EQUIVALENTS OF THE RIEMANN HYPOTHESIS VolumeTwo:AnalyticEquivalents TheRiemannhypothesis(RH)isperhapsthemostimportantoutstandingproblem inmathematics.Thistwo-volumetextpresentsthemainknownequivalentstoRH usinganalyticandcomputationalmethods.Thebooksaregentleonthereaderwith definitionsrepeated,proofssplitintologicalsections,andgraphicaldescriptionsof therelationsbetweendifferentresults.Theyalsoincludeextensivetables, supplementarycomputationaltools,andopenproblemssuitableforresearch. Accompanyingsoftwareisfreetodownload. Thesebookswillinterestmathematicianswhowishtoupdatetheirknowledge, graduateandseniorundergraduatestudentsseekingaccessibleresearchproblemsin numbertheory,andotherswhowanttoexploreandextendresultscomputationally. Eachvolumecanbereadindependently. Volume1presentsclassicalandmodernarithmeticequivalentstoRH,withsome analyticmethods.Volume2coversequivalenceswithastronganalyticorientation, supportedbyanextensivesetofappendicescontainingfullydevelopedproofs. EncyclopediaofMathematicsandItsApplications Thisseriesisdevotedtosignificanttopicsorthemesthathavewideapplicationin mathematicsormathematicalscienceandforwhichadetaileddevelopmentofthe abstracttheoryislessimportantthanathoroughandconcreteexplorationofthe implicationsandapplications. BooksintheEncyclopediaofMathematicsandItsApplicationscovertheir subjectscomprehensively.Lessimportantresultsmaybesummarizedasexercises attheendsofchapters.Fortechnicalities,readerscanbereferredtothe bibliography,whichisexpectedtobecomprehensive.Asaresult,volumesare encyclopedicreferencesormanageableguidestomajorsubjects. Encyclopedia of Mathematics and Its Applications AllthetitleslistedbelowcanbeobtainedfromgoodbooksellersorfromCambridge UniversityPress.Foracompleteserieslistingvisit www.cambridge.org/mathematics. 119 M.DezaandM.DutourSikiric´GeometryofChemicalGraphs 120 T.NishiuraAbsoluteMeasurableSpaces 121 M.PrestPurity,SpectraandLocalisation 122 S.KhrushchevOrthogonalPolynomialsandContinuedFractions 123 H.NagamochiandT.IbarakiAlgorithmicAspectsofGraphConnectivity 124 F.W.KingHilbertTransformsI 125 F.W.KingHilbertTransformsII 126 O.CalinandD.-C.ChangSub-RiemannianGeometry 127 M.Grabischetal.AggregationFunctions 128 L.W.BeinekeandR.J.Wilson(eds.)withJ.L.GrossandT.W.TuckerTopicsinTopological GraphTheory 129 J.Berstel,D.PerrinandC.ReutenauerCodesandAutomata 130 T.G.FaticoniModulesoverEndomorphismRings 131 H.MorimotoStochasticControlandMathematicalModeling 132 G.SchmidtRelationalMathematics 133 P.KornerupandD.W.MatulaFinitePrecisionNumberSystemsandArithmetic 134 Y.CramaandP.L.Hammer(eds.)BooleanModelsandMethodsinMathematics,Computer Science,andEngineering 135 V.Berthe´andM.Rigo(eds.)Combinatorics,AutomataandNumberTheory 136 A.Krista´ly,V.D.Ra˘dulescuandC.VargaVariationalPrinciplesinMathematicalPhysics, Geometry,andEconomics 137 J.BerstelandC.ReutenauerNoncommutativeRationalSerieswithApplications 138 B.CourcelleandJ.EngelfrietGraphStructureandMonadicSecond-OrderLogic 139 M.FiedlerMatricesandGraphsinGeometry 140 N.VakilRealAnalysisthroughModernInfinitesimals 141 R.B.ParisHadamardExpansionsandHyperasymptoticEvaluation 142 Y.CramaandP.L.HammerBooleanFunctions 143 A.Arapostathis,V.S.BorkarandM.K.GhoshErgodicControlofDiffusionProcesses 144 N.Caspard,B.LeclercandB.MonjardetFiniteOrderedSets 145 D.Z.ArovandH.DymBitangentialDirectandInverseProblemsforSystemsofIntegraland DifferentialEquations 146 G.DassiosEllipsoidalHarmonics 147 L.W.BeinekeandR.J.Wilson(eds.)withO.R.OellermannTopicsinStructuralGraphTheory 148 L.Berlyand,A.G.KolpakovandA.NovikovIntroductiontotheNetworkApproximationMethod forMaterialsModeling 149 M.BaakeandU.GrimmAperiodicOrderI:AMathematicalInvitation 150 J.Borweinetal.LatticeSumsThenandNow 151 R.SchneiderConvexBodies:TheBrunn–MinkowskiTheory(SecondEdition) 152 G.DaPratoandJ.ZabczykStochasticEquationsinInfiniteDimensions(SecondEdition) 153 D.Hofmann,G.J.SealandW.Tholen(eds.)MonoidalTopology 154 M.CabreraGarc´ıaandA´.Rodr´ıguezPalaciosNon-AssociativeNormedAlgebrasI:The Vidav–PalmerandGelfand–NaimarkTheorems 155 C.F.DunklandY.XuOrthogonalPolynomialsofSeveralVariables(SecondEdition) 156 L.W.BeinekeandR.J.Wilson(eds.)withB.ToftTopicsinChromaticGraphTheory 