JournalofTechnologyEducation Vol.21No.2,Spring2010 Characterization of a Unique Undergraduate Multidisciplinary STEM K-5 Teacher Preparation Program SteveO’Brien Introduction TheK-5schoolyearsarecrucial,settingtheframeworkforallsubjectsas wellascriticalthinkingskills.Thesinglemostimportantcomponentina classroomistheteacher.However,inaformativetimeframeforelementary- schoolagedchildren,thenumberofK-5teachersthatareeducatedwitha Science,Technology,EngineeringorMathspecialization(“STEM”)is substantiallyunderrepresented.AlackofSTEMsubjectmatterexpertiseand experiences,coupledwithhighanxietyandlowself-efficacycanleadtolow teachereffectiveness. AtTheCollegeofNewJersey(TCNJ)itwasfeltthattheDepartmentof TechnologicalStudieswaswellpositionedtoprovideauniqueacademicmajor bycombiningtheT&EwiththeM&ScomponentsofSTEM,resultingina programbreadththatmatchesthebreadthofskillsneededbyahighlyskilledK- 5teacher.Additionally,itwasthoughtthatthefieldoftechnologyeducation (TE)shouldbesubstantiallymoreinvolvedattheK-5level,anagerangethat historicallyhaslittlepresenceinTEintheUSA.Suchaprogramwasestablished atTCNJandisformallyreferredtoastheMath-Science-TechnologyorMST program. Twokeymotivationsfortheprogramweretoachieveahighernumberof STEM-trainedK-5teachersandtobringvaluablecontextualexperiencesto futureteachers,andsubsequentlytheirK-5students,throughsubstantialand relevantT&Econtent.Ifthesegoalsareachievable,thentheMSTprogram couldhaveimportantimplicationsforK-5teacherpreparation,potentially havingalong-termandbeneficialimpactonstudentoutcomesinSTEM,and non-STEM,subjectsingradesK-5,andeventually6-20andbeyond. In1998TheCollegeofNewJersey(TCNJ)approvedtheMST multidisciplinarymajorforelementaryeducationstudents.Theprogramhas substantialrequirementsinallSTEMareasandtakesatrulyintegrated-STEM approach.Totheauthors’knowledge,thisistheonlyundergraduateSTEM majorforK-5 ____________________ SteveO’Brien([email protected])isanAssistantProfessorintheDepartmentofTechnological StudiesatTheCollegeofNewJersey,Ewing -35- JournalofTechnologyEducation Vol.21No.2,Spring2010 teacherpreparationintheUSAthathassubstantialT&EaswellasM&S components.Currently,thereareabout150MSTmajorsintheprogram.All studentsinelementary,earlychildhood,specialeducation,anddeafandhardof hearingeducationcanelecttheMSTmajorastheirrequiredsecondmajor. Aconcernwithmultidisciplinaryprogramsisthattheirbreadthadversely affectsthedepthofthecontentlearned.Thepurposeoftheresearchreported hereinwastoquantitativelyinvestigatethedepthofcontentknowledgeinthe MSTprograminboththeSTEMelementsaswellaskeynon-STEMsubjects. Thegrowthoftheprogramwasalsoinvestigated.Thispaperalsodiscusseshow co-existingMSTandTEprogramsimpacteachother.Technologyeducation departmentsareinauniquepositiontoinitiatesimilarprogramssincetheyhave enablingcapabilitiesintheboththetechnologyandtheengineeringcomponents ofSTEM,componentsthathavecriticalhands-on,integrative,andcontextual attributes. Therearemanyfactorsthatconstrainoreliminatetheabilitytogeneralize theresultsofthisstudytootherprogramsandinstitutions.Amongthemare politicalandadministrativeclimate,stateandinstitutionalrequirementsforthe preparationofteachers,admissionrequirements,andprogramphilosophy. Nonetheless,itishopedthatthearticlewillinspireideasinhowtoincreasethe learningexperiencesthatyoungpeoplehaveinschoolbyproperlypreparingthe teacherswhowillprovidetheseexperiences. ProgramHistory FollowingtheadoptionofthefirstNewJerseyDepartmentofEducation (NJDOE)CoreContentStandardsin1996,theDepartmentofTechnological Studies,undertheleadershipofDr.JohnKarsnitz,wasaskedtoconvenechairs fromthedepartmentsofelementaryeducation,mathematics,biology,chemistry, physicsandthecoordinatorofTCNJ’s“NJStatewideSystemicInitiativeto ImproveMath,ScienceandTechnologyEducationinK-12”(Dr.RobertWeber) toconsiderdesigninganewmultidisciplinarymajortofulfillarecognizedneed formoreK-5teacherswithstrengthenedSTEMskills.Therewasconcernover thetrade-offbetweendisciplinary“depth”andinterdisciplinary“breadth.” However,thisconcernwasovercomebycreatingamajorwithabroad“core” andarequiredin-depth“specialization”inoneofthethreedisciplinesof mathematics,science(biology,chemistryorphysics),ortechnology.Themajor wasapprovedbyTCNJ’sBoardofTrusteesin1998andsubsequentlybythe NJDOEin2000. TheMSTmajorisoneofseveralprogramofferingsintheDepartmentof TechnologicalStudiesintheSchoolofEngineering.Otherprogramsincludea Technology/Pre-engineeringeducationmajorandaMastersintheArtof Teaching(MAT).AllmajorsarefullyaccreditedbytheNationalCouncilfor AccreditationofTeacherEducation(NCATE).Alladvising,recruiting,and requirementsfortheMSTprogramarecoordinatedbytheDepartmentwhileall educationrequirementsarecoordinatedbytheSchoolofEducation. -36- JournalofTechnologyEducation Vol.21No.2,Spring2010 TherearefourworksthatsetimportantcontexttoTCNJ’sDepartmentof TechnologyStudiescurriculumandthedesignoftheMSTprogram:(1) BenchmarksforScienceLiteracy(“Project2061”)(AmericanAssociationfor theAdvancementofScience,1993),(2)TechnologicalLiteracyCounts (Sechrist,Anagnostopoulos,Lewis,andCoburn,1998),(3)Standardsfor TechnologicalLiteracy(InternationalTechnologyEducationAssociation [ITEA],2000),and(4)TechnicallySpeaking:WhyAllAmericansNeedtoKnow MoreaboutTechnology(NationalAcademyofEngineering,2002).These documentsdiscusstheimportantroleofteacherpreparationinmeeting educationalgoalsinmath,science,andtechnology.InTechnologyLiteracy Counts,(Sechristetal,1998,p.3)representativesfromSchoolsofEducation andEngineeringgatheredtodialogueonhowthesetwodiversegroupscould worktogethertoeffectchange.Oneoftherecommendationswastoplana meetingofDeanswiththepurposeof“…open[ing]upchannelsof communicationandpromoteteachertrainingthatbetterprepareseducatorsto teachtechnologyandfostertechnologicalliteracy.”TheMSTprogramwas designedtodothiswiththerecognizedimportanceofmath,science,and technologicalliteracyinK-5. TheT&Ecomponentsareauniqueandpotentiallyverybeneficialaspectof theMSTprogrambecausetheyincludeskillssuchasproblem-solving,design andmodeling,andmaking.Asdiscussedinpreviousarticles(Brophy,Klein, Portsmore, &Rogers,2008;Lachapelle&Cunningham,2007;Zubrowski, 2002),theT-andE-componentscanbekeyinconnectingmathandscience skillstotherealworldofthestudent,providingvaluablecontextsandincreasing learningeffectiveness.T&Ecomponentscaneffectivelyanswerthecommon studentcomplaint,“I’llneverneedtoknowthis.Ofwhatgoodisthis?”Design skillsarealsoimportantforhighlytalentedteacherssincetheyconstantlydesign lessonplans,design(manage)theirtime,anddesigncurricula.T&Eactivities arealsoeffectiveinhelpingstudentslearnnon-STEMsubjects(Koch& Feingold,2006). TheSTL(StandardsforTechnologicalLiteracy,ITEA,2000)statesthat technologicalliteracyiscriticallyimportantforthegeneralpopulation,notjust forSTEM-orientedpersons.ASTEMteacherpreparationprogramisconsistent withthisphilosophy,bringingSTEMskillstoanimportantgroup—teachersof impressionableK-5(8)students(Michaels,Shouse,andSchweingruber,2008). Thefocuswastoestablishapre-serviceprogram,providingasystemicsolution totheK-5“STEM-teachervoid.”Teachers,afterall,arethelargestsingle influenceonastudent’seducation(Carey,K.,2004;NationalCommissionon Teaching&America’sFuture,2000;TheTeachingCommission,2004). ProgramDescription AllMSTmajorshavethesamecorerequirementsbuteverystudentmust alsocompleteaspecialization.Throughananalysisofthespecializationschosen overafour-yearperiod(2009-2012),totaling125students,itwasfoundthatthe technologyandmathspecializationswerechosenmostoften,eachcomprising -37- JournalofTechnologyEducation Vol.21No.2,Spring2010 about35%ofthetotal.Sciencespecializationswerechosenbyabout16%ofthe students,while12%wereundecided.Pastexperienceindicatesthatthemajority oftheundecidedwillchooseatechnologyspecialization.PriortotheMST program,theonlySTEMmajorschosenbyK-5studentsweremathematicsand biology. TheMSTmajorisa32unit(128credits)baccalaureatedegreewith requirementsgenerallydividedintothreeareas:LiberalStudies,MSTCore Studies,andProfessionalStudies. LiberalStudies[10units] TCNJhasextensiveliberallearningrequirementsthatincludehistory,arts& humanities,globalstudies,gender,raceðnicity,community- engagement,afreshmenseminarexperience,mid-andsenior-writing experiences,aswellasrequirementsinscienceandquantitativereasoning. Calculus-IandCreativeDesignarerequiredofallMSTmajors. MSTCore[12units] TheMSTacademiccoreconsistsof8unitsincludingMultimediaDesign, StructuresandMechanisms,twoadditionalscienceoptions,oneadditional math,twoMSTelectives(fulfilledbytakingM,SorT),andacoursetitled “IntegratedMSTforYoungLearners.”Thefinalfourunitsarereservedfor specializationcourses. ProfessionalCourses[10units] MSTeducationmajorsatTCNJmeettheNewJerseyStateCertification requirementsforaK-5“highlyqualifiedteacher.”Coursesincludeseveral literacy/literaturecourses,psychology,mathandsciencemethodsanda seriesofstudentteachingexperiences. InNewJersey,MSTmajorscanalsoobtainmiddle-schoolendorsementsin mathorscience,withbothoftenbeingcompleted.Amiddleschoolendorsement hastworequirements:completing15creditsofappropriatecourseworkinthe disciplineandpassingtheappropriatecontentknowledgePraxisTMtest.AK-12 certificationinTechnologyEducationisalsopossibleforanMSTmajorby possessingatleast30specifiedcreditsintechnologyandpassingthePraxisTM technologyeducationtest. TheMSTprogramwasdesignedtobestructurallyconsistentwiththeTE program.TCNJ’sTEprogramhasitsrootsinindustrialeducation,datingback tothe1930’s.AmajorrevisionoftheTEmajorwascompletedin1985withan emphasisonstudyingthehuman-designedworld.Theprogramwasrevisedagain in2005witha“pre-engineering”emphasis,integratingmoremathandscience (Sullivan,Karsnitz,O’Brien,2007).Someofthecurricularaspectsofthe modifiedTEprogramarerepresentedinarecenthighschoolleveltextbook (Karsnitz,O’Brien,andHutchinson,2009). -38- JournalofTechnologyEducation Vol.21No.2,Spring2010 ProgramGrowthandGender TheMSTprogramhasexperiencedsubstantialgrowth.TheMSTprogram grewfrom2toover25graduatesfrom2002to2009.Currentclasssizespredict graduatingclasssizesinexcessof40inthenextfewyears.Ahighgrowthrateis asignofahealthyprogrambutalsoproducesmoreSTEM-trainedteachers,an importantandunder-representedpopulationforK-5(NationalResearchCouncil, 2007).PrevioustotheMSTprogram,non-STEMmajors(Psychology,English, History…etc.)madeupapproximately90%ofthetotal,leavinghistorically5- 13%fortheSTEMmajorsofmathematicsandbiology. ThegrowthoftheMSTprogram,measuredasapercentageofthetotalK-5 graduates,isshowninFigure1.AlsoincludedinFigure1arethepercentages fortheothertwoSTEMmajorsofmathandbiology.Forthemostrecent4years, mathandbiologygraduateshavecomprisedapproximately6%and2%ofthe total,respectively.From2004to2009theMSTprogramgrewfrom5%to20%. CurrentclasssizespredictthattheMSTmajorwillgrowtoabout30%inthe nextfewyears,resultinginatotalSTEMpercentageofabout38%afteradding inthehistoricnumbersformathandbiologymajors. STEM K-5 Graduatesby Major 25.0% al t 20.0% o T f 15.0% BIO o t MATH n 10.0% e MST c r 5.0% e P 0.0% 2002 2004 2006 2008 2010 Year Figure1. ThenumberofMST,mathandbiologyK-5programgraduatesby yearasapercentageofthetotalnumberofK-5graduates. ThislevelofSTEM-trainedK-5teachersis4-to-5timeshigherthanthe previousaverageofabout8%atTCNJ.AcomparisonofTCNJ’slevelof STEM-trainedteacherstoaNationalaveragewouldbeinterestingbuttheauthor couldnotfindthesedata.Somestatesdonotrequireasecondmajorandinstates thatdothetypeofmajorschosenisnottracked. Aninterestinggendereffectwasdiscoveredintheanalysis.Fornon-MST K-5majorsthefractionthataremalehasbeenabout6%(seeFigure2).The numberofmalemathandsciencegraduatesoverthelastfiveyearshasaveraged 4%.ThenationalaverageofmaleK-5teachersin2001wasabout9%,down fromabout18%in1981(Scelfo,2007;NationalEducationAssociation,2003p. 91).Incontrast,thefractionofmaleMSTgraduateshasbeenaconsistent20- -39- JournalofTechnologyEducation Vol.21No.2,Spring2010 25%,a4-to-6timesincreaseovertheTCNJaveragesandalmostthree-fold higherthanthe2001nationalaverage.Investigationsintothereasonsforthe highermalefractionhavenotbeenundertaken.However,itmaybethatmales areattractedtotheT&Ecomponents,adominanteffectinengineeringschools acrosstheUSA. MaleElem.Ed.Graduates 35.0% non-MST 30.0% MST 25.0% 20.0% 15.0% 10.0% 5.0% 0.0% 2004 2005 2006 2007 2008 2009 Ave Year Figure2. ComparisonofmaleMSTandnon-MSTprogramgraduates. CompetenciesinSTEMandNon-STEMComponents Inthissectionadescriptionofcompetenciesinscience,mathematics,and technology/engineeringarepresented,asarethetwonon-STEMsubjectsof languageartsandsocialstudies. MathandScience AllK-5teachercandidatesinNewJerseyarerequiredtotakethe ElementaryEducationContentKnowledgetest(test#0014),maintainedand monitoredbyEducationalTestingService(ETS).ETSpublishedanational summaryfor2008-09(EducationalTestingService,2008)andaportionofthe summaryisreproducedinTable1underthecolumnNationalAverages. PraxisTMscoresweremanuallycollectedfromTCNJstudentsstartinginApril- 2002.Thecollectionoftheseindividualscoresenablesamoredetailedstatistical analysisthanispossiblebylookingatthegeneralstatisticalparametersprovided byETS. EachcategoryofTCNJstudentsperformedwellcomparedtothenational averages.Forexample,themedianPraxisTMscoreforTCNJstudentswas approximately16%abovethenationalaverage.(Note:theminimumpossible scoreis100.)Moreover,themiddle50%distributionofscoresissubstantially narrowerfortheTCNJpopulations.Forexample,the50%-widthofthenational distributionis25whiletheTCNJdistributionsare15forthenon-MSTstudents and13fortheMSTstudents. -40- JournalofTechnologyEducation Vol.21No.2,Spring2010 Table1 ElementaryEducationContentKnowledgePraxisTMtestscorecomparisonby majortonationalaverages National TCNJ TCNJ Parameter Averages Non-MST MST PossibleScoreRange 100-200 100-200 100-200 No.ofExaminees 92910 346 59 MedianScore 164 179 181 RangeofAveragePerformers (middle50%) 151-176 169-184 174-187 ThetotalpopulationsfortheTCNJdatawere346non-MSTmajorsand59 MSTmajors.TheMSTpopulationscoredontheaverageof180.3onthe PraxisTMwithastandarddeviationof9.3comparedtothenon-MSTpopulation thatexhibitedanaveragescoreof176.3witha15%largerstandarddeviationof 11.0.At-testwascompletedusingMicrosoftExcelandindicatedthatthe differencebetweentheMSTandnon-MSTpopulationswassignificantatthe 95%confidencelevel(p=0.003). Overthesametimeframe,thesubject-specificsubscoresinmath,science, languagearts,andsocialstudiesforthePraxisTMtest(#0014)werealso collected,enablingadetailedstatisticalanalysis.Theaveragetestscoresare showninTable2forfoursubgroups:non-MST,MST,Math,andScience. Figure3showsasummaryoftheaveragePraxisTMsubscoretestsforMST graduatesasapercentage,apercentagerelativetothenon-MSTstudents. Table2 SubjectmatterspecificsubtestresultsforNon-MSTmajors,MSTmajors,Math majorsandSciencemajorsontheElementaryEducationContentKnowledge PraxisTMexamination Math Science Lang.Arts Soc.Studies Population M SD M SD M SD M SD Non-MST 25.5 3.2 21.9 3.2 25.9 2.4 19.1 3.0 MST 26.9 2.7 23.6 3.0 26.2 2.4 18.9 3.2 Math 28.3 1.0 23.0 3.5 27.2 1.8 19.8 3.9 Sci.(Bio.) 27.5 1.7 23.5 2.4 26.5 1.7 19.8 3.3 -41- JournalofTechnologyEducation Vol.21No.2,Spring2010 ComparisonofMSTtoNon-MSTGraduatesonPraxisTMSubtests 10.0% 8.0% 6.0% 4.0% 2.0% 0.0% MATH SCIENCE LANGUAGE -2.0% ARTS SOCIAL -4.0% STUDIES -6.0% -8.0% -10.0% Figure3. RelativepercentcomparisonofsubtestscoresofMSTgraduatesto non-MSTgraduatesontheContentKnowledgePraxisTMexamination. (i.e.,theMSTpopulationscored5.5%higherthanthenon-MST populationonthemathsubtest). At-testwasconductedforboththemathandsciencesubscoredistributions betweentheMSTandnon-MSTpopulationsreportedinFigure3.Thisanalysis indicatedthatfora95%confidencelevelthe5.5%and7.8%differencesfor math(p=0.004)andscience(p=0.001)weresignificantlydifferent,whereas thelanguageartsandsocialstudiessubscoreswerenot.Thesedatashowthat, comparedtonon-MSTmajors,MSTgraduatesscoredsignificantlyhigherin mathandsciencecompetencies,whilemaintaininghighcompetencyonnon- STEMsubjects. Otherusefulcomparisonsarescoresinmathandscienceamongstonlythe STEMmajors(MST,biologyandmath).AlloftheSTEMmajorsscoredhighon themathandsciencetests,withinafewpercentofeachother.Perhapsas expected,themathmajorsscoredhighestonmathbutdidnotperformaswellon science.TheonlySTEMpopulationsthathadstatisticallysignificantdifferences weretheMSTandmathmajorpopulationsinthesubjectofmath. TheaverageGradePointAverages(GPAs)forMSTandnon-MST populationsoverthesametimeframewere3.41and3.47andthedifferencedid notreachsignificance.ThesedataindicatethatMSTandnon-MSTmajorsare generallyperformingidenticallyintheircollegecoursework.Thecombined ScholasticAptitudeTest(SAT)scoresfortheMSTandnon-MSTpopulations were1250and1195,respectively.Thedifferenceinthesescoresisdueprimarily tohigherscoresonthemathportionoftheexam,whichisnotsurprisingdueto thehigherinterestlevelinmathandsciencefortheMSTpopulation.Finally, scoresonthemathandsciencemiddleschoolPraxisTMexamsforSpring-2009 alsoverifiedhighcompetenceforMSTmajors,withscoresatorabovethe nationalmedian. -42- JournalofTechnologyEducation Vol.21No.2,Spring2010 Technology&Engineering TherequiredcourseworkintheT-andE-componentsincludetechnological literacy,skillsinmodelingandmaking,substantialemphasisondesign processes,andscienceandmathrequiredforbasicdesign.Keysubjectmatter includesindustrial,graphicsandarchitecturaldesign,creativedesign,human factors,structures,mechanisms,materialsbio-technologyandelectrical technologies.TheoriginalMST-programproposalalsoincludedacourseto reinforcetheimportanceofintegratedSTEMteaching.Thiscourseiscalled “Integrated-STEMforYoungLearners”andisrequiredforallMSTandTE majors(seeforexampleSanders,2009).InthecourseMSTmajorsacquire experienceandcomfortwithT&Econtentrelatedtoyounglearners,enabling themtomoreeasily,andmorefrequently,integrateactivity,inquiry,andcontext intolearningexperiences.AsstatedintheStandardsforTechnologicalLiteracy (ITEA,2000,p.7),“…thestudyoftechnologyisawaytoapplyandintegrate knowledgefrommanyothersubjects-notjustmathematics,science,and computerscienceclasses,butalsotheliberalandfinearts.” AnotherpotentiallyvaluableaspectoftheT&Ecoursesisthatsignificant timeisspentoninvestigatinghowtoeffectivelyteachSTEMandnon-STEM, conceptsthroughT&E-basedactivities.T&Eprofessorsareacutelyawarethat theyarepreparingfutureteachers,notengineersorscientists.Thisadditional educationalelementisnotpartofteacherpreparationprogramsinothersubject areas.Thoughthiselementissimilartothefamiliar“methods”classes,thathave beneficialeffects(Hiebert,Morris,Berk,&Janson,2007),thereareunique differencesaswell. Thefieldsofmathandsciencehaveestablishedmethodstomeasurecontent knowledge(i.e.,PraxisTMtests).However,nosuchassessmentforK-5T&E contentknowledgeexists.SimplyhavingsubstantialT&Econtentinan undergraduateK-5programisitselfunique,butthequestionremainsofhowto assesscompetencyatthislevel.InthispaperitisproposedthatsincetheMST programisusingthesamecoursesastheongoingNCATEaccredited TechnologyEducationprogram,ananalysisoftheT&EcoursestakenbyMST majorsissufficienttoquantifyT&Ecompetence.Correspondinglyitisbelieved thatcompetenciesinT&Ecanbecharacterizedbylookingatthreeitems:a mappingoftheT&EcurriculaontotheSTL,ananalysisofgradesofMST majorscomparedhead-to-headwithTEmajorsinthesamecourses,and performanceontheTEPraxisTMexam.MappingtheT&Ecurriculaontothe STLquantifiesthelevelofT&Eexposurewhileanevaluationofgrades indicatesifT&Econtentisbeinglearned.Lastly,MSTstudentperformanceon theTEPraxisTMtestgivesanexternalmeasureofT&Econtentknowledge. MappingT&EcontentontoSTL. TCNJ’sTEprogramproduces10-15graduatesperyearand,inorderto teach,theymustpasstheTEPraxisTM.Analysesoftheinstitutionalreports providedbyETSoverthelastfouryearsindicatethatTCNJ’sTEgraduates scoreroughly30-40pointsabovethemedian.Moreover,thewidthofthe -43- JournalofTechnologyEducation Vol.21No.2,Spring2010 distributionofTCNJTEgraduates,asmeasuredbythetotalrangeofscores,has beenone-halftoone-thirdthatofthenationalaverage.AssumingthatTCNJ’s frameworkofT&EcoursesisamajorcontributortothePraxisTMscoresaswell astotheoverallsuccessofTEgraduatesintechnologyteachingpositions,and thatthePraxisTMscoresrepresentameasureofT&Ecompetence,thenthelevel ofexposurethatMSTmajorstotheT&Ecourseworkwouldbeagoodindicator ofT&Ecompetence.ThislevelofT&EexposuredependsonwhethertheMST studentspecializesinmath,science,ortechnology.MSTmajorswithamathor sciencespecializationcompleteaminimumoffiveT&Ecourses(20cr.).MST majorswithatechnologyspecializationcompleteapproximatelynineT&E courses(36cr.).CommonadditionalcoursesincludeEngineeringDesign, AnalogCircuits&Devices,DigitalElectronics,EnvironmentalandBiotechnical SystemsandArchitectural&CivilEngineeringDesignandFacilitiesDesign& Management.TEmajorstakeapproximately16T&Ecourses(about64cr.). Tosummarize,mathandsciencespecializationMSTgraduatestakeabout 32%oftheT&EcourseloadofaTEmajor,whiletechnologyspecialization studentstakeapproximately56%.Thisnumberofcoursesrepresentsahighlevel ofT&Econtent,especiallyconsideringthattypicalteacherpreparationprograms requirenoT&Econtent,no“integrated-STEM”educationalcontent,andonly minimalmathorscience.StatisticsavailableontheU.S.Departmentof Education’sInstituteofEducationSciences(IES)websiteforNationalCenter forEducationStatistics(NCES)showsthataneducationmajorgraduatein 1992-93,themostrecentyearthatdatawasavailable,completedanaverage numberof6.3,10.4and0.3semestercreditsinmath,scienceandengineering, respectively.AnMSTmajorexceedsthesefigureswithaminimumof15-20 creditsinmath,15-20creditsinscienceand20creditsinT&E. ThecontentoftheT&Ecourseloadisbetterdefinedbymappingitontothe STL.TheSTLconsistoftwentystandardsorganizedintofivecategories. Benchmarksaregivenforeachofthetwentystandardsforfouragegroups;K-2, 3-5,6-8and9-12.Thereare101benchmarksforgradesK-5andanother85 benchmarksforgrades6-8.KeepinginmindthattherearetwoMSTpopulations withdifferingamountsofT&Econtent,Figure4showstheresultsofthe mappingprocessforgradesK-2,3-5and6-8. -44-