A&Amanuscriptno. (willbeinsertedbyhandlater) ASTRONOMY AND Yourthesauruscodesare: ASTROPHYSICS 011(13.07.1;13.25.1;) 1.2.2008 − Evidence for a late-time outburst of the X ray afterglow of GB970508 from BeppoSAX L.Piro1,L.Amati1,10,L.A.Antonelli2,R.C.Butler3,E.Costa1,G.Cusumano4,M.Feroci1,F.Frontera5,8,J. Heise6,J.J.M.in’tZand6,S.Molendi7,J.Muller2,6,L.Nicastro8,M.Orlandini8,A.Owens9,A.N.Parmar9, 8 9 P.Soffitta1,M.Tavani7,11 9 1 IstitutoAstrofisicaSpaziale,C.N.R.,ViaFossodelCavaliere,00131Roma,Italy 1 2 BeppoSAXScienceDataCenter,ViaCorcolle19,00131Roma,Italy n 3 AgenziaSpazialeItaliana,V.leR.Margherita120,Roma,Italy a 4 IstitutoFisicaCosmicaeApplicazioniCalcoloInformatico,Palermo J 5 Dip.Fisica,Universita`Ferrara,ViaParadiso12,Ferrara,Italy 7 6 SpaceResearchOrganizationNetherlands,Sorbonnelaan2,3584CAUtrecht,TheNetherlands 7 IstitutoFisicaCosmicaeTecnologieRelative,C.N.R.,Milano 3 8 IstitutoTeSRE,C.N.R.,ViaGobetti101,40129Bologna,Italy v 9 SpaceScienceDepartmentofESA,ESTECPO2992200AGNoordwijk,TheNetherlands 5 10 IstitutoAstronomico,Universita`degliStudi“LaSapienza”,viaLancisi29,Rome,Italy 5 11 ColumbiaAstrophysicsLaboratory,ColumbiaUniversity,NewYork,10027,USA 3 0 1 7 9 Abstract. The γ−rayburstGB970508was observedsi- 1. Introduction / h multaneouslybytheGammaRayBurstMonitor(GRBM) p andoneoftheX−rayWideFieldCameras(WFC)aboard The BeppoSAX1 (Piro, Scarsi & Butler 1995, Boella et - o BeppoSAX.Thelatterprovidedapositionwithin1.9′ra- al.1997a)observationsofGB970228(Costaetal.1997a) r dius.Aseriesoffollow-upobservationswiththeNarrow opened a new era in the study of GRB’s with the first st Field Intruments (NFI) was then performed in a period discovery of an X−ray afterglow of GRB, followed :a from∼ 6 hoursto 6 days after the main event. A previ- by at least three well established similar detections in v GB970402 (Piro et al. 1997a), GB970508 (Piro et al. ouslyunknownsource,whichweassociatewiththeafter- i 1997b) and then GB970828 by XTE/ASCA (Murakami X glowoftheGRB,wasdiscoveredintheerrorbox.Wefind r that,aftertheinitialburst,X−rayemissionisstillpresent et al. 1997). Other possible X−ray afterglow candidates a anddecaysas∼t−1.1upto∼6×104s.Thisisfollowed includeGB970111(Ferocietal.1997),GB970616(Mar- byaburstofactivitywithaduration∼105s.Theenergy shall et al. 1997), GB970815 (Greiner et al. 1997). In this paper, we present the BeppoSAX observations of producedinthiseventisasubstantialfractionofthetotal energyoftheGRB,whichmeansthattheafterglowisnot GB970508.ItsX−rayevolutionistrackedfrom1to106 s,i.e.fromtheinitialbursttotheafterglow.Wecompare a remnantof the initial burst (the GRB) that fades away itwiththatobservedinotherGRB’sanddiscusssomeof smoothly.Ourresultssupportthe ideathatthe processes theimplicationsoncurrentmodels. generatingtheGRBanditsafterglowarethesame. Keywords:Gammarays:bursts−X−rays:bursts 2.Theobservations The GRBM (Costaetal.1996) was triggered on May 8 1997 at 21:41:50 U.T. by a GRB, also observed by BATSE (Kouveliotou et al. 1997) and Ulysses. The event was simultaneously detected in one of the WFC 1 BeppoSAXisaprogramoftheItalianSpaceAgency(ASI) withparticipationoftheNetherlandsAgencyforAerospacePro- Sendoffprintrequeststo:L.Piro:[email protected] gram(NIVR) 2 Piroetal.:Evidenceforalate-timeoutburstoftheX−rayafterglowofGB970508fromBeppoSAX (Jageretal., 1997). A first preliminary (∼ 10′) posi- also Castro-Tiradoetal.1997a). This number takes into tion was derived (Costaetal.1997b) and used to pro- accountthenumberofsearchesinGRBerrorboxes-with gram a follow-up observation with the NFI. Simulta- anareacomparableorlessthanthatoftheWFC-byBep- neously this position (followed then