ebook img

Ethics for Engineers PDF

140 Pages·2019·4.957 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Ethics for Engineers

Ethics for Engineers Martin Peterson Texas A&M University Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and certain other countries. Published in the United States of America by Oxford University Press 198 Madison Avenue, New York, NY 10016, United States of America. © 2020 by Oxford University Press For titles covered by Section 112 of the US Higher Education Opportunity Act, please visit www.oup.com/us/he for the latest information about pricing and alternate formats. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by license, or under terms agreed with the appropriate reproduction rights organization. Inquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above. You must not circulate this work in any other form and you must impose this same condition on any acquirer. Library of Congress Cataloging-in-Publication Data Names: Peterson, Martin, 1975- author. Title: Ethics for engineers / Martin Peterson. Description: New York : Oxford University Press, 2019. | Includes bibliographical references. Identifiers: LCCN 2018051680 (print) | LCCN 2019006980 (ebook) | ISBN 9780190609207 (Ebook) | ISBN 9780190609191 (pbk.) Subjects: LCSH: Engineering ethics. Classification: LCC TA157 (ebook) | LCC TA157 .P4285 2019 (print) | DDC 174/.962—dc23 LC record available at https://lccn.loc.gov/2018051680 9 8 7 6 5 4 3 2 1 Printed by Sheridan Books, Inc., United States of America TABLE OF CONTENTS List of Cases Preface Acknowledgments Part I: What Is Engineering Ethics? Chapter 1 INTRODUCTION The Engineering Profession The Value of Technology Engineering Ethics and the Law On Ethics and Morality Review Questions References and Further Readings Chapter 2 PROFESSIONAL CODES OF ETHICS Why Are Professional Codes of Ethics Important? The NSPE Code The IEEE and ACM Codes Contributory Reasons and Moral Dilemmas Proper Engineering Decisions versus Proper Management Decisions Review Questions References and Further Readings Chapter 3 A BRIEF HISTORY OF ENGINEERING Prehistoric Technology Ancient Engineering (5000 BC–500 AD) Medieval Engineering (c. 500 AD–1400 AD) Early Modern Engineering (c. 1400–1700) The Industrial Revolution (c. 1700–1900) Modern Engineering (c. 1900–) Review Questions References and Further Readings Part II: Ethical Theories and the Methods of Applied Ethics Chapter 4 A METHODOLOGICAL TOOLBOX Facts and Values Are Moral Claims Objective, Subjective, or Relative? Applied Ethics and Ethical Theories Review Questions References and Further Readings Chapter 5 UTILITARIANISM AND ETHICAL EGOISM Utilitarianism The Right and the Good How Should the Good Be Distributed? Some Objections to Utilitarianism Ethical Egoism Review Questions References and Further Readings Chapter 6 DUTIES, VIRTUES, AND RIGHTS Kant’s Duty Ethics The Universalization Test Means to an End and Respect for Persons Virtue Ethics Some Objections to Virtue Ethics Rights Review Questions References and Further Readings Part III: Six Key Issues in Engineering Ethics Chapter 7 WHISTLE-BLOWING: SHOULD YOU EVER BREAK WITH PROTOCOL? The Definition of Whistle-blowing When Is Whistle-blowing Morally Permissible? Advice to Whistle-blowers Review Questions References and Further Readings Chapter 8 CONFLICTS OF INTEREST: WHEN IS IT PERMISSIBLE TO INFLUENCE THE ACTIONS OF OTHERS? What Is a Conflict of Interest? Why Conflicts of Interests Should Almost Always Be Avoided International Engineering Review Questions References and Further Readings Chapter 9 COST-BENEFIT ANALYSIS: DO THE ENDS JUSTIFY THE MEANS? The Value of a Human Life Cost-benefit Analysis and Utilitarianism Can We Put a Price on the Environment and Historic Artifacts? Review Questions References and Further Readings Chapter 10 RISK AND UNCERTAINTY: HOW SAFE IS SAFE ENOUGH? The Engineering Definition of Risk The Precautionary Principle Risk and Informed Consent Risk Aversion Review Questions References and Further Readings Chapter 11 PRIVACY: WHAT IS IT AND WHY SHOULD IT BE PROTECTED? Privacy as a Moral Right Privacy as a Moral Value What Can Engineers Do to Protect Privacy? Review Questions References and Further Readings Chapter 12 THE PROBLEM OF MANY HANDS: WHO IS RESPONSIBLE AND SHOULD ANYONE BE BLAMED? What Is Responsibility? The Problem of Many Hands Moral Responsibilty and Collective Outcomes Review Questions References and Further Readings Part IV: Engineering and Society Chapter 13 TECHNOLOGY ASSESSMENTS AND SOCIAL EXPERIMENTS Technology Assessment New Technologies as Social Experiments Some Critical Questions Review Questions References and Further Readings Chapter 14 A CRITICAL ATTITUDE TO TECHNOLGY The Imperative of Responsibility Between Pessimism and Optimism Review Questions References and Further Readings Chapter 15 THE ETHICS OF ARTIFACTS What’s So Special about Technological Artifacts? Can Artifacts Be Value-laden? Can Artifacts Be Hybrid Agents? Technology as a Way of Revealing Review Questions References and Further Readings Chapter 16 SUSTAINABILITY Three Notions of Sustainability The Instrumental Value of Sustainability The Noninstrumental Value of Sustainability Imperceptible Harms and the Tragedy of the Commons Review Questions References and Further Readings Appendix A: Professional Codes of Ethics Appendix B: Essay Questions Glossary Index LIST OF CASES Case 1-1 The Crisis at the Citicorp Center Case 1-2 Engineers Without Borders—Going Above and Beyond What Is Required Case 2-1 Gift/Complimentary Seminar Registration (BER 87-5) Case 2-2 Cheating Diesel Emissions Tests Case 2-3 The Challenger Disaster Case 2-4 The Columbia Disaster Case 3-1 Roman Engineering Case 3-2 Our Need for Energy: Electricity Case 5-1 Prioritizing Design Improvements in Cars Case 5-2 Climate Change and Human Well-being Case 5-3 John Stuart Mill Case 5-4 Yuzuki’s Career Choice Case 6-1 Immanuel Kant Case 6-2 Anne Frank and the Nazis Case 6-3 Airbag Recalls and the Duty to Inform Case 6-4 Dr. Elisabeth Hausler, a Virtuous Engineer Case 6-5 Aristotle Case 6-6 The Trolley Problem: A Test Case for Ethical Theories Case 7-1 Edward Snowden and the NSA Case 7-2 Was It Ethical to Report the Employer to a Hotline? (BER Case 97-12) Case 7-3 An Exemplary Whistle-blower? Case 8-1 Disclosing a Conflict of Interest (BER Case 93-6) Case 8-2 TeliaSonera in Uzbekistan Case 9-1 Ford Pinto and the Value of a Human Life Case 10-1 How Toxic Is Trichloroethylene? Case 10-2 Spaghetti Code in Toyota’s Software? Case 10-3 Germany and the Fukushima Accident in Japan Case 11-1 Google and the Right to Be Forgotten Case 12-1 The Hyatt Regency Walkway Collapse Case 12-2 The Titanic Disaster Case 12-3 Therac-25 Case 12-4 Who Is Responsible for Tech Addiction? Case 13-1 The Nuremberg Code for Scientific Experimentation Case 13-2 Autonomous Military Robots Case 14-1 Self-Driving Cars and Technological Optimism Case 14-2 A Techno-fix for Global Warming? Case 14-3 Amish Values Case 15-1 Topf & Söhne and the Holocaust Case 15-2 The Great Firewall in China and Technological Mediation Case 16-1 The Deepwater Horizon Oil Spill Case 16-2 Is Fracking a Sustainable Technology? PREFACE This book seeks to introduce the reader to some of the most intricate ethical issues faced by engineers and other technical experts. My ambition is to present the ethics of engineering in a manner that enables students to articulate their own moral outlook at the same time as they learn to apply ethical theories and become familiar with professional codes of ethics. Over the past twenty years I have taught engineering ethics in three countries: the United States, the Netherlands, and Sweden. The topics covered in all my courses have been roughly the same; so even though this book is primarily written for the American market, the material is likely to be relevant in many parts of the world. As is customary in textbooks, I do not advocate any particular position on issues in which there is substantial disagreement, but I do try to make the reader familiar with what I believe to be the best arguments for and against the major views on controversial topics. Some of the forty case studies discussed in the “boxes” are classic cases that have shaped the discipline for decades. Others originate from the course in engineering ethics my colleagues and I teach at Texas A&M University. Although the factual aspects of most cases are widely known, I have tried to focus on what I believe to be the most interesting ethical aspects. Technical details can sometimes be crucial, but it is important not to lose sight of the woods for the trees. Instructors looking for additional cases may wish to familiarize themselves with the collection of almost five hundred cases analyzed by the National Society of Professional Engineers’ (NSPE) Board of Ethical Review over the past six decades. Many of the Board’s analyses, which are based on the NSPE Code of Ethics, are very instructive. A few sections of the book summarize ideas I have discussed elsewhere. For instance, some of the material in chapter 5 draws on a text on utilitarianism originally written for a Dutch textbook, Basisboek ethiek (Amsterdam: Boom 2014, ed. van Hees et al.); and the final section of chapter 4 is based on my book, The Ethics of Technology: A Geometric Analysis of Five Moral Principles (OUP 2017). Ideas from some previously published research papers also figure briefly in other chapters. ACKNOWLEDGMENTS Iwould like to express my sincere thanks to students and colleagues at Texas A&M University, Eindhoven University of Technology in the Netherlands, and the Royal Institute of Technology in Sweden for encouraging me to develop the material presented in this book. My co-instructors and teaching assistants at Texas A&M University deserve special thanks for allowing me to try out some of the pedagogical strategies outlined here in our large class in engineering ethics. I would also like to thank my current and former colleagues for introducing me to some of the case studies presented here, as well as for challenging my perspective on many of the theoretical issues discussed in the book. Debates on engineering ethics can benefit enormously from discussions of real-world cases and ethical theories. For