x)∝ ξW∆c(ξ) isequaltothegeometricpathlength;inmediawithlargerrefractive (cid:90) indices,thepathlengthalsofoldsintheopticalpathdelay.Finally, T(f(x)+ξ,x,ς)eik¯(ς−τ)G∆−1(ς−τ)dςdξ. (32) we denote by T(x ,x ,τ) the complex scalar resulting from the ς k 1 2 integrationofallpathsfromx tox withopticallengthτ, 1 2 (cid:90) Proof. Wedenoteξ=x+ζ−f(x),implyingx+ζ =f(x)+ξ. T(x1,x2,τ)= α(oγ). (26) SubstitutingEquations(25)and(27)inEquation(31),weobtain {oγ|(cid:96)(oγ)=τ}γ∈A(x1,x2) (cid:90) (cid:90) C (x)= T(f(x)+ξ,x,ς) WecallT(x ,x ,τ)thepathlength-resolvedlighttransportfunc- τ 1 2 tion. Whenthesceneisaplanarmirror, T(x ,x ,τ) = δ(x − ξ ζ x ,τ −d ), where d is the depth of the sce1ne2mirror. By d1ef- (cid:90)(cid:68) (cid:16) τ(cid:17)∗ (cid:16) ς(cid:17)(cid:69) 2 s s u f(x),t− u f(x)+ξ,t− dθdζdξ (33) inition,weobservethatthefunctionT(x1,x2,τ)isthecomplex- θ in,θ c in,θ c t valuedcontinuousversionofthepathlength-resolvedlighttransport matrix,Tτ,introducedinSection1. Inpartsofthefollowingdis- UsingClaim2,wegetEquation(32).(cid:3) cussion,wewillbeemployingthelighttransportmatrixdiscretiza- tionforvisualizationandintuition,withtheunderstandingthatwe TheaboveclaimshowsthatthecorrelationCτ(x)isequaltothe continuetousethecontinuousversionT(x ,x ,τ). pathlength-resolvedlighttransportfunctionT(f(x),x,τ)fromen- 1 2 trancepoint(f(x),z )toexitpoint(x,z ),blurredinspacewith o o We can now use the above functions to derive the scattered field a sinc of width proportional to the spatial coherence length, and u (x,z ).Thisisthesuperpositionofcontributionsalongallpos- blurredinthepathlengthdimensionwithaGaussianofwidthpro- s,θ o SLD mirror diffuser SLD or a supercontinuum laser. Capturing an entire transient se- spatially (cid:51) quencecorrespondstosweepingoverτ values,whichcanbedone o coherent (τ) bydenselyscanningthereferencearmtodifferentpositions. This temporally (cid:55) hardwarecombinationandcaptureprocedureisexactlyequivalent coherent toconventionalfull-field,time-domainOCT. (a)pathlengthdecomposition Spatial probing. Referring again to Equation (3), another form laserbundle of decomposition corresponds to setting, w(τ) = 1 everywhere, spatially (cid:55) andusingaspatialprobingpatternMwithnon-zeroentriesonly coherent (cid:80)τ (τ) for the paths we want to preserve. This requires a source with a temporally (cid:51) near-infinitetemporalcoherencelengthandaverysmallspatialco- coherent herencelength. FromSection3.3,suchasourcecanbeproduced (b)spatialprobing using a laser bundle. Additionally, we require a reference mirror LED configurationwhoseshapeinducesthespatialtransformationf(x) spatially (cid:55) correspondingtothedesiredpatternM.Usingaplanarmirrorasin coherent (τ) thestandardMichelsoninterferometercorrespondstoamatrixM temporally (cid:55) thatisnon-zeroonlyinitsmaindiagonal. Wediscussalternatives coherent laterinthesection. Duetotheinfinitetemporalcoherencelength, thiscasedoesnotrequireascanofthereferencearm. Wemention (c)pathlengthdecomposition+spatialprobing spatialprobinghereforcompleteness,butnotethat,forthistypeof Figure5: ByequippingtheMichelsoninterferometerwithsources decomposition,interferometrydoesnotofferanyadvantagescom- havingdifferentcoherenceproperties,wecancapturedifferentlight pared to the other, easier to implement and use, techniques dis- path decompositions. (a) Pathlength decomposition separates all cussed in Section 2. For this reason, we did not implement this pathsinascene(M = 1),regardlessoftheirendpointlocations, case,andonlyusedspatialprobingcombinedwithpathlengthde- intermsoftheiropticallengthτ. Itseparatesdirectpaths(blue), composition,asdiscussedinthenextparagraph. reflections (purple), retroreflections (orange), and all scattering Pathlengthdecompositionandspatialprobing.Thelastcasede- (greens). (b) Spatial probing separates paths with certain start composeslighttransportsimultaneouslyintermsofpathlengthand pointlocationswhileignoringtheirlengths(byeffectivelymeasur- spatialcorrespondences. Assuggestedbytheprevioustwocases, ingsummationsoverpathlength). ForadiagonalM,itseparates we can do this using a source with temporal and spatial coher- direct, retroreflection, and backscattering (dark green) paths. (c) encelengthsthatarebothsmall.AnLEDsourceistheappropriate Finally, itisalsopossibletocombinetheprevioustwocasesand choiceasdescribedinSection3.3.Asisneededforpurepathlength separatepathsintermsofbothpathlengthandendpointlocations. decomposition,capturerequiresadensescanofthereferencearm tomanydifferentpositions. portionaltothetemporalcoherencelengthofthesource.Byrecord- ingtheintensityI (x)ofEquation(28)andsubtractingtheindi- Creatingprobingpatterns. Inthelasttwodecompositiontypes, i,τ vidualintensitiesofthesourceandreferencefields,wehave replacingtheplanarmirrorMrinthereferencearmoftheMichel- son interferometer with different mirror shapes induces different Tm(f(x),x,τ)(cid:44)|I (x)−(I (x)+I (x))|2 (34) correspondences f(x), that can be used to probe off-diagonal el- i,τ s r,τ ementsofthelighttransportmatrix. Forinstance, theright-angle =|2Re(Cτ(x))|2 pairofmirrorsinFigure6(b)inducesaverticalflip,orf(x)=−x. =(cid:12)(cid:12)(cid:12)2Re(cid:16)T(f(x),x,τ)∗W∆c ∗(eik¯τG∆−1(τ))(cid:17)(cid:12)(cid:12)(cid:12)2. Tpohritsmcoartrreisxp,owndhsicthoimncelausduerisngtwthoe-baonutni-cdeiapgaotnhaslaosftshheowlignhitntrFanigs-- k ure 6(b). Shifting such a pair of mirrors vertically in the figure Thisequationisourmainresult. Itshowsthatusinginterference, measuresarbitraryanti-diagonals,asinFigure6(c);andcombina- we can measure blurred samples of the pathlength-resolved light tionsofparallelmirrorsandorthogonalmirrorpairssamplediffer- transportfunction. Thespatialresolutioniscontrolledbythesize entblocksofthelighttransportmatrixindifferentways,asshown of the spatial blur kernel, which is in turn controlled by the illu- inFigure6(d). NotethattheprobingpatternMproducedbythese minationangleofthelightsource. Similarly,thepathlengthreso- mirror configurations will be different if we change our setup so lutioniscontrolledbythesizeoftheblurkernelinthepathlength thatthecameraandsourcearenolongerco-axial. dimension, which in turn is controlled by the spectral bandwidth of the light source. The exact correspondence (f(x),x) between 5 Pipeline and Design Considerations entranceandexitpointswherewesamplethelighttransportfunc- tion depends on the transformation implemented at the reference Havingpresentedoursetupandmethodology,wenowdiscussthe armofthesetup.Finally,thepathlengthwherewesamplethelight computational post-processing and other practical considerations transportfunctiondependsonthedepthofthereferencearm. foroptimizingtheperformanceofoursetupforgraphicsapplica- tions. Throughoutthissection,weconsideratoysceneconsisting 4.1 DecompositionTypes ofatilteddiffuseplane,asshowninFigure7(a). BasedonourmodelinEquation(34),theinterferometerofFigure2 Capture and computational post-processing. Measuring the canbeequippedwithvarioussourcesandmirrorconfigurationsto scene and mirror images I and I separately is impractical, as s r,τ producedifferenttypesoflighttransportdecompositions. Thefol- it doubles acquisition time. In practice, since the reference arm lowingdiscussionissummarizedinFigures5and6. contains a mirror configuration, the intensity I does not vary r,τ muchwithτ andcanbeestimatedbysmoothingtheτ dimension. Pathlengthdecomposition.Thefirstcaseisequivalenttotransient