by a refined 3′ poSAX(5)andotherX−raysatellites(9).Furthersupport one (Heiseetal., 1997) and the 50” derived from NFI fortheassociationofthetransientwiththeGRBafterglow (Piroetal.1997b) were distributed to a network of ob- comesfromthe temporalbehaviourobservedin X−rays servatoriesforfollow-upobservationsinallwavelengths. (next section) and other wavelenghts (e.g Djorgovski et Thisledtotheidentificationofanopticaltransientjust4 al.1997,Frailetal.1997). hours after the burst (Bond,1997) and eventually to the spectroscopicobservationthatsetthedistanceoftheop- 4.TimeevolutionfromtheGRBtotheafterglow ticaltransientatz >0.83(Metzgeretal.1997). The field was acquired by the NFI ∼ 6 hours after GB970508isaratherweakevent,withapeakfluxf ∼ γ the GRB. A previously unknown X−ray source, 1SAX 3.4× 10−7erg cm−2 s−1 in the GRBM (40−700 keV) J0653.8+7916wasdetectedinthisobservation(hereafter andf(2−26keV) = (5.9±0.6)×10−8ergcm−2 s−1 TOO1)bytheMECS(units2and3)(Boellaetal.,1997b) in the WFC. In Fig. 2 we show the GRBM and WFC with F(2−10 keV)=(0.7±0.07)×10−12erg cm−2 s−1 light curves of the event. The event lasted about 15 s and the LECS (Parmaretal., 1997) with F(0.1−2 in the GRBM and about 25 s in the WFC. The total keV)=(1.2±0.4)×10−12erg cm−2 s−1 atcelestialco- fluence of the burst was (1.8 ± 0.3) × 10−6erg cm−2 ordinates(J2000)R.A.=6h53m46s.7,Decl.=+79◦16′02” and (0.7 ± 0.1) × 10−6erg cm−2 in the GRBM and (estimatederrorradiusof50”),withintheWFCerrorcir- WFC, respectively:about40%of the burstenergyemit- cle. This source was not detected in the ROSAT all sky ted in the X−ray band. This fraction is substantially survey(Voges,privatecommunication).Theimageofthe higher than that observed in other bursts: the value of fieldisshowninFig.1alongwiththerefinedWFCerror f ∼ 0.17 of the peak fluxes is ∼ 5 times greater X/γ region (radius ∼ 1.9′, in’tZandetal.1997). The previ- thanthatofGB970228(Fronteraetal.1997),GB960720 ously known ROSAT source 1RXSJ0653.8+7916, lying (Piroetal.1997c) and the average value of the GINGA outsidetheWFCerrorbox,wasalsodetected. sample(Yoshidaetal.1989,Strohmayeretal.1997). Three other BeppoSAX observations (hereafter Costa et al. (1997a)attributed the train of pulsesob- TOO2−4)wereperformed,thelast tookplace∼ 6 days servedinGB97022840saftertheinitialbursttothebe- after the burst. In all three observations we detected the ginning of the afterglow (see also Frontera et al.1997). source 1SAXJ0653.8+7916at a position consistent with ThelightcurvesofGB970508showasecondprominent thatofthefirstobservation. pulseinX−rays∼10safterthefirstone.Thisissubstan- tiallysofterthanthefirstpulsebutitmergeswiththefirst pulse, so we cannot conclude whether it represents the 3.The association of 1SAXJ0653.8+7916 with beginningoftheafterglowornot.However,att > 27s, GB970508 faintresidualactivityemergesfromadetailedanalysisof The probabilityof findinga serendipitousX−raysource theWFCimage(Fig.1).AnanalysisoftheoverallX−ray in the WFC error box with a flux greater than that ob- temporal behaviour supports the idea that this emission served is ∼ 10−3 (e.g Cagnoni et al. 1997). However, correspondstotheafterglow(Fig.3).Thedecreasingflux thisprobabilityshouldberevisedtoconsiderthepotential observed by the WFC in the 27−200 s period after the association of 1SAXJ0653.8+7916to classes of sources burst connects to the first data points of TOO1 with a which show similar properties. The very high value of power law t−δ (where t is the time from the beginning X−ray emission compared to the optical (α ∼ 0.6, oftheGRB)withδ =1.1±0.1. ox where α is the slope of the power law F ∼ E−αox However,at∼6×104s,thefluxincreasesinanout- ox connecting the optical to the 2 keV fluxes) is observed burst-onatimescaleof∼105s-withatimebehaviour only in BL Lacs and emission line AGN (Maccacaro et similartothatobservedintheoptical,followedbyasud- al. 1980). The latter association is excluded by the ab- den decrease observedin TOO4. The latter is caused by senceofstrongemissionlinesintheopticalspectrumtyp- aspectralsteepening,thatwewilldescribeinmoredetail ical of AGN (Metzgeretal.1997). The observed values inPiroetal.