helpful comments on earlier drafts, I am deeply indebted to Neelke Doorn, Barbro Fröding, William Jordan, Glen Miller, Per Sandin, Brit Shields, James Stieb, Diana Yarzagaray, and six anonymous reviewers. I would also like to thank my assistant, Rob Reed, for helping me to edit and prepare the final version of the entire manuscript. Finally, I would like to thank Robert Miller and his colleagues at Oxford University Press for their invaluable support throughout the production process. Texas, July 2018 CHAPTER 1 Introduction Engineers design and create technological systems affecting billions of people. This power to change the world comes with ethical obligations. According to the National Society of Professional Engineers (NSPE), “engineers must perform under a standard of professional behavior that requires adherence to the highest principles of ethical conduct.”1 Other professional organizations use similar language for articulating the ethical obligations of engineers. For instance, the Institute of Electrical and Electronics Engineers (IEEE), the world’s largest professional technical organization with members in 160 countries, writes in its code of ethics that “We, the members of the IEEE, . . . commit ourselves to the highest ethical and professional conduct.”2 It is uncontroversial to maintain that, under ordinary circumstances, engineers shall not lie to clients; steal ideas from colleagues; jeopardize the safety, health, and welfare of the public; break the law; or perform acts that are widely considered to be unethical in other ways. However, engineers sometimes face ethical issues that are remarkably complicated and cannot be easily resolved by applying straightforward, common-sense rules. The crisis at the Citicorp Center in Manhattan is an instructive illustration (See Case 1- 1 on the next page). Although this case occurred many years ago, the ethical issues faced by William LeMessurier, the structural engineer at the center of the crisis, are as relevant today as ever. Familiarize yourself with Case 1-1 and try to formulate comprehensive answers to the following questions: Was it morally wrong of LeMessurier to not inform the public about the potential disaster? Did he take all the actions he was morally required to take? CASE 1-1 The Crisis at the Citicorp Center When the Citicorp Center opened on Lexington Avenue in New York in 1977, it was the seventh tallest building in the world. Today, more than forty years later, it is still one of the ten tallest skyscrapers in the city with a height of 915 feet and 59 floors. St. Peter’s Evangelical Lutheran Church originally owned the Lexington Avenue lot. The Church refused to sell to Citicorp but eventually agreed to let the bank construct its new headquarters on its lot on the condition that they also built a new church for the parish next to the skyscraper. To maximize floor space, William LeMessurier (1926–2007), the structural engineer in charge of the design of the Citicorp Center, came up with the innovative idea of placing the building on nine-story-high “stilts” and build the church beneath one of its corners (see Figure 1.1). To ensure that the load-bearing columns would not pass through the church beneath, they were placed in the middle of each side of the tower (see Figure 1.2). LeMessurier’s groundbreaking design was less stable than traditional ones in which the columns are located in the corners. To understand why, imagine that you are sitting on a chair in which the legs are placed in the middle of each side instead of the corners. Around the time the Citicorp Center opened, Diane Hartley was working on her undergraduate thesis in civil engineering at Princeton University. Hartley studied the plans for the building and noticed that it appeared to be more likely to topple in a hurricane than traditional skyscrapers. Although Hartley was not certain her calculations were correct, she decided to contact LeMessurier’s office. Design engineer Joel Weinstein answered Hartley’s phone call and assured her that her fears were groundless. However, when LeMessurier heard about the unusual phone call he decided to double check the calculations. To his surprise, he found that Hartley was right. The calculations had been based on the false assumption that the strongest wind loads would come from perpendicular winds. LeMessurier now realized that the unusual location of the load-bearing columns made the tower significantly more vulnerable to quartering winds, that is, to winds hitting the tower at an angle of 45 degrees. Figure 1.1 To maximize floor space, William LeMessurier placed the Citicorp tower on nine-story-high “stilts.” Source: The photo is in the public domain. LeMessurier also discovered that the load-bearing columns had been bolted together instead of welded as specified in his drawings. Under normal conditions, this would have been an acceptable modification; but because the bolted joints were considerably weaker, and because the wind loads were higher than originally anticipated, the situation was now critical. After analyzing the situation carefully, LeMessurier concluded that if a sixteen-year storm (i.e., a storm that occurs on average every sixteen years) were to hit the tower, then it would topple if the electrically powered tuned mass damper on the roof stopped working in a power fallout. LeMessurier also estimated that winds capable of taking down the tower even when the tuned mass damper worked as specified would hit the building every fifty-five years on average. The probability that the tower would topple in any given year was, thus, roughly equal to the probability that the king of spades would be drawn from a regular deck of cards. Figure 1.2 The new St. Peter’s Evangelical Lutheran Church is located behind the traffic light in the foreground. Source: Dreamstime. LeMessurier became aware of all this at the beginning of the hurricane season in 1978. At that time, the New York building code only required designers to consider perpendicular winds; so in a strict legal sense, he had not violated the building code. However, LeMessurier was convinced that as the structural engineer responsible for the design, he had a moral obligation to protect the safety of those working in the tower. He also realized that his career as a structural engineer might be over if it became publicly known that the tower could topple in a moderate hurricane. Who should be informed about the problem with the wind-bracing system? Did the public have the right to know that the building was unsafe? Was LeMessurier the only person morally obliged to remedy the problem, or did he share that responsibility with others? The ethical questions LeMessurier asked himself in the summer of 1978 are timeless and equally relevant for today’s engineers. After thinking carefully about how to proceed, LeMessurier decided to contact the senior management of Citicorp to explain the possible consequences of the problem with the tower’s structural design. Before the meeting, LeMessurier worked out a detailed plan for fixing the problem. His solution, which Citicorp immediately accepted, was to reinforce the structure by welding thick steel plates to each of the two hundred bolted joints of the load-carrying columns. The welding started at the beginning of August and took place at night when the tower was empty. LeMessurier also took several other measures intended to prevent a looming disaster. He informed the City of New York and the Office of Disaster Management about the situation. Together they worked out a plan for evacuating all buildings within a ten-block radius of the site with the help of up to two thousand Red Cross volunteers. LeMessurier also hired two independent teams of meteorologists to monitor the weather. Both teams were instructed to issue wind forecasts four times a day and warn LeMessurier in time so they could evacuate the building if strong winds were approaching. On September 1, Hurricane Ella was approaching New York. LeMessurier’s meteorologists warned him that the wind speed would almost certainly exceed the critical limit if the hurricane continued along its predicted path. However, just as LeMessurier was on the verge of evacuating the tower, the hurricane luckily changed its path a few hours from Manhattan. The public and Citicorp employees working in the building were kept in the dark about the true purpose of the nightly welding jobs, which were completed in October. Neither LeMessurier nor Citicorp felt it was necessary to reveal the truth to those not directly involved in the decision-making process. The full story about the crisis in the Citicorp Center was not revealed until seventeen years later, in 1995, when The New Yorker ran a lengthy article by Joe Morgenstern. He describes the press release issued by Citicorp and LeMessurier as follows: “In language as bland as a loan officer’s wardrobe, the three-paragraph document said unnamed ‘engineers who designed the building’ had recommended that ‘certain of the connections in Citicorp Center’s wind-bracing system be strengthened through additional welding.’ The engineers, the press release added, ‘have assured us that there is no danger.’”3 Did LeMessurier (see Case 1-1) do anything morally wrong? According to the NSPE code of ethics, engineers shall “issue public statements only in an objective and truthful manner.”4 This seems to be a reasonable requirement, at least in most situations, but the press release issued by Citicorp and LeMessurier clearly mislead the public. The claim that “there is no danger” was an outright lie. This suggests that it was wrong to lie to the public. However, one could also argue that it was morally right of LeMessurier to mislead the public and employees working in the building. By keeping the safety concerns within his team, LeMessurier prevented panic and unnecessary distress. This might have been instrumental for keeping the public safe, which is a key obligation emphasized in nearly every professional code of ethics, including the NSPE code. According to this line of reasoning, preventing panic outweighed telling the truth. Of all the alternatives open to LeMessurier, the best option was to fix the problem without bringing thousands of people working in the area to fear a