157 T.MoraSolvingPolynomialEquationSystemsIII:AlgebraicSolving 158 T.MoraSolvingPolynomialEquationSystemsIV:BuchbergerTheoryandBeyond 159 V.Berthe´andM.Rigo(eds.)Combinatorics,WordsandSymbolicDynamics 160 B.RubinIntroductiontoRadonTransforms:WithElementsofFractionalCalculusandHarmonic Analysis 161 M.GherguandS.D.TaliaferroIsolatedSingularitiesinPartialDifferentialInequalities 162 G.MolicaBisci,V.RadulescuandR.ServadeiVariationalMethodsforNonlocalFractional Problems 163 S.WagonTheBanach–TarskiParadox(SecondEdition) 164 K.BroughanEquivalentsoftheRiemannHypothesisI:ArithmeticEquivalents 165 K.BroughanEquivalentsoftheRiemannHypothesisII:AnalyticEquivalents 166 M.BaakeandU.GrimmAperiodicOrderII:RepresentationTheoryandtheZelmanovApproach Encyclopedia of Mathematics and Its Applications Equivalents of the Riemann Hypothesis Volume Two: Analytic Equivalents KEVIN BROUGHAN UniversityofWaikato,NewZealand UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 4843/24,2ndFloor,AnsariRoad,Daryaganj,Delhi–110002,India 79AnsonRoad,#06-04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781107197121 DOI:10.1017/9781108178266 (cid:2)c KevinBroughan2017 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2017 PrintedintheUnitedKingdombyClays,StIvesplc AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. LibraryofCongressCataloguinginPublicationData Names:Broughan,KevinA.(KevinAlfred),1943–author. Title:EquivalentsoftheRiemannhypothesis/KevinBroughan, UniversityofWaikato,NewZealand. Description:Cambridge:CambridgeUniversityPress,2017–| Series:Encyclopediaofmathematicsanditsapplications;165| Includesbibliographicalreferencesandindex.Contents:volume2.AnalyticEquivalents Identifiers:LCCN2017034308|ISBN9781107197121(hardback:alk.paper:v.1) Subjects:LCSH:Riemannhypothesis. Classification:LCCQA246.B7452017|DDC512.7/3–dc23 LCrecordavailableathttps://lccn.loc.gov/2017034308 ISBN–2VolumeSet978-1-108-29078-4Hardback ISBN–Volume1978-1-107-19704-6Hardback ISBN–Volume2978-1-107-19712-1Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyInternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. DedicatedtoJackie,JudeandBeck RH isaprecisestatement,andinone sensewhat itmeansisclear,butwhat it is connected with, what it implies, where it comes from, can be very un- obvious. MartinHuxley Contents for Volume Two ContentsforVolumeOne pagexi ListofIllustrations xiv ListofTables xvi PrefaceforVolumeTwo xvii ListofAcknowledgements xx 1 Introduction 1 1.1 WhyThisStudy? 1 1.2 SummaryofVolumeTwo 2 1.3 HowtoReadThisBook 7 2 SeriesEquivalents 8 2.1 Introduction 8 2.2 TheRieszFunction 10 2.3 AdditionalPropertiesoftheRieszFunction 14 2.4 TheSeriesofHardyandLittlewood 15 2.5 AGeneralTheoremforaClassofEntireFunctions 16 2.6 FurtherWork 22 3 BanachandHilbertSpaceMethods 23 3.1 Introduction 23 3.2 PreliminaryDefinitionsandResults 25 3.3 Beurling’sTheorem 29 3.4 RecentDevelopments 35 4 TheRiemannXiFunction 37 4.1 Introduction 37 4.2 PreliminaryResults 40 4.3 Monotonicityof|ξ(s)| 49 vii viii ContentsforVolumeTwo 4.4 PositiveEvenDerivatives 51 4.5 Li’sEquivalence 54 4.6 MoreRecentResults 59 5 TheDeBruijn–NewmanConstant 62 5.1 Introduction 62 5.2 PreliminaryDefinitionsandResults 66 5.3 ARegionforΞλ(z)WithOnlyRealZeros 69 5.4 TheExistenceofΛ 77 5.5 ImprovedLowerBoundsforΛ 77 5.5.1 Lehmer’sPhenomenon 78 5.5.2 TheDifferentialEquationSatisfiedbyH(t,z) 81 5.5.3 FindingaLowerBoundforΛ UsingLehmerPairs 87 C 5.6 FurtherWork 92 6 OrthogonalPolynomials 93 6.1 Introduction 93 6.2 Definitions 94 6.3 OrthogonalPolynomialProperties 96 6.4 Moments 99 6.5 Quasi-AnalyticFunctions 104 6.6 Carleman’sInequality 106 6.7 RiemannZetaFunctionApplication 113 6.8 RecentWork 116 7 CyclotomicPolynomials 117 7.1 Introduction 117 7.2 Definitions 118 7.3 PreliminaryResults 119 7.4 RiemannHypothesisEquivalences 124 7.5 FurtherWork 126 8 IntegralEquations 127 8.1 Introduction 127 8.2 PreliminaryResults 129 8.3 TheMethodofSekatskii,BeltraminelliandMerlini 133 8.4 Salem’sEquation 139 8.5 Levinson’sEquivalence 142 9 Weil’sExplicitFormula,InequalityandConjectures 150 9.1 Introduction 150 9.2 Definitions 152 9.3 PreliminaryResults 152 9.4 Weil’sExplicitFormula 154