(1997d) ofα ∼0.6andα ∼0.3(radiofromFrailetal.1997) ox ro aretheextremeoftherangeobservedinX−rayselected 5.DiscussionandConclusions BLLacs(e.g.Padovanietal.1997),soeventhispotential association is rather unlikely. Furthermore, on the basis ThecombinationoftheWFCsensitivityandfastfollow- of the logN−logS (Maccacaroetal.1984), we find that up with the NFI allowed to follow the evolution of the the probability of a chance occurrence is ∼ 10−3(see X−ray emission of the GRB from 1 to 106 s. We find Piroetal.:Evidenceforalate-timeoutburstoftheX−rayafterglowofGB970508fromBeppoSAX 3 Fig.1.TimesequenceofimagesofthefieldofGB970508observedbytheWFC2(leftimage,27−200saftertheburst),MECS(2+3) onMay9(TOO1,centerimage,6hoursaftertheGRB),andMECS(2+3)onMay14(TOO4,after6days).TheWFC2showthe presenceoftheafterglowthatwasthendetectedbytheLECSandMECS(1SAXJ0653.8+7916visibleinthe99%errorcircleof theWFC).NotethedecreaseinintensitybetweenthetwoMECSobservations,ascomparedto1RXSJ0653.8+7916,thesourcein thelowerrightcorner ing the 200 − 4 × 103 s time interval cannot be ex- cluded. While this temporal behaviour is similar to that observed in GB970228 (Costaetal.1997a), GB970402 (Piroetal.1997a)andGB970828(Murakamietal.1997), itisthefirsttimethattheafterglowwasdetectedimmedi- atelyaftertheprimaryevent.However,theevolutionafter 6×104sdeviatesfromthispowerlaw,beingdominated by an outburst with a duration ∼ 105 s. The energy re- leased in the 2−10 keV range in the power law compo- nentof the afterglowintegratedfrom27sto 5.8×105 s correspondstoabout20%ofthetotalX-andγ-rayenergy oftheGRB.Thisiscomparabletothecaseofgb970228 (Costaetal.1997a). The energy excess with respect to the powerlaw duringthe burstevent(from6×104 s to 5.8×105s),is∼5%ofthatoftheGRB. Therefore, not only the afterglow carries an energy comparable to that of the main event, but a significant fraction of this energy is released in an outburst taking place on a time scale ∼ 104 times larger than that of the GRB. Theoverallevolutionof the afterglowand the Fig.2. Lightcurvesof GB970508 intheGRBM(bottom) and GRB couldbethendescribedbya powerlaw onthetop WFC(top) of which bursts of different time scales occur, in partic- ular on 1 − 10 s (the GRB proper) and on ∼ 105 s. that after the initial burst the X−ray emission detected These results suggests that the same process is respon- with the WFC between 27 and 200 s, the two WFC sible for both the GRB and the afterglow.In the fireball upperllimits between 200 and 4 × 103 s and the NFI shock scenario (e.g Me´sza´ros&Rees1997, Vietri1997, measurements between 2.5 × 104 and 6 × 104 s are Katz&Piran1997), modelsin which both the GRB and well fitted by a t−1.1 power law decay. The data are the afterglow are produced by the same mechanism are therefore consistent with a continuing afterglow emis- thereforepreferred.Theincreaseoftheburstingduration sion,althoughadeviationfromthepower-lawdecay,dur- withtimeagreeswiththegeneralfireballscenario,where 4 Piroetal.:Evidenceforalate-timeoutburstoftheX−rayafterglowofGB970508fromBeppoSAX PlannersD.Ricci,M.Capalbi,S.Rebecchi,theSOCscientists A. Coletta, G. Gandolfi, M. Smith,A. Tesseri, V, Torroni , G. Spoliti,theoperationteamL.Salotti,C.DeLiberoandG.Gen- naroforthefastre-pointing,L.BrucaandG.Crisigiovannifor thefastprocessingofrawdata,andP.Giommi,F.FioreofSDC forhelpinginquickanalysisofTOOdata. References Boella,G.,Butler,R.C.etal. 1997a, A&AS,122,299 Boella,G.,Chiappetti,L.et al. 1997b, A&AS,122,327 Bond,H.E.1997, IAUC6654 Cagnoni,I.,Della,CecaR.