Explosive Micro-Bubble Actuator Dennis van den Broek The research described in this thesis was carried out at the Transducers Science and Technology Group of the MESA+ Research Institute at the University of Twente, En- schede, The Netherlands. The project was financially supported by the Dutch Technology Foundation (STW). Promotiecommissie: Voorzitter prof. dr. ir. J. van Amerongen Universiteit Twente Secretaris prof. dr. ir. A.J. Mouthaan Universiteit Twente Promotor prof. dr. M.C. Elwenspoek Universiteit Twente Referent prof. dr. A. van Keulen Technische Universiteit Delft Leden prof. dr. A. Prosperetti Universiteit Twente prof. dr. ir. G.J.M. Krijnen Universiteit Twente prof. dr. C.J. Kim University of California, Los Angeles prof. dr. D. Lohse Universiteit Twente prof. dr. T.H. van der Meer Universiteit Twente van den Broek, Dennis Explosive Micro-Bubble Actuator Ph.D. Thesis, University of Twente, Enschede, The Netherlands ISBN: 978-90-365-2743-9 Copyright (cid:2)c 2008 by D.M. van den Broek, Enschede, The Netherlands Explosive Micro-Bubble Actuator proefschrift ter verkrijging van de graad van doctor aan de Universiteit Twente op gezag van de rector magnificus prof. dr. W.H.M. Zijm, volgens besluit van het College voor Promoties in het openbaar te verdedigen op vrijdag 31 oktober 2008 om 15:00 uur door Dennis Micha van den Broek geboren op 11 augustus 1979 te Vlaardingen Dit proefschrift is goedgekeurd door de promotor: prof. dr. M.C. Elwenspoek aan mijn vader Contents 1 Actuators and Bubbles 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Actuation principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Thermo-pneumatic actuation . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3.1 Thermal expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3.2 Phase-change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3.3 Actuator design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Bubble actuators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4.1 Inkjet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4.2 Bubble pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4.3 Mechanical displacement . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4.4 Electrolysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.5 Bubble nucleation and bubble dynamics . . . . . . . . . . . . . . . . . . . 6 1.6 Motivation of the work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.7 Aim of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.8 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Theory 11 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 Heat transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1 The 1-D conduction model . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.2 The 2-D conduction model . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.3 Repetition frequency . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2.4 Summary and conclusions on the heat transfer . . . . . . . . . . . . 28 2.3 Bubble Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.3.1 The phase transition . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.3.2 Kinetic limit of superheat . . . . . . . . . . . . . . . . . . . . . . . 31 2.3.3 Nucleation probability . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3.4 Spontaneous nucleation . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.4 Bubble dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.4.1 Explosive evaporation . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.4.2 Bubble collapse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.4.3 The intermediate stage . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.4.4 Summary and conclusions on the bubble dynamics . . . . . . . . . 39 2.5 Membrane deflection theory . . . . . . . . . . . . . . . . . . . . . . . . . . 40 i ii Contents 2.5.1 Static deflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.5.2 Membrane vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.5.3 Summary and conclusions on the membrane response . . . . . . . . 46 3 Design and Fabrication 49 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.2 Design and fabrication of the heaters . . . . . . . . . . . . . . . . . . . . . 50 3.2.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.2.2 Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.3 Fabrication by KOH etching . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.3.1 Mask design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.4 Fabrication with Reactive ion etching . . . . . . . . . . . . . . . . . . . . 60 3.5 The completed device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.6 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4 Bubble dynamics 65 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.2 Stroboscopic imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.3 Resistance Thermometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.3.1 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.4 Bubble nucleation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.4.1 Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.4.2 Average heater temperature . . . . . . . . . . . . . . . . . . . . . . 69 4.4.3 Influence of applied power on the bubble nucleation . . . . . . . . . 70 4.4.4 Reproducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.5 Different heater geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.5.1 Early nucleation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.5.2 Current density simulation . . . . . . . . . . . . . . . . . . . . . . . 