Forthisreason,weperformasinglescanofthescene,capturinga imaging,andcorrespondstosettingM=1andw(τ)=δ(τ−τ ) o setofframescorrespondingtoI (x)forvariousvaluesofτ, as inEquation(3).Fortheformer,werequireasourcewithverylarge, i,τ shown in Figure 7(a)-(b). Scanning a volume of 1cm using this essentiallyinfinite,spatialcoherencelength,meaningthatthespa- processtypicallyrequirescapturing10000images(oneimageper tialblurkernelW inEquation(34)isequalto1everywhere.For ∆c micron-translationofthereferencearm),aprocesswhichcantake thelatter, weneedasourcewithaveryshorttemporalcoherence uptoseveralhoursforscenesrequiringlongexposuretimes.Aswe length,makingthepathlengthblurkernelG inEquation(34) ∆−1 mentioninSection6,forscenesthatrequiremultiplespectralchan- k verynarrow. AsdiscussedinSection3.3,thisisachievedusingan nelsorhigh-dynamicrange,weneedtorepeatthescanningprocess mirror diffuser mirror diffuser tilteddiffuse plane τ N τ1 ... τN ... capturedframes τ1 (a)diagonalprobing (b)anti-diagonalprobing τ ... τ 1 N (c)sub-anti-diagonalprobing (d)otherprobingpatterns processedframes Figure6:ReferencemirrorconfigurationsinaMichelsoninterfer- Figure7: Captureandcomputationalpipeline. Weconsideratoy ometerinducedifferentspatialprobingpatterns.Assumingco-axial sceneconsistingofadiffuseplane,tiltedrelativetotheopticalaxis sourceandcamera: (a)Aplanarmirrorprobesthemaindiagonal of the camera and illumination, as shown in the upper left. By of the light transport matrix, corresponding to direct, retroreflec- translating the reference mirror to different positions, we capture tion,andbackscatteringpaths.(b)Aright-anglemirrorpairprobes a sequence of frames corresponding to the intensity Ii,τ(x) mea- theanti-diagonal, whichincludes2n-bouncereflectionpaths. (c) suredfordifferentvaluesτ. ByprocessingtheframesusingEqua- Offsetting a right-angle pair allows probing away from the anti- tion(36),weseparatetheinterferencecomponentTˆm(f(x),x,τ), diagonal. (d)Differentcombinationsofthesebasicconfigurations resultingintheimagesatthebottom. Asthetargetplaneistilted, probeblocksofthelighttransportmatrixindifferentways. different points have different depths and therefore interfere with the target arm at different pathlength values τ, corresponding to severaltimes,resultinginhundredsofthousandsofimages. thescanlinesshownintheprocessedframes. Followingthecapturesection,inpost-processingweapproximate theinterference-freecomponentas theenergyofthescatteredfieldattheopticallengthτ ofinterest Tm(f(x),x,τ). Becauseindiffusescenesonlyasmallportionof Iˆ(x)+Iˆ(x)≈median (I (x)). (35) the energy in the target arm returns to the camera, to achieve the s r τ i,τ above ratio, we need to attenuate the very high amplitude of the Furthermore, in real scenes the interference signal Tm of Equa- referencearm. Inmostscenes,theintensityatasinglepointisthe tion34involvesahigh-variationpseudo-randomspecklenoise. To resultofcontributionsfrommultiplepaths,makingitimpossibleto eliminatethesespeckleartifacts,weblurourmeasurementsovera a-priorimatchtheenergyofthepathlengthτ componentonly. In- smallspatialwindowwithafilterg(x). Ourfinalestimateofthe stead,weattenuatethereferencearmsothatitsintensitymatches opticalpathlengthdecompositionfunctionis,then,computedas thetotalintensity.AsdiscussedinSection6,wedothisusingeither cross-polarization,orneutraldensityfilters. Tˆm(f(x),x,τ)=Tm(f(x),x,τ)∗g(x) Opticsblur. TheidealanalysisoftheSection4doesnottakeinto =|I (x)−Iˆ(x)−Iˆ(x)|2∗g(x). (36) i,τ s r accountblurintroducedbytheopticsoftheinterferometrysetup, includingdiffractionandsensorblur. Theseblurprocessescanre- Thisblurringisoneofthefactorsthatresultinareductioninthe