collapsing skyscraper. We could compare LeMessurier’s predicament with that of an airline pilot preparing his passengers for an emergency landing. Sometimes it may be counterproductive to reveal the truth to the passengers. Their safety might be better protected by just giving precise instructions about how to behave, meaning that it might, in some (rare) situations, be morally acceptable to lie or deceive passengers or other members of the public. The take-home message of these introductory remarks is that engineers sometimes face morally complex decisions. Not all of them can be resolved by appealing to common sense. Although many of LeMessurier’s actions seem to have been morally praiseworthy, his decision to lie to the public was controversial. It might have been morally right to do so, but to formulate an informed opinion, we need to learn a bit more about applied and professional ethics. By studying ethical concepts and theories more closely, we can improve our ability to analyze complex real-world cases and eventually provide a more nuanced analysis of LeMessurier’s actions. THE ENGINEERING PROFESSION On a very general level, an engineer is someone who applies science and math for solving real-world problems that matter to us, the members of society. William LeMessurier clearly meets this characterization. A more formal definition, taken from the dictionary, is that an engineer is someone who applies science and math in ways that “make the properties of matter and the sources of energy in nature useful to people.”5 According to this definition, it is primarily (but perhaps not exclusively and universally) the focus on useful applications that distinguishes engineers from scientists. The latter occasionally study matter and energy for its own sake, but engineers by trade seek applications. Having said that, other professionals, such as doctors, also apply science and math for solving real-world problems; and some engineers base their work on approximate rules of thumb rather than math and science. This shows that it is no easy to task to give an uncontroversial definition of engineering. A radically different approach could be to say that an engineer is someone who has been awarded a certain type of academic degree, or is recognized by others as an engineer. In the United States, the practice of engineering is regulated at the state level. Each state has its own licensure board, and the licensure requirements vary somewhat from state to state. However, candidates typically need to take a written test and gain some work experience. Once the engineer has obtained his or her license, he or she has the right to use the title Professional Engineer or PE. Only licensed engineers are authorized to offer engineering services to the public and to sign and seal construction plans and other key documents. Perhaps surprisingly, no more than 20 percent of those who graduate with a BS in engineering in the United States become licensed engineers. There are two significant factors here. First, engineers working for the government are exempted from the requirement to be licensed. Second, the so called “industry exemption” permits private engineering firms to employ unlicensed engineers to research, develop, design, fabricate, and assemble products as long as they “do not offer their services to the general public in exchange for compensation.”6 Because of this exemption, a private engineering firm can in theory employ only one licensed P.E. to review and sign all the company’s plans. As the law is written, this single P.E. can be the individual who officially offers the company’s engineering services to the public. The regulations in Canada resemble those in the United States; but in other countries, the rules are very different. In countries such as the United Kingdom, Germany, and Sweden, anyone can set up an engineering business, regardless of education and actual competence. The absence of regulations is to some extent mitigated by university degrees in engineering and membership in professional organizations. Such pieces of information can help potential customers understand if the person offering engineering services has the necessary knowledge and experience. Although the regulations engineers must follow vary from country to country, one thing that does not vary is the impact engineers have, and have had for centuries, on society. Railways, electricity, telephones, space rockets, computers, and medical x-ray machines have transformed the lives of billions of people. The list of famous engineers inventing these and other revolutionizing technologies is long and growing. Almost everyone in the United States has heard of John Ericsson’s (1803–1889) propeller, Alexander Graham Bell’s (1847–1922) telephone, and Thomas Edison’s (1847–1931) lightbulb. In the United Kingdom, Isambard Kingdom Brunel (1806–1859) designed bridges (see Figure 1.3), tunnels, ships and railways that radically transformed the transportation system. In the Netherlands, the influence of the Dutch “superstar engineer” Cornelis Lely (1854–1929) was so great that one of the country’s major cities was named in his honor after his death: Lelystad. In more recent years, engineers like Steve Jobs (1955–2011) and Elon Musk (b. 1971) have transformed their industries in fundamental ways. Figure 1.3 The Clifton Suspension Bridge in Bristol in South West England was designed by Isambard Kingdom Brunel in 1831. With a total length of 1,352 ft., it was the longest suspension bridge in the world when it opened after 33 years of construction in 1864. Source: iStock by Getty Images. While the history of engineering is dominated by male engineers, revolutionary contributions have also been made by female engineers. Mary Anderson (1866–1953) invented and obtained a patent for automatic windshield wipers for cars. In 1922, Cadillac became the first car manufacturer to adopt her wipers as standard equipment. Emily Roebling (1803–1903) played a crucial role in the construction of the Brooklyn Bridge in New York, and Martha J. Coston (1826–1904) made a fortune by inventing a type of signal flare still used by the US Navy. More recently, numerous women have made it to the top of multinational tech corporations such as Hewlett-Packard, Google, Facebook, and Yahoo. Having said that, it is worth keeping in mind that the vast majority of engineering graduates never become international superstars, although nearly all make important contributions to society, including those who do not have the luck, personality, or technical skills for reaching worldwide fame. THE VALUE OF TECHNOLOGY The subject matter of engineering ethics primarily concerns questions about the professional obligations engineers have by virtue of being engineers. To fully understand these obligations, it is helpful to ask some broader questions about the role of technology in society. A few decades ago, many of the technologies we now take for granted, such as cell phones and the Internet, were beyond everyone’s imagination. Many of us would probably say without much hesitation that these technologies have changed the world for the better. However, in the 1960s and ‘70s a series of engineering disasters triggered fundamental concerns about the value of engineering and technological development. It was widely realized that powerful technologies such as nuclear bombs and electronic surveillance systems can be used in morally problematic ways. Some argued that weapons of mass destruction and other military technologies help protect our freedom and independence, but others pointed out that the potential negative consequences could be so severe that it would be better to ban or abolish those technologies. The debate over the pros and cons of technology as such is sometimes characterized as a debate between technological pessimists and optimists. Technological pessimists question the value of technological progress. A pessimist may, for instance, argue that we are no better off today than we were a hundred years ago, at least if we exclude medical technologies from the comparison. Although it is good to communicate with friends and relatives around the globe via the Internet, this technology also distracts us from valuable social interactions in real life. Technological optimists point out that while it is true that some technological processes are hard to control and predict, and sometimes lead to unwanted consequences, the world would have been much worse without many of the technological innovations of the past century. Medical technologies save the lives of millions of people, and other technologies make it possible to travel fast and communicate with people far away. So even if it is sometimes appropriate to think critically about the negative impact of specific technologies, technological optimists believe we have no reason to question the value of technology as such. The type of ethical questions technological pessimists and optimists discuss are very different from the moral questions LeMessurier sought to address during the Citicorp crisis. To clarify the difference between these issues, moral philosophers sometimes distinguish between micro- and macroethical issues.7 This distinction is inspired by the analogous distinction in economics between micro- and macroeconomics. Microethical issues concern actions taken by single individuals, such as LeMessurier’s actions in the Citicorp crisis. A macroethical issue is, in contrast, a moral problem that concerns large-scale societal issues, such as global warming. In engineering ethics, discussions over the moral goodness or badness of specific technologies are examples of macroethical issues. If you, for instance, worry about a future in which autonomous drones equipped with artificial intelligence pose threats to lawful citizens, then your worry concerns a macroethical problem. Whether such autonomous drones will be developed does not depend on decisions taken by single engineers. What technologies will be developed in the future depend on complex social processes that no single individual can control. The distinction between micro- and macroethics issues is useful for several reasons. It can, for instance, help us to understand

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.