ebook img

Estimation of isotropization time ($τ_{\rm iso}$) of QGP from direct photons PDF

0.19 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Estimation of isotropization time ($τ_{\rm iso}$) of QGP from direct photons

NuclearPhysicsA00(2011)1–4 Estimation of isotropization time (τ ) of QGP from direct photons iso LusakaBhattacharya SahaInstituteofNuclearPhysics 1/AFBidhannagar,Kolkata,Pin700064,India 1 1 0 2 n Abstract a Wecalculatetransversemomentumdistributionofdirectphotonsfromvarioussourcesbytakingintoaccountthe J initialstatemomentumanisotropyofquarkgluonplasma(QGP).Thetotalphotonyieldisthencomparedwiththere- 1 3 centmeasurementofphotontransversemomentumdistributionbythePHENIXcollaboration. Itisalsodemonstrated that the presence of such an anisotropy can describe the PHENIX photon data better than the isotropic case in the ] presentmodel. Weshowthattheisotropizationtimethusextractedlieswithintherange1.5≥τ ≥0.5fm/cforthe h iso p initialconditionusedhere. - p Keywords: anisotropy,QGP e h [ 1. Introduction 1 Theprimarygoalofrelativisticheavyioncollisionsistocreateanewstateofmatter,calledquarkgluonplasma v 7 and to study its properties through various indirect probes. Out of all the properties of the QGP, the most difficult 5 problemliesinthedeterminationofisotropizationandthermalizationtimescales(τ andτ ). Studiesonelliptic iso therm 8 flow(uptoabout p ∼ 1.5−2GeV)usingidealhydrodynamicsindicatethatthematterproducedinsuchcollisions T 5 becomesisotropicwithτ ∼0.6fm/c(1).Ontheotherhand,usingsecondordertransportcoefficientswithconformal . iso 1 symmetryitisfoundthattheisotropization/thermalizationtimehassizableuncertainties(2). Consequently,thereare 0 uncertainties in the initial temperature as well. Electromagnetic probes have been proposed to be one of the most 1 promisingtoolstocharacterizetheinitialstateofthecollisions(3,4). Becauseoftheverynatureoftheirinteractions 1 withtheconstituentsofthesystemtheytendtoleavethesystemwithoutmuchchangeoftheirenergyandmomentum. : v Infact, photons(dileptonaswell)canbeusedtodeterminetheinitialtemperature, orequivalentlytheequilibration i X time. r ItistobenotedthatwhileestimatingphotonsfromQGP(5,6,7),itisassumedthatthematterformedintherela- a tivisticheavyioncollisionsisinthermalequilibrium. Themeasurementofellipticflowparameteranditstheoretical explanationalsosupportthisassumption. Onthecontrary,perturbativeestimationsuggeststheslowerthermalization ofQGP(8).However,recenthydrodynamicalstudies(2)haveshownthatduetothepoorknowledgeoftheinitialcon- ditionsthereisasizableamountofuncertaintyintheestimateofthermalizationorisotropizationtime. Inviewofthe absenceofatheoreticalproofbehindtherapidthermalizationandtheuncertaintiesinthehydrodynamicalfitsofex- perimentaldata,suchanassumptionmaynotbejustified.Henceinsteadofequatingthethermalization/isotropization timetotheQGPformationtime,inthiswork,wewillintroduceanintermediatetimescale(isotropizationtime,τ )to iso studytheeffectsofearlytimemomentum-spaceanisotropyonthetotalphotonyieldandcompareitwiththePHENIX photondata(9,10,11). Recently,ithasbeenshowninRef.(12)thatforfixedinitialconditions,theintroductionof apre-equilibriummomentum-spaceanisotropyenhanceshighenergydileptonsbyanorderofmagnitude. Incaseof photontransversemomentumdistributionsimilarresultshavebeenreportedforvariousevolutionscenarios(13). LusakaBhattacharyaetal./NuclearPhysicsA00(2011)1–4 2 Theplanofthepaperisthefollowing. Inthenextsectionwewilldiscussthemechanismsofphotonproduction fromvariouspossiblesourcesandthespace-timeevolutionofthematterverybriefly. Section3isdevotedtodescribe theresultsforvariousinitialconditionsandwesummarizeinsection4. 2. Formalism 2.1. Photonrate: AnisotropicQGP ThelowestorderprocessesforphotonemissionfromQGParetheCompton(q(q¯)g → q(q¯)γ)andtheannihilation (qq¯ → gγ) processes. The rate of photon production from anisotropic plasma due to these processes has been calculatedinRef.(14). Thesoftcontributioniscalculatedbyevaluatingthephotonpolarizationtensorforanoblate √ momentum-space anisotropy of the system where the cut-off scale is fixed at k ∼ gp . Here p is a hard- c hard hard momentumscalethatappearsinthedistributionfunctions. Thedifferentialphotonproductionratefor1+2→3+γ processesinananisotropicmediumisgivenby(14): (cid:90) dN N d3p d3p d3p E = 1 2 3 f (p ,p ,ξ)f (p ,p ,ξ) d4xd3p 2(2π)3 2E (2π)32E (2π)32E (2π)3 1 1 hard 2 2 hard 1 2 3 × (2π)4δ(p +p −p −p)|M|2[1± f (p ,p ,ξ)] (1) 1 2 3 3 3 hard where,|M|2 representsthespinaveragedmatrixelementsquaredforoneofthoseprocesseswhichcontributestothe photonrateandN isthedegeneracyfactorofthecorrespondingprocess. ξisaparametercontrollingthestrengthof theanisotropywithξ > −1. f , f and f aretheanisotropicdistributionfunctionsofthemediumpartons. Hereitis 1 2 3 assumedthattheinfraredsingularitiescanbeshieldedbythethermalmassesfortheparticipatingpartons. Thisisa goodapproximationatshorttimescomparedtothetimescalewhenplasmainstabilitiesstarttoplayanimportantrole. Theanisotropicdistributionfunctioncanbeobtained(15)bysqueezingorstretchinganarbitraryisotropicdistribution (cid:112) functionalongthepreferreddirectioninmomentumspace, f(k,ξ,p )= fiso( k2+ξ(k.n)2,p ),wherenisthe i hard i hard directionofanisotropy. Itisimportanttonoticethatξ >0correspondstoacontractionofthedistributionfunctionin thedirectionofanisotropyand−1 < ξ < 0correspondstoastretchinginthedirectionofanisotropy. Inthecontext of relativistic heavy ion collisions, one can identify the direction of anisotropy with the beam axis along which the systemexpandsinitially. Thehardmomentumscale p isdirectlyrelatedtotheaveragemomentumofthepartons. hard InthecaseofanisotropicQGP, p canbeidentifiedwiththeplasmatemperature(T). hard 2.2. Photonrate: Isotropiccase As mentioned earlier the QGP evolves hydrodynamically from τ onwards. In such case the distribution func- iso tionsbecomeFermi-DiracorBose-Einsteindistributions. Thephotonemissionrate,inisotropiccase,fromCompton (q(q¯)g → q(q¯)γ)andannihilation(qq¯ → gγ)processeshasbeencalculatedfromtheimaginarypartofthephoton self-energybyKapustaetal.(16)inthe1-loopapproximation. However,ithasbeenshownbyAurancheetal.(17) that the two loop contribution is of the same order as the one loop due to the shielding of infra-red singularities. ThecompletecalculationuptotwoloopwasdonebyArnoldetal.(18). Inthispaperwehavecalculatedthephoton productionratefromhothadronicmatter. WefollowthecalculationsdoneinRef.(19)whereconvenientparameteri- zationshavebeengivenforthereactionsconsidered.Theseparameterizationswillbeusedwhiledoingthespace-time evolutiontocalculatethephotonyieldfrommeson-mesonreactions. Thephotonemissionrate(static)fromreactions of the type BM → Bγ (B denotes baryon) has been calculated in Ref. (20). It is shown that this contribution is not negligible compared to that meson-meson reactions. To evaluate photon rate due to nucleon (and antinucleon) scatteringfromπ,ρ,ω,ηanda mesonsinthethermalbathweusethephenomenologicalinteractionsdescribedin 1 Ref. (20). Besides the thermal photons from QGP and hadronic matter we also calculate photons from initial hard scatteringfromthereactionofthetypeh h → γX usingperturbativeQCD.Weincludethetransversemomentum A B broadeningintheinitialstatepartons(21,22). LusakaBhattacharyaetal./NuclearPhysicsA00(2011)1–4 3 100 τ = 0.1 fm/c 10-2 τiso = 1 fm/c iso τ = 2 fm/c -2V] 10-4 iso e G dy[ 10-6 T p 2N/d 10-8 d 10-10 10-12 2 4 6 8 10 p [GeV/c] T Figure1: (Coloronline)Mediumphotonspectrum,dN/d2pTdy,aty = 0forthefree-streaminginterpolatingmodel(δ = 2)forthreedifferent valuesofisotropizationtime,τiso,withinitialconditions,Ti=440Gevandτı=0.1fm/c. 2.3. Space-timeevolution The expected total photon rate must be convoluted with the space-time evolution of the fireball. The system evolvesanisotropicallyfromτ toτ whereoneneedstoknowthetimedependenceof p andξ. Wehaveuseda i iso hard phenomenologicalmodel(12,13)todescribethetimedependenceof p andξ. Intheframeworkofthismodel, hard ξ =0atτ=τ anditgrowswithtime(τ)andreachesmaximumatτ=τ ,afterthatξdecreasestozeroatτ>>τ . i iso iso We shall follow the work of Ref. (12, 13) to evaluate the p distribution of photons from the first few Fermi of the T plasmaevolution. Inourcalculation,weassumeafirst-orderphasetransitionbeginningatthetimeτ (p (τ )=T ) c hard c c andendingatτ =r τ wherer =g /g istheratioofthedegreesoffreedominthetwo(QGPphaseandhadronic H d c d Q H phase)phases. Therefore,thetotalthermalphotonyield,arisingfromthepresentscenarioisgivenby, (cid:34)(cid:90) (cid:35) (cid:34)(cid:90) (cid:35) dN dR dR = d4xE + d4xE , (2) d2p dy d3p d3p T aniso hydro where the first term denotes the contribution from the anisotropic QGP phase and the second term represents the contributionsevaluatedinidealhydrodynamicsscenario. 3. Results We have considered the initial condition, T = 440 MeV, τ = 0.1 fm/c and free-streaming interpolating model i i (δ = 2) (13, 23) for the pre-equilibrium evolution. In this initial condition the maximum value of ξ will be ∼ 70 at τ = τ . In Fig. (1) we present the photon yield due to Compton and annihilation processes in the mid rapidity iso (θ = π/2, θ being the angle between the photon momentum and the anisotropy direction) as a function of photon γ γ transverse momentum. In estimating this result, we have used α = 0.3. Different lines in Fig. 1 correspond to s differentisotropizationtimes,τ . Weclearlyobserveenhancementofphotonyieldwhenτ >τ. Theenhancement iso iso i ofphotonyieldinthetransversedirections(y = 0)isduetothefactthatmomentum-spaceanisotropyenhancesthe density of plasma partons moving at the mid rapidity (13). To show that the presence of initial state momentum anisotropy and the importance of the contribution from baryon-meson reactions we plot the the total photon yield assuming hydrodynamic evolution from the very begining as well as with finite τ (right panel describes the total iso contribution with and without the initial state momentum space anisotropy only for τ = 1 fm/c) in Fig. (2). It is iso clearlyseenthatsomeamountofanisotropyisneededtoreproducethedata. Wenotethatthevalueofτ neededto iso describethedataalsoliesintherange1.5fm/c≥τ ≥0.5fm/cforbothvaluesofthetransitiontemperatures. iso LusakaBhattacharyaetal./NuclearPhysicsA00(2011)1–4 4 100 MMMMMM ++(BBpuMMre ((hτpyudre=ro 1h, yTfdmcr=o/c1, ,9T T2c =M=119e9V2 2)M MeVeV)) 100 MMMM++BBMM ((τpisuor=e1 h fymdr/oc,, TTcc==117700 M MeeVV)) -2y (GeV) 10-2 ττMiissMoo== 01(τ..55iso ff=mm1// iccsfmo/c, Tc=192c MeV) -2y (GeV) 10-2 Ti=440 MeV, τi=0.1 fm/c 2dpdT Ti=440 MeV, τi=0.1 fm/c 2dpdT10-4 dN/ 10-4 dN/ 10-6 (a) (b) 10-60 1 2 3 4 5 6 7 10-80 2 4 6 8 10 12 14 p (GeV/c) p (GeV/c) T T Figure2:(Coloronline)PhotonpT distributionsatRHICenergieswithinitialconditionTi=440GeV,for(a)Tc=192MeVand(b)170MeV. 4. Conclusion Tosummarize,wehavecalculatedtotalsinglephotontransversemomentumdistributionsbytakingintoaccount the effects of the pre-equilibrium momentum space anisotropy of the QGP and late stage transverse expansion on photonsfromhadronicmatterwithvariousinitialconditions. Todescribespace-timeevolutionintheveryearlystage we have used the phenomenological model described in Ref. (12) for the time dependence of the hard momentum scale(p )andplasmaanisotropyparameter(ξ).Tocalculatethehardphotoncontributionsweincludethetransverse hard momentumbroadeningintheinitialhardscattering.ThetotalphotonyieldisthencomparedwiththePHENIXphoton data. Withintheambitofthepresentmodelitisshownthatthedatacanbedescribedquitewellifτ isintherange iso of 0.5 - 1.5 fm/c for all the combinations of initial conditions and transition temperatures considered here. It is to be noted that the apparent hump observed in all the figures (except Fig.(5)) needs to be understood and we wish to discussitinasubsequentpaper. References [1] P.Huovinen,P.Kolb,U.Heinz,andP.V.Ruuskanen,Phys.Lett.B503,58(2001). [2] M.LuzumandP.Romatschke,Phys.RevC78,034915(2008). [3] J.Alam,S.Sarkar,P.Roy,T.Hatsuda,andB.Sinha,Ann.Phys.286,159(2001). [4] J.Alam,S.RahaandB.Sinha,Phys.Rep.273,(1996). [5] J.Alam,J.K.Nayak,P.Roy,A.K.Dutt-Mazumder,andB.Sinha,J.Phys.G34,871(2007). [6] D.K.Srivastava,Eur.Phys.J.C10,487(1999). [7] S.Turbide,C.Gale,E.FrodermannandU.Heinz,Phys.RevC77,024909(2008). [8] R.Baier,A.H.Muller,D.SchiffandD.T.Son,Phys.Lett.B502,51(2001). [9] S.S.Adleretal.,Phys.Rev.Lett.94,232301(2005). [10] S.S.Adleretal.,Phys.Rev.Lett.98,012002(2007). [11] A.Adareetal.,PHENIXCollaboration,arXiv:0804.4168v1[nucl-ex]. [12] M.MartinezandM.Strickland,Phys.Rev.C78,034917(2008). [13] L.BhattacharyaandP.Roy,Phys.Rev.C78,064904(2008). [14] B.SchenkeandM.StricklandPhys.Rev.D76,025023(2007). [15] P.RomatschkeandM.Strickland,Phys.Rev.D69,065005(2004). [16] J.Kapusta,P.Lichard,andD.Seibert,Phys.Rev.D44,2774(1991). [17] P.Auranche,F.Gelis,H.Zaraket,andR.Kobes,Phys.Rev.D58,085003(1998). [18] P.Arnold,G.D.Moore,andL.G.Yaffe,J.HighEnergyPhys.11057(2001); P.Arnold,G.D.Moore,andL.G.Yaffe,J.HighEnergyPhys.12,009(2001); P.Arnold,G.D.Moore,andL.G.Yaffe,J.HighEnergyPhys.06030(2002);T.renk,Phys.Rev.C67,064901(2003). [19] S.Turbide,R.Rapp,andC.Gale,Phys.Rev.C69,014903(2004). [20] J.Alam,P.Roy,andS.Sarkar,Phys.Rev.C68,031901(R)(2003). [21] C.Y.WongandH.Wang,Phys.Rev.C58,376(1998). [22] J.F.Owens,Rev.Mod.Phys.59,465(1987). [23] L.BhattacharyaandP.Roy,Phys.Rev.C79,054910(2009).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.