duceinterferencecontrast,unlessthevariousapertureandmagni- spatialresolutionofourmeasurements.Wediscussspecklenoisein ficationparametersarechosenappropriately. Wediscusstheseef- moredetailinthesupplementarymaterial. Intheremainingofthis fectsbelow,andingreaterdetailinthesupplementarymaterial. section,wediscussotherfactors,aswellaspracticestomaximize thesignal-to-noiseratioofthemeasurements(36). Weconsiderasbeforeacamerafocusedatz ,asshowninFigure3. o Contrast. Assumewewanttocapturethepathlengthcomponent Fromdiffractiontheory[Goodman1968],wehavethatinsteadof whichcorrespondstoopticallengthτ andthatthereferencemirror thefieldu (x,t)arrivingatpoint(x,z ),thecamerameasuresthe θ o ispositionedatthecorrespondingdepth.Wewilldefinethecontrast fieldblurredbythecameradiffractionblurkernel,W ∗u (x,t), asthespatiallyaveragedmagnitudeoftheinterference(correlation) wherethediffractionblurwidth∆ =λ¯/(2Φ)isinv∆erΦselypθropor- Φ component,overtheintensitycomponents, tionaltotheacceptanceangleΦofthecamera. (cid:112) Contrast= Ex[Tm(f(x),x,τ)]. (37) Theintensitymeasuredbythecameraistheintensityoftheblurred E [I (x)+I (x)] field,averagedovertheareaofapixelonthesensor, x s r,τ Toavoidsaturation,wesettheexposuretimesothattheaveraged (cid:90) Θ/2 intensities without interference fall in the middle of the sensor’s I(x)=Π∆x ∗ (cid:10)|W∆Φ ∗uθ(x,t)|2(cid:11)t dθ, (38) dynamicrange,E [I (x)+I (x)]≈0.5.Then,Equation(37)is −Θ/2 x s r,τ simplytheaveragedmagnitudeoftheinterferencecontrast. whereΠ isthepixel-sizedrectangularfunction. ∆x AshortcalculationshowsthatthecontrastinEquation(37)ismax- imized when the energy of the reference field I (x) is equal to Asaresultoftheabovetwoprocesses,weproveinthesupplemen- r,τ 0.45 optimized 0.45 optimized 2×A (b) (c) (d)(e) (g) (h) 0.40 4×As 0.40 2×As 0.35 2×ps 0.35 4×As 2×Ac 4×p As (f) ntrast00..2350 24××AAcc ntrast00..2350 42××Apc (j) o0.20 o0.20 (a) Θ/2 (i)c c Ac 0.15 0.15 4×p (k) 0.10 0.10 0.05 0.05 Φ/2 p (l) −37.85−37.84−37.83−37.82−37.81 0 0.2 0.4 0.6 0.8 1 pathlengthτ (µm) exposuretime Figure8: OptimizingtheMichelsoninterferometerofFigure2. Theschematictotheleftdescribesourimplementation. Weconsiderthe effectofthefollowingimagingparameters: sourceapertureareaA ,cameraapertureareaA ,andpixelpitchp. Theoptimizedsettings s c correspondtocameraF-numberoff/32,sourceaperturesothatthesource’sangularextentisapproximatelyhalfthatofthecamera,and pixelpitchof4µm.Differentconfigurationsareproducedbymodifyingonlyoneparameter.Foreachconfiguration,themiddlegraphshows themeasuredcontrastforthetilteddiffuseplanesceneofFigure7;andtherightgraphcomparescontrastandtotalexposuretime. tarymaterialthatmeasurementsfromEquation(34)taketheform, toautomaticallychangebetweenfilterscenteredatdifferentwave- lengths:625nm(red),525nm(green),and450nm(blue). Tm(f(x),x,τ)=|2Re(β∗C (x))|2 τ Additionally,weusethreepolarizers: atthesource(d),camera(j), =(cid:12)(cid:12)2Re(cid:16)β∗W ∗T(f(x),x,τ)∗(eik¯τG (τ))(cid:17)(cid:12)(cid:12)2, andreferencearm(g).Thepolarizersonthesourceandcameraare (cid:12) ∆c ∆−1 (cid:12) rotatedtobeeitherparallelorcrossedwitheachother,depending k (39) onwhichpolarizationcomponentofthescene’stransportistobe measured.Thepolarizeronthereferencearm(g)isrotatedrelative whereβ =Π∆x ∗W∆Φ. totheothertwoinordertoattenuatethereferencebeambydifferent amounts. ThisenablesHDRimaging: wescanexposurebrackets Itisimportanttoobservethattheadditionalblurβactsonthecom- where,foreachsettingofthecamera’sexposuretime,thereference plex valued correlation component, rather than on powers (inten- polarizer (g) is adjusted so that the reference beam’s intensity is sities). Therefore, ifthecorrelationsignalC (x)containsspatial τ at roughly