79 4.5.3 Effects of early nucleation . . . . . . . . . . . . . . . . . . . . . . . 80 4.6 Bubble growth and collapse . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.6.1 The growth stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.6.2 The intermediate stage . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.6.3 The final stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.6.4 The influence of the cavity pressure . . . . . . . . . . . . . . . . . . 90 4.7 Repetition frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.7.1 Effects on the temperature . . . . . . . . . . . . . . . . . . . . . . . 94 4.7.2 Effect on the bubble nucleation . . . . . . . . . . . . . . . . . . . . 96 4.7.3 Effect on the bubble growth and collapse . . . . . . . . . . . . . . . 100 4.8 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5 Response of the membrane 105 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.2 Static deflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.2.1 Different membrane sizes . . . . . . . . . . . . . . . . . . . . . . . . 108 5.3 Dynamic deflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Contents iii 5.3.1 Effect of the membrane geometry . . . . . . . . . . . . . . . . . . . 112 5.3.2 Effect of the membrane size . . . . . . . . . . . . . . . . . . . . . . 115 5.3.3 Effect of the applied heating power . . . . . . . . . . . . . . . . . . 116 5.3.4 Effect of the cavity pressure . . . . . . . . . . . . . . . . . . . . . . 117 5.4 Initial dynamic deflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.4.1 Nucleation and the maximum deflection . . . . . . . . . . . . . . . 120 5.4.2 Effect of the heater size and the membrane size . . . . . . . . . . . 123 5.4.3 Effect of the pressure inside the cavity . . . . . . . . . . . . . . . . 129 5.5 Ideal response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 5.6 Effect of the repetition frequency . . . . . . . . . . . . . . . . . . . . . . . 133 5.6.1 Deflection control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 5.6.2 Influence of the cavity pressure at high repetition frequencies . . . . 136 5.7 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 6 Conclusion and Outlook 141 6.1 Overall conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 6.2 Design improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 6.2.1 Heaters and substrate . . . . . . . . . . . . . . . . . . . . . . . . . 145 6.2.2 Optimal properties of the liquid . . . . . . . . . . . . . . . . . . . . 149 6.2.3 Membrane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 6.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 References 155 Summary 163 Samenvatting 165 Dankwoord 167 Chapter 1 Actuators and Bubbles A large variety of actuators can be found in literature. This chapter provides a brief overview of different actuator principles with a focus on thermo-pnuematic actuation and actuators, which utilize bubbles to provide the actuation force. The second part of this chapter will give a summary of the research on bubble nucleation and bubble dynamics under high heat-flux conditions. At the end of this chapter, an outline of this thesis is given. 1 2 Chapter 1. Actuators and Bubbles 1.1 Introduction The last decades there has been a trend to miniaturize systems of virtually any kind. This trend has many reasons: small systems are potentially cheaper to produce, they can have properties large systems have not, they may facilitate use, and they can be more energy efficient. This miniaturization has led to systems of a few mm3 and smaller. These microsystemshavetypicaldetailsinthemicrometerrangeandMicroElectricalMechanical Systems technology is used to fabricate these systems. In general microsystems comprise of sensors, components that deliver some information, intelligence to process information and decide over some particular action, and an actuator that performs the action. Several types of forces can be used to perform an action. This resulted in a large number of different microactuator types and an even larger number of actuator designs. The micro- bubble actuator uses the principle of thermo-pneumatic actuation. The introduction of a large amount of heat causes explosive evaporation and creates a bubble in a liquid. The pressureimpulsegeneratedbytheformationofabubblewillcauseamembranedeflection. Although the force generated by bubbles is used in several successful actuator designs, bubble generation and bubble dynamics are not completely understood and still topics of research. 1.2 Actuation principles There are many ways to generate a force and therefore many different actuator principles. In general MEMS actuators can placed in four different families and each family can be divided in several classes. The four families are: • Electrostatic • Magnetic • Thermal • Piezoelectric The type of actuator used in a microsystem depends on the required performance of the actuator. Here one can think of the generated force, the displacement and repetition frequency. Thisperformanceisdifferentforeachfamilyandeachfamilyhasitslimitations. Table 1.1 shows the performance and the limitations of the different families. Force Stroke Frequency Limitation Electrostatic - +/- + Weak Piezoelectric +/- +/- + Material Thermal + + - Low frequency Magnetic - - +/- Weak Table 1.1: Preformance and limitations of the different actuator families
Description: