ebook img

ERIC ED610086: Testing Autocorrelation and Partial Autocorrelation: Asymptotic Methods versus Resampling Techniques PDF

2018·0.5 MB·English
by  ERIC
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview ERIC ED610086: Testing Autocorrelation and Partial Autocorrelation: Asymptotic Methods versus Resampling Techniques

Runninghead: TESTINGAUTOCORRELATIONANDPARTIALAUTOCORRELATION 1 TestingAutocorrelationandPartialAutocorrelation: AsymptoticMethodsversusResampling Techniques ZijunKe SunYat-SenUniversity Zhiyong(Johnny)Zhang UniversityofNotreDame Ke, Z., & Zhang, Z. (2018). Testing Autocorrelation and Partial Autocorrelation: Asymptotic Methods versus Resampling Techniques. British Journal of Mathematical and Statistical Psychology, 71(1), 96–116. This research was supported by the grant program on Statistical and Research Methodology in Education from the Institute of Education Sciences of U.S. Department of Education ( ). Grant no: R305D140037 AuthorNote CorrespondenceshouldbeaddressedtoZijunKe,DepartmentofPsychology,SunYat-Sen University,HigherEducationMegaCenter,Guangzhou,Guangdong510006,China. Email: [email protected]. TESTINGAUTOCORRELATIONANDPARTIALAUTOCORRELATION 2 Abstract Autocorrelationandpartialautocorrelation,whichprovideamathematicaltooltounderstand repeatingpatternsintimeseriesdata,areoftenusedtofacilitatetheidentificationofmodelorders oftimeseriesmodels,e.g.,movingaverage(MA)andautoregressive(AR)models. Asymptotic methodsfortestingautocorrelationandpartialautocorrelationsuchasthe1/T approximation methodandtheBartlett’sformulamethodmayfailinfinitesamplesandarevulnerableto nonnormality. Resamplingtechniquessuchasthemovingblockbootstrapandthesurrogatedata methodarecompetitivealternatives. Inthisstudy,weusedaMonteCarlosimulationstudyanda realdataexampletocompareasymptoticmethodswiththeaforementionedresampling techniques. Foreachresamplingtechnique,weconsideredboththepercentilemethodandthe bias-correctedandacceleratedmethodforintervalconstruction. Simulationresultsshowedthat thesurrogatedatamethodwithpercentileintervalsyieldedbetterperformancethantheother methods. AnRpackagepautocorrisdevelopedanddemonstratedtocarryouttestsevaluated inthisstudy. TESTINGAUTOCORRELATIONANDPARTIALAUTOCORRELATION 3 TestingAutocorrelationandPartialAutocorrelation: AsymptoticMethodsversusResampling Techniques Growinginterestinstudyingbehavioralchangeviatimeseriesanalysishasbeenobserved insocialandbehavioralsciences(Browne&Nesselroade,2005;Borckardtetal.,2008;Ferrer& Zhang,2009). Bycollectingrepeatedobservationsofthesameindividual,researchersareableto studypatternsofchangeuniquetotheindividualandmodellaggedeffectsofthesamevariableor amongvariables. Amongtheclassictimeseriesmodelsfordelineatinglaggedlinearrelationsare autoregressivemodels(AR),movingaverage(MA)models,andthecombinationofthesetwo models,i.e.,autoregressivemovingaverage(ARMA)models(e.g.,Shumway&Stoffer,2006). InanARmodeloforderp,abbreviatedasAR(p),thecurrentvalueoftheseriescanbepredicted asafunctionoftheppastvalues. Likewise,inanMAmodeloforderq,abbreviatedasMA(q), thecurrentvalueoftheseriescanbepredictedasafunctionoftheq pastshockvariables (unpredictedfactors). AstheintegrationofARandMAmodels,thecurrentvalueofanARMA modelcanbeexplainedasafunctionoftheppastvaluesandq pastshockvariables. TobuildARMAmodels,onekeystepistoidentifymodelorders,i.e.,togetpreliminary valuesofpandq. Traditionally,researchersdeterminethevaluesofpandq bytestingthe significanceoftheautocorrelation/partialautocorrelationfunction(ACF/PACF).Similarto correlationcoefficientsforindependentdata,theACFisthecorrelationbetweenthecurrentvalue oftheseriesandvaluesatdifferenttimepoints. Inotherwords,itquantifiesthesimilarity betweenobservationsasafunctionofthetimelagbetweenthem. ThePACF,asimpliedbyits name,isa“partialcorrelation”versionoftheACF.Specifically,thePACFisthecorrelation betweenthecurrentvalueoftheseriesandvaluesatdifferenttimepointsafterpartiallingoutthe effectsofthevaluesin-between. StatisticianshavefoundthatthebehavioroftheACFandPACF ofstationaryandinvertibleARMAmodels1 islinkedtothevaluesofpandq. Morespecifically, 1Therearestrictandweakformsofstationarity. Strictstationarityensuresthatthecumulativedistributionfunction ofeverycollectionofvaluesisinvariantacrosstimepoints. Weakstationaritymeansthatstatisticalpropertiessuchas mean,variance,andcovarianceagreewiththeircounterpartsintheshiftedsets. Inthispaper,stationarityreferstothe latter. Invertibilityensuresmodeluniqueness. TwodifferentMA(ARMA)modelscanproducethesametimeseries (e.g., Shumway & Stoffer, 2006, pp. 91-92; du Toit & Browne, 2007, Tables 6-7). In particular, one of these MA (ARMA)modelscanbe“inverted”tobeanARmodelofaninfiniteorderandthusisdefinedasbeinginvertible. In thislight,invertibilityhelpssolvingtheproblemofnonuniqueness.Moreformally,anARMA(p,q)modelisstationary TESTINGAUTOCORRELATIONANDPARTIALAUTOCORRELATION 4 forAR(p)models,theACFtailsoffandthePACFcutsoffafterlagp;forMA(q)models,the PACFtailsoffandtheACFcutsoffafterlagq;andforARMA(p,q)models,boththeACFand PACFtailoff. Makinguseoftheassociationbetweenmodelordersandthe(P)ACF,researchers candeterminethevaluesofpandq bystudyingthebehaviorofthe(P)ACF.However,inrealdata analysis,theACFandPACFaresampleestimates. Consequently,researchershavetorelyon hypothesistestingtoexaminethesignificanceoftheACFandPACF. Twowell-establishedasymptoticmethodsfortestingautocorrelationsarethe1/T approximation(e.g.,Shumway&Stoffer,2006,p.519-520)andtheBartlett’sformulamethods (Bartlett,1955,p.289;Shumway&Stoffer,2006,p.519-520;Zhang&Browne,2010). The1/T approximationmethodhasbeenadaptedforpartialautocorrelationswhereastheBartlett’smethod hasnot. Giventhelimitationsofasymptoticmethodsinsmallsamples(e.g.,unwarrantedfinite sampleperformanceandthevulnerabilitytononnormalityinsmallsamples),resampling techniqueshavebeendevelopedforassessing(partial)autocorrelations. Usually,thebootstrap comesintoplaywhenananalyticalsolutionisdifficulttobeadaptedtosmallsamples. Toaddress theproblemofthelackofindependenceintimeseriesdata,themovingblockbootstraphasbeen proposedforinferenceon(partial)autocorrelations(Künsch,1989;Efron&Tibshirani,1994, p.99-102). Whilethebootstrapresamplesfromadistributionassumedtogeneratetheobserved data,thesurrogatedatamethodresamplesunderthenullhypothesis(Theileretal.,1992). In otherwords,thebootstrapmethodtriestopreservethetimedependenceofthedatawhereasthe surrogatedatamethoddestroysthetimedependencetoresemblethenull. Thejackknifeis anothercommonlyusedresamplingtechniqueforestimatingthebias,thestandarderrorandthe influencefunction(Efron,1994). Tostudythebiasandthevariabilityoftheestimator,the jackknifecreatesreplicationsbysequentiallydeletingoneormoreobservations. Becauseonly oneorafewobservationsarealtered,estimatesbasedontheresultingreplicationsarecorrelated witheachotherandthusthevariability(difference)acrossjackknifereplicationsismuchsmaller andinvertibleonlywhentherootsofA(z) = 1 p a zj andB(z) = 1+ q b zj witha sandb sbeing ≠ j=1 j j=1 j j j ARandMAweightsrespectivelylieoutsidetheuniqtcircle. Practically,withpopuqlationajsandbjs,onemaycheck thestationarityandinvertibilityofanARMAmodelbyconstructingtheAmatrixinduToit&Browne(2007,Equ. 16)usinga sorb sandexaminingwhethertheabsoluteeigenvaluesofthematrixarelessthenone. Infinitesamples, j j the augmented Dickey-Fuller test is often used to test whether differencing is needed to make the observed series stationary(e.g.,Brockwell&Davis,2002,pp. 193-196). TESTINGAUTOCORRELATIONANDPARTIALAUTOCORRELATION 5 thanthatofthesamplingdistribution. Totakeintoaccountthenon-independence,thejackknife estimatorsofthebiasandthestandarderroruseacorrectionfactortoenlargethedifferenceorthe variability. Becausefordifferentstatistics,thecorrectionfactormayormaynotbevalid,the bootstrapisusuallymoregeneralthanthejackknife. AlthoughhowtodeterminemodelordersofARMAmodelshasbeenextensivelydiscussed intheliterature,twoissueshavecomplicatedtheimplementationoftheseexistingmethodsin reality. First,smallsamplesizeandnonnormalityposeathreattothevalidityofasymptotic methods. Samplesizeinpsychologicalstudiesisusuallysmalltomoderate. Thusasymptotic methodsthatarebasedonlargesamplebehaviormayfailinsmallsamples. Inaddition, asymptoticmethodsusuallyassumenormalitytoachievemathematicalsimplicity. However, psychologicaldatararelyfollownormaldistributions(Micceri,1989). Therefore,whether asymptoticmethodsfortesting(partial)autocorrelationsarerobusttosmallsamplesizeand nonnormalityawaitsfurtherinvestigation. Second,althoughbootstrapping(partial)autocorrelationstomakeinferencehasbeen largelyreliedonthemovingblockbootstrap,itisnotnecessarythatthemovingblockbootstrapis superiortothesurrogatedatamethodwhentheinterestistotest(partial)autocorrelations. A relatedstudyontestsofcorrelationsforindependentdatashowedthatunivariatebootstrapwhich resamplesunderthenulloutperformedbivariatebootstrapwhichresamplesunderthealternative whentestingcorrelations(Lee&Rodgers,1998). Inaddition,amongtheseveralinterval constructionmethodsforresamplingtechniques,bias-correctedandaccelerated(BCa)intervals areoftenrecommendedbecausetheyaresecond-orderaccurate,asopposedtothefirstorder accuratepercentileintervals(Efron&Tibshirani,1994,p.187)2. Aswewillshowinthisstudy, BCaintervalsmaynotalwaysbesuperiortopercentileintervals. Thisexceptionislikelyrelated tothecomputationofthebias-correctionfactorduringtheconstructionofBCaintervalsforthe surrogatedatamethod. Insum,becausetherelativeperformanceoftheaforementionedtestsof(partial) autocorrelationsislargelyunknown,theobjectiveofthisstudyis1)tocomparetherelativefinite sampleperformanceofvarioustests(i.e.,the1/T approximationmethod,theBartlett’sformula 2Second-orderaccuratemeansthattheerrorinmatchingtheintendedmiss-coverageratesgoestozeroatarateof 1/T intermsofsamplesizeortimeserieslengthT. Forfirst-orderaccurate,therateis1/ÔT. TESTINGAUTOCORRELATIONANDPARTIALAUTOCORRELATION 6 method,themovingblockbootstrapandthesurrogatedatamethod)of(partial)autocorrelations withnormalandnonnormaldata,2)todevelopaneasy-to-useRpackagepautocorrto implementtheaforementionedtests,and3)toprovideapracticalguidelineonapplicationsof thosetestsundervariouscircumstances. Therestofthearticleisorganizedasfollows: thetwoasymptotictestsaredescribedfirst, followedbyasectiononresamplingtechniques. Asimulationstudyispresentedtoevaluatethe performanceofthosetests. AnRpackageandarealdataexampleareincludedtoillustratetheuse ofdifferenttestsof(partial)autocorrelations. Finally,thisarticleendswithconcludingcomments. AsymptoticMethods The1/T approximationmethodfor(partial)autocorrelationtestingismotivatedbythefact thatunderthenullhypothesiswhichassumesthatallautocorrelationsarezero,timeseriesdata reducetouncorrelateddata. Therefore,thewell-establishedstandarderrorestimatorfor correlation,1/ÔT whereT isthesamplesize,canbeuseddirectlyfor(partial)autocorrelations. Moreformally,lety ,y ,...,y beastationarytimeseriesoflengthT whosestatistical 1 2 T propertiessuchasmean,varianceandcovarianceareinvariantacrossdifferenttimepoints. The concurrentvariance“ = Var(y )andthelaggedcovariances 0 t “ = Cov(y ,y ) = E[(y µ)(y µ)]areestimatedbytheirsamplecounterpartsusing l t+l t t+l t ≠ ≠ 1 t=T l ≠ “ˆl = (yt+l y¯)(yt y¯)Õ T ≠ ≠ t=1 ÿ wherey¯isthesamplemeany¯= 1 T y . The1/T approximationmethodassumesthatunder T t=1 t thenull,autocorrelationestimatesfqollowanormaldistributionflˆ N 0, 1 wherefl = “l is l ≥ T l “0 thepopulationautocorrelationatlagl andflˆ = “ˆl isitssamplecounter1part. 2 l “ˆ0 Thepartialautocorrelation„ forstationaryseriesisdefinedas„ = fl and l 1 1 „ = Corr y yt l+1,y yt l+1 forl 2. Hereyt l+1 denotesthebestlinearpredictionof l t ≠ t≠ t≠l ≠ t≠≠l Ø t≠ 1 2 y basedony ,y ,...,y 3. Inplainlanguage,„ isthecorrelationbetweeny andy t t 1 t 2 t (l 1) l t t l ≠ ≠ ≠ ≠ ≠ afterremovingtheassociationattributabletoy ,y ,...,y . Underthenull,„ reduceto t 1 t 2 t (l 1) l ≠ ≠ ≠ ≠ fl becausebothy andy areunrelatedwith y ,y ,...,y : l t t l t 1 t 2 t (l 1) ≠ ≠ ≠ ≠ ≠ Ó Ô 3Theoretically,ytt≠l+1canbeobtainedbyregressingytonyt 1,yt 2,...,yt (l 1)inthepopulationandcalculat- ≠ ≠ ≠ ≠ ingthepredictedvaluefory usingtheobtainedregressioncoefficients. t TESTINGAUTOCORRELATIONANDPARTIALAUTOCORRELATION 7 „ = Corr y yt l+1,y yt l+1 = Corr(y ,y ) = fl . Inotherwords,underthenullthat l t ≠ t≠ t≠l ≠ t≠≠l t t≠l l datapoints1areuncorrelatedwitheach2other,thesamplingdistributionof„ˆ,theestimateof„ , l l shouldbethesameasthatofflˆ. Hence,the1/T approximationmethodassumesthesame l distributionfor„ˆ,„ˆ N 0, 1 . Putittogether,the1/T approximationmethodcomputesthe l l ≥ T teststatistic flˆl or „ˆl a1ndco2mparesittoacriticalvalueofZ orZ where 1/ÔT 1/ÔT –/2 1≠–/2 Z N (0,1)and– isthechosensignificancelevel. ≥ Becausepartialautocorrelationsremovethedependencebetweeny andy dueto t t l ≠ y ,y ,...,y ,estimating„ isnotasstraightforwardasestimatingfl . The t 1 t 2 t (l 1) l l ≠ ≠ ≠ ≠ ÓDurbin-LevinsonalgoritÔhmisawidelyusediterativealgorithmforcomputing„ˆ forstationary l series. Let„ denotestheregressioncoefficientofy intheone-step-aheadprediction lk t k ≠ y „ y +„ y +...+„ y . Bythepropertyofbestlinearprediction,stationarity,and t l1 t 1 l2 t 2 ll t l ≥ ≠ ≠ ≠ matrixalgebra,itcanbeshownthat„ = „ 4. TheDurbin-Levinsonalgorithmisusedtocompute ll l theregressioncoefficientsintheone-step-aheadprediction. Inparticular,with„ˆ = 0,forl 1, 0 Ø thealgorithmcomputes„ˆ aswellasotherregressioncoefficientsasfollows(e.g.,seeShumway l &Stoffer,2006,pp.113-114), flˆ l 1 „ˆ flˆ „ˆll = „ˆl = l1≠≠qk≠lk=≠=111„ˆl≠l≠11,k,kflˆl≠kk whereforl 2andk = 1,2,...l 1, q Ø ≠ „ˆ = „ˆ „ˆ„ˆ . lk l 1,k l l 1,l k ≠ ≠ ≠ ≠ Clearly,theDurbin-Levinsonalgorithmcomputes„ˆ usingsampleautocorrelationsflˆ ratherthan l l rawdata. Inthisstudy,whenrawseriesarenotavailable,werelyontheDurbin-Levinson algorithmtoobtainsamplepartialautocorrelations5. TheBartlett’sformulawasoriginallydevelopedforobtainingtheasymptoticdistribution forautocorrelationsundergeneralconditions,notonlyunderthenullhypothesis. Accordingto theBartlett’sformula(Bartlett,1955,p. 289),theasymptoticdistributionofÔT (flˆ fl )is l l ≠ N (0,W )where l W = Œ 2fl2fl2 2fl fl (fl +fl )+fl2 +fl fl . (1) l l u ≠ l u u+l u≠l u u≠l u+l u=ÿ≠ŒÓ Ô 4DetaileddiscussioncanbefoundinExercise3.12inShumway&Stoffer(2006). 5Thefirstauthorhastestedthattheresultingsamplepartialautocorrelationswereexactlythesameasthoseobtained fromthebuilt-infunctionpacfinthewidelyusedstatisticalsoftwareR. TESTINGAUTOCORRELATIONANDPARTIALAUTOCORRELATION 8 Inshort,testsbasedontheBartlett’sformulafirstconstructtheconfidenceintervalforfl using l flˆ Z Wˆl whereWˆ isobtainedbyreplacingpopulationautocorrelationsinW withtheir l ± –/2 T l l Ò samplecounterparts,andthenexaminewhetherthetestvalue,0,fallsintotheobtained confidenceinterval. OnepracticalconcernofthismethodisthatinEquation(1)theasymptotic varianceofflˆ isafunctionofconcurrentandlaggedcorrelationsuptoinfinity. Inpractice,we l needtosetanupperlimitforthenumberofsummedterms. Studiesindicatedthat30works satisfactorily(Zhang&Browne,2010). Thusinthisstudy,weuse30. Accordingtoour knowledge,theBartlett’sformulahasnotbeenadaptedforpartialautocorrelations. Thus,when evaluatingtestsofpartialautocorrelations,wewouldnotconsidertheBartlett’sformulamethod. ResamplingTechniques Requiringfewerassumptionsandspurredbytheadvanceofcomputertechnology, resamplingtechniqueshavebecomeincreasinglypopular. Tworesamplingtechniquesproposed fortestingautocorrelationandpartialautocorrelationarethebootstrapmethodandthesurrogate datamethod. Becausethesetwomethodsoftenmakestatisticalinferencethroughconfidence intervals,wefirstbrieflyreviewtwowidelyusedintervalconstructionmethods. Wethenmoveon tothebootstrapmethod. Thesurrogatedatamethodisnext. IntervalConstructionMethods Twowidelyusedintervalconstructionmethodsforresamplingtechniquesarethepercentile methodandthebias-correctedandaccelerated(BCa)method. Interestedreaderscanreferto Efron&Tibshirani(1994)andEfron(1987)fordetaileddiscussion. Here,wesummarizethe mainideasfromthebookandthepaper. Let◊ˆı(–/2) bethe100–thpercentileof(partial) 2 autocorrelationestimatesfromB resamplingreplications. Thepercentileintervalofintended coverage1 – isobtainedbyfindingthecorrespondingpercentiles,i.e.,[◊ˆı(–/2),◊ˆı(1 –/2)]. For ≠ ≠ example,supposethatwedecidetouseacertainresamplingprocedure,e.g.,thebootstrap. Followingthisprocedure,weformareplicationsampleandwecomputetheestimateforthis replication. Thisprocessisrepeatedfor2000timesand2000estimatesareobtained. The percentileintervalendpointsarethe50thandthe1950thorderedvaluesofthe2000estimates. AccordingtoEfron(1987),percentileintervalsareidealforstatisticsinwhichthereexistsa TESTINGAUTOCORRELATIONANDPARTIALAUTOCORRELATION 9 g(◊ˆ) g(◊) monotonictransformationg suchthat ≠ N (0,1)where‡ istheconstantstandard ‡g(◊ˆ) ≥ g(◊ˆ) errorofg ◊ˆ . Arelatedexampleisthesamplecorrelationcoefficientforbivariatenormally 1 2 distributeddata. Thesamplingdistributionofasamplecorrelationisskewedifthetrue correlationisfarawayfromzero. Inaddition,thestandarderrorofthesamplecorrelationgets largerasthetruecorrelationgetsclosertozero. Fisher’sztransformationisoneoftheg transformationmentionedabovebecauseitnormalizesthesamplingdistribution(thetransformed statisticfollowsanormaldistribution)andstabilizesthestandarderror(thestandarderror becomesindependentofthetruecorrelation). Analytically,researchersmayfindouttheinterval endpointsforg ◊ˆ first,andthentransformthembacktothemetricof◊ˆtoobtaininterval estimatesfor◊ˆ.1As2pointedoutbyEfron(1987),thebootstrapautomaticallygoesthroughthis processandthereisnoneedtofindouttheexacttransformationg. BCaintervals,however,arepreferabletopercentileintervalswhenthetransformationg can onlynormalizethestatisticbutfailtocorrectbiasandstabilizethestandarderror. More specifically,thetransformedstatisticg ◊ˆ isallowedtohavebiasandanon-constantstandard g(◊ˆ) g(◊) 1 2 error, ≠ N ( z ‡,‡2)where‡ = 1+cg(◊)(Efron,1987). Thetwoquantitiesz andc ‡g(◊ˆ) ≥ ≠ 0 0 arecalledbiasandaccelerationconstants. Obviously,z isproportionaltothedifferencebetween 0 theexpectation(ormedian)ofg ◊ˆ andg(◊). Thisishowz getsitsname. Toestimatez ,Efron 0 0 1 2 &Tibshirani(1994)suggestedassessingtheamountofmedianbiasbycountingtheproportionof replicationslessthantheoriginalestimate. Thecorrespondingpercentileinthestandardnormal distributionreflectsthesizeofmedianbiasonthescaleofthestandardnormaldistributionand thuscanbeusedaszˆ ,theestimateofz . Similarly,accelerationcgetsitsnamebecauseitisthe 0 0 rateofchangeofthestandarderrorwithrespecttothetrueparametervalue. Efron(1987) proposedtoapproximatecbyone-sixthofthe“skewness”oftheinfluencefunction. Theinfluence functiongenerallymeasureshowtheestimatorchangesifthedistributionofdatachangesslightly. Becausethejackknifeslightly“changes”theempiricaldistributionofdatabydeletingoneora fewobservationssequentially,thereisacloseconnectionbetweenthejackknifeandtheinfluence function. Thus,thejackknifeisoftenusedtoestimatetheinfluencefunctionandhenceis recommendedforobtainingcˆ,theestimateofc(Frangos&Schucany,1990). Lety bethe t ≠ originalsamplewithy omittedand◊ˆ betheestimateof(partial)autocorrelationsfromsample t (t) TESTINGAUTOCORRELATIONANDPARTIALAUTOCORRELATION 10 y . Define◊ˆ = T ◊ˆ /T . Theaccelerationcˆcanbeobtainedusingthefollowingequation t () t=1 (t) ≠ · q T ◊ˆ ◊ˆ 3 cˆ= t=1 (·) ≠ (t) . 6 qT 1◊ˆ ◊ˆ 22 3/2 t=1 (·) ≠ (t) 5 1 2 6 q Withzˆ andcˆ,theBCaintervalofintendedcoverage1 – isobtainedbyfindingthefollowing 0 ≠ percentiles[◊ˆı(–L),◊ˆı(–U)]where zˆ +z(–/2) – =� zˆ + 0 L A 0 1 cˆ(zˆ0 +z(–/2))B ≠ zˆ +z(1 –/2) – =� zˆ + 0 ≠ . U A 0 1 cˆ(zˆ0 +z(1≠–/2))B ≠ Herez(–/2) isthe100–/2thpercentileofthestandardnormaldistributionand�( )isthe · cumulativedistributionfunctionofthestandardnormaldistribution. Whenz = c = 0,BCaintervalsreducetopercentileintervals. Onemayexpectcomparable 0 performanceofthesetwomethods. Whenz andcarenonzero,Efron(1987)hasshownthatBCa 0 intervalsaresecond-orderaccuratewhereaspercentileintervalsareonlyfirst-orderaccurate. In otherwords,empiricalmiss-coverageratesofBCaintervalsconvergetotheintendedcoverage ratefasterthandopercentileintervalsasthetimeserieslengthincreases. Intheexampleof correlation,ifthetruecorrelationiszero,whetherornotthebivariatenormalityassumptionis violated,Fisherztransformationofsamplecorrelationapproximatelyshowszerobiasandits standarderrorisindependentofthetruecorrelationvalue(e.g.,Hawkins,1989). Hence,inthis situation,percentileintervalsarecomparabletoBCaintervals,providedthatourestimatesofz 0 andcareaccurate. Whenthetruecorrelationisnonzeroandthebivariatenormalityassumptionis violated,thestandarderrorofthetransformedcorrelationdependsonthetruecorrelationvalue (e.g.,Hawkins,1989). Inthissituation,BCaintervalsarelikelybetterthanpercentileintervals. Similarresultscanbeexpectedforautocorrelationsandpartialautocorrelations. MovingBlockBootstrap Thebootstrap,originallyproposedforindependentdata,isacomputerbasedmethodof statisticalinferencethatcanavoidtheformidablewallofmathematics(Efron&Tibshirani, 1994): Itsampleswithreplacementfromtheoriginaldatapointstoformbootstrapsamplesand makesinferenceoftheoriginalsamplebasedonbootstrapsamplesinordertomodeltheinference

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.