one-quarter of the sensor’s dynamic range (for a total featureswhosefrequencyishigherthanthewidths∆ ,∆ ofthe x Φ intensityatroughlyhalfthedynamicrangewhenimagedtogether blurkernels,theaveragedpowerofmeasurementsignalisreduced. with properly exposed parts of the target scene). When we need FromEquation32,weknowthatthesignalC (x)haslimitedspa- τ tomeasurebothpolarizationcomponents,weremovepolarizers(d) tialresolution∆ ,asaresultofthelimitedspatialcoherenceofthe c and(j),andreplace(g)withasequenceofneutraldensityfilters. lightsource.Therefore,toachievegoodcontrast,weneedtoselect theimagingparameterssuchthattheopticsblurremainsbelowthe Wediscussourimplementationindetailinthesupplementaryma- signalresolution,thatis,∆x <∆cand∆Φ <∆c. terial. Intherestofthissection, weusethisassemblytoanalyze transport in various scenes and for various applications. We first Wenotethatrequesting∆ < ∆ isequivalenttorequestingthat Φ c discussexperimentsusinganLEDsource(Figure5(c)). theangularextentofthesourceissmallerthantheacceptanceangle ofthecamera,Θ<Φ.Ingeneral,usingawidesourceisdesirable, Depthscanning.FollowingSection4.1,weuseanLEDsourceand asitincreasestheoverallpoweroftheilluminationandtherefore aplanarreferencemirrortomeasurethepathlengthdecomposition reducesexposuretime.However,increasingthesourceangularex- ofthediagonalcomponentTm(x,x,τ).Asourcameraandsource tentwithoutadjustingtheimagingparametersaccordinglywillalso areco-axial,wethenobtainthedepthD(x)atpixelxas reducethecontrastofthecorrelationsignal.Torelatethesedirectly toimagingparameters,wedenotebyΨthenumericalapertureof D(x)=min{τ :Tm(x,x,τ)>0}. (40) thecameralens.Ashortcalculationshowsthatacameraimagingat magnificationmacceptslightuptoamaximalangleΦ= Ψ . Figure 9 shows scans of a few different objects. Each scan mea- 1−1/m sures a volume of 15mm at a step size of 1µm, and requires InFigure8,wequantifytheaboveobservationsbymeasuringthe roughlyeighthoursofcapturetime. Theeffectivedepthresolution detectioncontrastforthetilteddiffuseplanesceneofFigure7un- is10µm. Wecanmeasuredepthinanumberofchallengingsitu- derdifferentimagingconfigurations.Wevarythesizeofthesource ations,suchaswhenmaterialsexhibitsubstantialscattering(soap), and camera aperture, and the size of the camera pixel—which is semi-transparency(gummybear),andstrongcausticsandspecular analogoustochangingthecameramagnification. Weobservethat ordiffuseinterreflections(cupandpasta).Theveryfinepathlength settingimagingparameterssub-optimallycanresultinlossofmore resolutionofoursetuptranslatesdirectlyintosharpdepthresolu- thanhalfthedetectioncontrast. Ontheotherhand,optimizingde- tion,whichallowscapturingdetailssuchasthehairtextureonthe tectioncontrastcomesatthecostofincreasedexposuretime. coinandthefinetextureonthegnocchisurface. Figure 10 shows depth maps obtained for two more scenes. The 6 Implementation and Experiments stagestepsizeandeffectiveresolutionarethesameasbefore,but the volume and capture time increase to roughly 25mm and 12 Figure8showsaschematicofouropticalsetup.Weselectsources hours,respectively,tocapturethelongerreflectionpaths. Thefirst andmirrorscorrespondingtoconfigurations(a)and(c)ofFigure5, sceneincludessharpspecularinterreflections, with asinglechess and(a)and(b)ofFigure6, respectively. Theexactconfiguration piecebetweenanangleddiffusewall(right)andamirror(left). In dependsontheapplication,asdescribedbelow. the acquired depth map, the mirror reflections are interpreted as OurschematichastwoadditionscomparedtoFigure2. First, we realobjectsatagreaterdepth.Despitetheindirectreflectionbythe modulatetheoutputofthesourcesourceusingcolorfiltersofband- mirror, the depth map of the chess piece is accurately