&Maccacaro,T.1997,ApJ,inpress Castro-Tirado,A.etal.1997a, preprint Castro-Tirado,A.etal.1997b, IAUC6657 Chevalier,C.&Ilovaisky,S.A.1997,IAUC6663 Ciliegi,P.etal.1995, MNRAS,277,1463 Costa,E.etal.1996, Adv.SpaceRes,inpress Costa,E.etal.1997a Nature,387,783 Costa,E.etal.1997b, IAUC6649 Djorgovski,S.G.etal.1997,Nature,387,876 Feroci,M.etal.inpreparation Fig. 3. Upper panel: X−ray light curve (2−10 keV) from Frail,D.etal.1997,Nature,inpress Frontera,F.etal.1997, ApJL,submitted the GRB to the afterglow (upper panel, starred=WFC, filled Garcia,M.etal.1997, IAUC6661 squares=NFI). Thedashed lineisthebest fitpower law tothe Galama,T.J.etal.1997, IAUC6655 WFCdata(excludingtheGRB)andthefirstpartofTOO1data stream, before the increase at 6 × 104 s. The lower panel is Greiner,J.etal.1997, IAUC6722 Groot,P.J.etal.1997, IAUC6660 a blown-up that includes the optical behaviour of the source Heise,J.etal.1997, IAUC6654 in the R band (open circles) from Galama et al. (1997), Cas- in’tZand,J.&HeiseJ.1997,inpreparation tro-Tiradoetal.(1997b),Chevalier&Ilovaisky(1997),Mignoli Jager,R.etal.1997 A&AS, inpress etal.(1997),Schaeferetal.(1997),Grootetal.(1997),Garcia Katz,J.&Piran,T.1997,ApJ,inpress etal.(1997), Kopylov et al.(1997a,b). Theverticalright hand Kopylov,A.I.etal.1997a, IAUC6663 scalereferstotheopticaldata. Kopylov,A.I..etal.1997b, IAUC6671 Kouveliotou,C.etal.1997, IAUC6660 thetimescalesareprimarilydeterminedbythesuperlumi- Maccacaro,T.,Gioia,I.,MaccagniD.&StockeJ.T.1984,ApJ nalmotionofashell,whoseLorentzfactordecreasesvery 284,L23 rapidlyastheshellexpands. Maccacaro,T.etal.1980, ApJ,329,680 Marshall,F.E.etal.1997, IAUC6683 Theopticalturnup(Fig.3,lowerpanel)appearstofol- lowtheX−rayburstwithnosubstantialdelay(lag<2× Me´sza´rosP.&ReesM.J. 1997, ApJ,476,232 104s),suggestingasameoriginfortheopticalandX−ray Metzger,M.R.etal.1997,Nature,387,878 Mignoli,M.etal.1997, IAUC6661 events.Itthenappearsunlikelythattheopticalturnupis Murakami,T.etal.1997,IAUC6729 producedbyanenergydependenteffect,asashiftofthe Padovani,P.,Giommi,P.&Fiore,F.1997,MNRAS,284,569 breakenergy(Vietri1997,Katz&Piran1997). Parmar,A.N.etal.1997, A&AS,122,309 The reason of the different evolution of GB970508 Piro, L., Scarsi, L. & Butler, R.C. 1995, in ’X-Ray and comparedtoGB970228aftertheinitialphaseisnotclear. EUV/FUVSpectroscopyandPolarimetry’(ed.S.Fineschi), Itcouldbeassociatedwiththeverysoftprimaryeventof SPIE2517,169-181 GB970508or with a differentenvironmentin which the Piro,L.etal.1997a, IAUC6617 fireballexpands.ThismayalsobethecaseofGB970111, Piro,L.etal.1997b, IAUC6656 Piro,L.etal.1997c, A&A,inpress forwhichthereareindicationsofveryfaintafterglowac- Piro,L.etal.1997d, inpreparation tivity(Ferocietal.1997).Itishoweverpossiblethatsim- Schaefer,B.&SchaeferM.etal.1997, IAUC6658 ilar bursts happened in the other GRB’s but have been StrohmayerT.E.,Fenimore,E.E.,MurakamiT.&YoshidaA. missedduetothesparsesamplingofthelightcurves. 1997,preprint Vietri,M. 1997, preprint Acknowledgements. Theseresultshavebeenobtainedthanksto YoshidaY.etal.1989,PASJ,41,509. theextraordinaryeffortsofoftheBeppoSAXteam.Wewould like to thank in particular L. Scarsi and G.C. Perola for help ThisarticlewasprocessedbytheauthorusingSpringer-Verlag indecidingthestrategyoffollow-upobservations,theMission LATEXA&AstylefileL-AAversion3.