recovered. width25nm(e),producingatemporalcoherencelengthofabout The second scene shows a translucent gummy bear between two 10µm(Figure4). ToenableRGBimaging,weuseafilterwheel diffusewalls.ComparedtotherightmostcolumnofFigure9,where Figure9:Scanningdepth.Foreachscenefromtoptobottom:anunprocessedHDRframe;scanneddepth,visualizedusingpseudo-colorand aperiodicchangeinluminanceforacontouringeffect;andrenderingofscanned3Dmesh.Allscansareatadepth/pathlengthresolutionof 10µm.Scenesfromlefttoright:USquarter,gnocchi,soapcarving,plastictoycup,drypasta,andgummybear. HDRframe directcomponent globalcomponent Figure11:Direct-globalseparationforaclose-upofastrawberry. theexactdirectcomponent,anditisnecessarytoalsodopathlength decomposition. WithreferencetoFigure1,spatialprobing(diag- onalofthelighttransportmatrix)capturesthevariousbluepaths, whichincludedirectpathsandretroreflections, butalsobackscat- Figure10: Depthscansofcomplexscenes. Fromlefttoright: an tering. Usingpathlengthdecompositiontoselectonlytheshortest unprocessedHDRframe;scanneddepth,visualizedasinFigure9; pathadditionallyremovesthebackscatteringcontributions. andrenderingof3Dmesh.Toprow:Chessknightbetweenadiffuse walltotherightandamirrortotheleft. Themirror-reflectionis Figure 11 shows such a decomposition for a close-up of a straw- interpretedasarealobjectatagreaterdepth.Bottomrow:Gummy berry.Weproducedthisseparationfrom12scansofthestrawberry bearbetweentwodiffusewalls. Thescenegeometryisrecovered (4exposures×3spectralchannels).Eachscanwasperformedata accurately, despite the conflation of paths from the diffuse walls stepsizeof10µm,meaningthatweslightlyundersampledinthe behindthenear-transparentgummybear. pathlengthdomainrelativetothesource’spathlengthresolutionof 10µm.Additionally,weused8×8pixelbinningonthecamerato the gummy bear is surrounded by air, here the combination of a speed-upframestreaming, andlargesourceandcameraapertures diffusewallbehindanear-transparentgummybearinducesmany todecreaseexposuretime. Eventhoughtheseimagingsettingsare distinctpathsofsimilarintensityateachcamerapixel.Despitethis suboptimal(seediscussionofFigure8),theywerenecessarytore- conflation,thescenegeometryisstillrecoveredaccurately. duce the total scanning time to a little below two hours, thereby accommodatingthelimitedshelflifeofthestrawberry. Separation of direct and global components. We can use the same source and mirror combination as before to also do direct- Weobservethatthedirectcomponentisessentiallyachromaticand global separation. Since the source and camera are coaxial, the captures features characteristic of direct illumination, such as the direct component at each pixel is the energy of the shortest path specular highlights and high-frequency surface structure. The in- thatcontributestothediagonalofthelighttransportmatrix.Thus, directcomponentinthisimageisprimarilyvolumetricscattering, andweseethatitaccountsfortheredcolorofthestrawberryanda I (x)=Tm(x,x,D(x)), (41) largepartofthecolorationofthestrawberryseeds. direct whereD(x)isthedepthfromEquation(40). Theglobalcompo- Scattering. AsdiscussedinSection4.1,wecanalsoobtainade- nentsumsthecontributionsfromallotherpathsand,givenanimage compositionofscatteringpathsthatbeginandendatthesamelo- I(x)capturedusingaconventionalcamera,canbeobtainedas cationsonthesurfaceofascatteringvolume. Todemonstratethis, Figure12showstheresultsfromscanningascenewithmaterialsof I (x)=I(x)−Tm(x,x,D(x)). (42) differentscatteringproperties,suchasametal,adiffusedwallanda global highly-scatteringzirconiacoating. Figure12(c)showsaprocessed Wenotethatspatialprobingaloneisnotsufficientforcomputing framefromthescan,wheretheintensitytailsatthezirconiacoat-
Description: