Astronomy&Astrophysicsmanuscriptno.lf2 (cid:13)c ESO2012 January19,2012 Environmental effects on the bright end of the galaxy luminosity function in galaxy clusters R.Barrena1,2,M.Girardi3,4,W.Boschin5,andF.Mardirossian3,4 1 InstitutodeAstrof´ısicadeCanarias,C/V´ıaLa´cteas/n,E-38205LaLaguna(Tenerife),CanaryIslands,Spain 2 DepartamentodeAstrof´ısica,UniversidaddeLaLaguna,Av.delAstrof´ısicoFranciscoSa´nchezs/n,E-38205LaLaguna(Tenerife), CanaryIslands,Spain 3 DipartimentodiFisicadell’Universita`degliStudidiTrieste-SezionediAstronomia,viaTiepolo11,I-34143Trieste,Italy 2 1 4 INAF-OsservatorioAstronomicodiTrieste,viaTiepolo11,I-34143Trieste,Italy 0 2 5 Fundacio´nGalileoGalilei-INAF,RamblaJose´AnaFerna´ndezPerez7,E-38712Bren˜aBaja(LaPalma),CanaryIslands,Spain n a J Received/Accepted 8 1 ABSTRACT ] Context.Thedependenceoftheluminosityfunction(LF)ofclustergalaxiesontheevolutionarystateoftheparentclusterisstillan O openissue,inparticularasconcerntheformation/evolutionofthebrightestclustergalaxies. Aims.WeplantostudythebrightpartoftheLFsofasampleofveryunrelaxedclusters(“DARC”clustersshowingevidenceofmajor, C recentmergers)andcomparethemtoareferencesampleofrelaxedclustersspanningacomparablemassandredshiftrange. h. Methods.OuranalysisisbasedontheSDSSDR7photometricdataoften,massive,andX-rayluminousclusters(0.2 . z . 0.3), p alwaysconsideringphysicalradii(R200oritsfractions).Weconsiderr′bandLFsandusethecolor-magnitudediagrams(r′−i′,r′)to - cleanoursamplesaswelltoconsiderseparatelyredandbluegalaxies. o Results.Wefind that DARC and relaxed clusters give similar LFparameters and blue fractions. Thetwo samples differ for their tr contentofbrightgalaxiesBGs,Mr′ <−22.5,sincerelaxedclustershavefewerBGs,inparticularwhenconsideringtheoutercluster s region0.5R200 <R<R200(byafactortwo).However,thecumulativelightinBGsissimilarforrelaxedandDARCsamples. a Conclusions.WeconcludethatBGsgrowinluminosityanddecreaseinnumberastheparentclustersgrowhierarchicallyinagree- [ mentwiththeBGformationbymergingwithotherluminousgalaxies. 1 Keywords.Galaxies:clusters:general–Galaxies:luminosityfunctions–Cosmology:observations v 6 9 1. Introduction local density and thus the clustercentric radius (Dressler 1978; 7 3 Whitmore 1991) make more complex the study of the cluster The study of the formation and evolution of galaxies is a fun- . LF.Inthiscontext,severalstudiesaboutLFconcernthepossible 1 damental avenue of research in the process of understanding variationoftheclusterLFwiththelocalprojectedgalaxydensity 0 astrophysical and cosmological issues. The galaxy luminosity and/orcluster-centricradius.Inparticular,thereareclaimsfora 2 function (LF) – the number of galaxies per unit volume in the radius-dependent steepening of the galaxy LF at faint magni- 1 luminosityintervalLandL+dL–isoneofthemostdirectob- : tudes,likelyduetoredgalaxies(e.g.,dePropris1995;Driveret v servationaltestoftheoriesofgalaxyformationandevolution. al.1998;Popessoetal.2006;Barkhouseetal.2007).However, i Clustersofgalaxiesareidealsystemswithinwhichtomea- X the few cases of LFs based on deep spectroscopy exhibit shal- surethegalaxyLFforthelargenumberofgalaxiesatthesame lower slopes (e.g., Rines & Geller 2008 and refs. therein)sug- r distance.Ontheotherhand,clustersrepresentanextremeenvi- a gesting that the field contamination might be the cause of the ronmentforgalaxyevolution,eitherinsituorthroughtheaccre- observedsteep LFs based on photometryonly.Thus, the ques- tionofgalaxieswithingroups,whicharesituatedinthefilamen- tionisstillfarfromadefinitiveconclusion. tarystructureofthehierarchicalUniverse(e.g.,Poggiantietal. 2005). Another issue concerns the possible dependence of the LF WhileintroducingthemodernformoftheLF,theso–called on global cluster properties. Some studies interest a few well “SchechterFunction”,Schechter(1976)suggestedthattheclus- studied clusters and/or cluster complexes (e.g., Abell 209 in ter LF is universalin shape (with a turnoverat M∗ = −20.6+ Mercurio et al. 1996, Coma vs. Abell 1367 in Iglesias-Pa´ramo B 5logh andafaint-endslopeofα=−1.25).Muchprogresshas etal.2003)andotherstudiesuseinsteadalargestatisticalbase. 50 thenbeenmadeinlookingforpossibleobservationalsignatures In particular, there are indicationsin favour of correlationsbe- of a non universality of the cluster LF. That different morpho- tweentheLFparametersandtheclustermassoritsproxies(e.g., logicaltypesare characterizedby differentLFs (Binggeliet al. richness, luminosity, galaxy velocity dispersion). For instance, 1988) and the well known morphologicalsegregation with the Valotto et al. (1997) find that poorer clusters have a flatter LF. But,whentheLFisproperlycalculatedwithintheclusterphys- Sendoffprintrequeststo:R.Barrena,e-mail:[email protected] ical sizes, given by R200 or R500, the correlation between the 1 R.Barrenaetal.:Environmentaleffectsonthebrightendofthegalaxyluminosityfunctioningalaxyclusters dwarf-to-giantratioandX-ray(oroptical)luminositydisappear better (e.g., Ruszkowski & Springel 2009). Moreover, galaxy- (cf.Popessoetal.2006withPopessoetal.2004).Thissuggests galaxymergersaremostefficientwithinsmallhaloswithsmall thatthe radialbehaviorof the LF should be taken into account velocitydispersionandthemergerofBCGsinclustersrequires toobtainunbiasedconclusions.However,alsowhenconsidering alongtime(Dubinski1998).However,thecorrelationbetween an appropriatecluster physicalsize, the conclusionsare notall BCG luminosity and parent cluster mass strongly suggest that consistent. For example, Hilton et al. (2005) find that clusters BCGsco-evolveswiththecluster(Lin&Mohr2004). withlowerX–rayluminosityhaveabrighterM∗,butBarkhouse Inthiscontext,weplantostudytheLFsofasampleofmas- et al. (2007) find no correlation.Recentstudies also attemptto siveandveryunrelaxedclustersandcomparethemtoareference analyze more distant clusters, but again with no conclusive re- sampleofrelaxedclustersspanningacomparablemassandred- sults(Gilbanketal.2008;Rudninicketal.2009anddiscussion shiftrange. therein). As for the unrelaxed clusters, we are going on with a long Possible correlations with the presence/absence of a cD term project to study clusters exhibiting large, diffuse radio galaxy or with the Bautz-Morgan type (the BM-type classifi- sources,i.e.radiohalosandrelics, basedonspectroscopicdata cation based on the brightest cluster galaxies, BCGs, Bautz & mostlyacquiredatTNG(DARC-DynamicalAnalysisofRadio Morgan1970),are,maybe,alsomoreinterestingfortheirdirect Clusters1-e.g.,Girardietal.2007).Theseradiosourcesarerare connectionwiththeclusterevolutionarystate.Infact,BCGsor phenomena and are due to the synchrotron radio emission of cDgalaxiesareexpectedtobecreatedi)viathemergerofgiant widespread relativistic particles embedded in the cluster mag- galaxies in an early phase during the cluster collapse (Merritt netic field (e.g., see Feretti et al. 2002b for a review). Cluster 1984) or ii) in a following phase due to the dynamical fric- mergershavebeenproposedtoprovidethelargeamountofen- tion acting on late-comer galaxies (e.g., Ostriker & Tremaine ergynecessaryforelectronreaccelerationtorelativisticenergies 1975)oriii)viathedisruptionandcannibalizationofmanyfaint andformagneticfieldamplification(e.g.,Tribble1993;Ensslin galaxiesin thecluster cores(Lo´pez-Cruzetal. 1997). Thefirst etal.1998;Brunettietal.2009)orrequiredtoexplainthetime- two mechanisms might reduce the number of bright galaxies, dependenceofthemagneticfieldsinrecentmodelsbasedonsec- thus shifting M∗ to a fainter value and, indeed, Barkhouse et ondary electrons (Keshet & Loeb 2010; Keshet 2011). Indeed, al.(2007)findaweakcorrelationwiththeBM-type(butseede fromtheobservationalpointofview,thereisgrowingevidence Proprisetal.2003fornocorrelation).Anotherconsequencecan of the connection between diffuse radio emission and cluster be the increment of the gap between the first and the second merging, since up to now diffuse radio sources have been de- brightestgalaxiesineachclusterand,infact,thismagnitudegap tectedonlyinmergingsystems.Inmostpaststudiesthecluster isshowntobelargerinclusterswithoutsubstructureandsmaller dynamicalstatewasderivedfromX–rayobservations(seeBuote inclusterswithsubstructure(Ramellaetal.2007). 2002;Feretti2006and2008;Cassanoetal.2010).Inagreement, Asforthesecondmechanism,Lo´pez-Cruzetal.(1997)find ouranalyses,basedonopticaldataandthekinematicsofmem- thatsevenrich,massive,cDclusterswithsymmetricX-raymor- ber galaxies, detect strong subclustering and find evidence of phology show a flat faint-end slope while a steeper faint-end cluster mergers. Summarizing, clusters with radio halos/relics slope is detected in poorer clusters but also in a rich, binary aretheidealcasestostudytheeffectoftheclusterformationon cluster like the Coma cluster. Somewhat in agreement, Driver theLF. et al. (1998) find that the dwarf-to-giant ratio increases with HereweanalyzeasubsampleoffiveDARCclusterswehave larger BM-types(i.e., likely less evolved clusters). In this con- analyzedin the pastand all havingavailablephotometryin the text,Valottoetal.(2004)pointedouttheimportanceofthepro- theSloanDigitalSkySurvey(SDSS).TheDARCclustersform jectioneffectsindeterminingthefaint-endslope.Infact,inthe our sample of unrelaxed clusters. For comparison, we analyze largeclustersampleanalyzedbyValottoetal.itistheX-rayse- a sample of relaxed clusters of comparable mass and redshift. lectionand notthe cluster dominationby centralgalaxieswhat Consideringthe magnitudelimit of SDSS photometry,the typ- determinestheflatnessofthefaint-endslopethussuggestingthat ical redshift of the samples, z ∼ 0.25, limits our study to the real, compact clusters are less affected by the field contamina- bright part of the LF. We plan to extend this study to a fainter tion. However,althoughthis bias couldexplainpossible differ- magnitudesinthenextfuture. ences between rich and poor clusters, the reason for the differ- Unless otherwise stated, we give errors at the 68% confi- encebetweenthesevencDrelaxedclustersofLo´pez-Cruzetal. dencelevel(hereafterc.l.). (1997)andtheComaclusterisnotclearyet. Throughoutthispaper,we use H = 70km s−1 Mpc−1 in a 0 As for the possible dependence of the LF on the dynami- flat cosmologywith Ω0 = 0.3 and ΩΛ = 0.7. We define h70 = calstatusofthecluster,thenoticeablestudyofdeProprisetal. H /(70kms−1Mpc−1). 0 (2003) analyze 60 clusters and find that the LF is similar for clusterswithandwithoutsubstructure.Veryfewdetailedworks 2. Clustersample aredevotedtostudytheLFsofsubclumpsinindividualclusters to find possible evidence of cluster mergers (e.g., Durret et al. Amongthe DARCclusters ofwhich we havealreadyanalyzed 2011). the internal dynamics using a large number of member galax- Asreportedabove,itisparticularlyinterestingthebrightend ies, five clusters (with 62-113 spectroscopic member galaxies) of the LF since there is a long debate on the BCG formation. have also available photometry in the SDSS (Data Release 7): For instance, semianalytical models suggest that BCGs assem- Abell 697, Abell 773, Abell 959, Abell 1240, and Abell 2219, ble surprisingly late with the stars formed very early in many hereafter A697, A773, A959, A1240, A2219 (see Table 1 for smallgalaxies(e.g.,50%atz=0.5,80%atz=0.3;see deLucia therespectivereferencesources).Theirredshiftsspantherange & Blaizot 2007). However, photometric and chemical observ- z = 0.19−0.29andtheyarecharacterizedbyhighline-of-sight ables suggest that it is difficult to explain giant elliptical by a galaxy(LOS)velocitydispersionσ ,X–raytemperatureT ,and v X pure sequence of multiple minor dry mergers or via major dry mergers(e.g.,Stottetal. 2010;Ascaso etal.2011)andnumer- 1 other information are given in the web site ical simulations are continuously improved to reproduce them http://adlibitum.oat.ts.astro.it/girardi/darc. 2 R.Barrenaetal.:Environmentaleffectsonthebrightendofthegalaxyluminosityfunctioningalaxyclusters mass M (see Table 1). Evidence for their unrelaxeddynamical Asfortherelaxedclusters,weestimateσ fromtheobserved v stateisreportedinourpreviousstudies.Inparticular,theyspan T assuming the equipartition of energy density between ICM X differentangle of views for the mergingaxis. For instance, the and galaxies, i.e. β = 1, where β = σ2/(kT/µm ) with spec spec V p clustermergeroccurredlargelyintheplaneoftheskyinA1240 µ = 0.58 the mean molecular weight and m the proton mass. p andlargelyalongtheLOSinA773. Thisassumptionisparticularlyappropriateformassiveclusters As forcomparison,we selectfromtheliteraturea fewwell (e.g.,Girardietal.1996,1998).R andM arethusrecovered 200 200 known examples of very relaxed clusters spanning a similar z withtheaboveequations. range(0.2.z.0.3),characterizedbyhighT ,andsampledby For each relaxed cluster, Table 2 lists the main properties: X SDSS.FromtherelaxedclusterslistedbyAllenetal.(2004)we the cluster center (Col. 2); the cluster redshift, z (Col. 3); the select2 Abell 383, Abell 963, and Abell 1835 (hereafter A383, X-raytemperature,T (Col.4);theestimatedvalueofσ from X v A963,A1835).Theseclustersareallclassifiedascoolcoreclus- T (Col.5;)thevaluesofR and M (Cols.6and7);useful X 200 200 tersaccordingtoBaldietal.(2007).Thisagreeswiththatobser- references(Col.8). vations suggest that cool cores are destroyed by cluster merg- AsfortheDARCclusterswehavetoadoptamorecomplex ers and cool core clusters are in the final phase of cluster re- procedure.Duringaclustermerger,theglobalvalueofvelocity laxation (see e.g., Allen et al. 2001; Buote 2002; Sanderson et dispersion,σ ,mightstronglyvaryandnotbeaverygoodin- v,tot al. 2006). Among the cool core clusters listed by Baldi et al. dicators of the real cluster potential (e.g., Pinkney et al. 1996) (2007) we considered other two cool core clusters to complete and the same problem could afflict T (e.g., Ricker & Sarazin X ourcomparisonsample:Abell2261(hereafterA2261)andZwCl 2001;Mastropietro&Burkert2008).Asdiscussedinourpapers 1021.0+0426(hereafterandbetterknownasZwCl3146). forthefiveDARCclusters,wehavedetectedthemainsubclus- Toavoidtheinherentbiasthathasplaguednumerousstudies ters and obtain an estimate of their individual velocity disper- (seethesectionabove),theclusterLFswillbecomparedbased sion, σ . Thus, an alternative, likely more reliable value of v,subs onscalingrelativetothedynamicalradius,R .Asanestimate themassM ofthecluster,canthenbeobtainedbyaddingthe 200 200 of R , we use R definition by Girardi & Mezzetti (2001), massesofallsubclusters.Then,invertingtheabovescalingrela- 200 vir Eq.1withthescalingofH(z), tioneq.2,wecanobtainavalueofthevelocitydispersion,σ , v which should be a better indicator of the potential. The use of R200 =0.17×σv/(kms−1)/H(z)h−701Mpc, (1) eq.1leadstotheestimateofR200. ForeachDARCcluster,Table1liststhemainproperties:the where σv is the LOS velocity dispersion. The same result was clustercenter(Col.2);theclusterredshift,z(Col.3);theX-ray obtained by Carlberg et al. (1997, see their Eq. 8 for R200) temperature,TX (Col. 4);the globalobservedvalue ofvelocity using a different, more theoretical, approach. Biviano et al. dispersion,σ (Col.5);the(rounded)valuesofvelocitydis- v,obs (σ2v0/0(6k)mosb−t1a)i/nHed(za)h1−7001%MspmcaollnertheestbimasaeteofofNR-b2o00d,yRsvim=ul0at.1io5n×s. pmearsssiofnrsomforthseuabdcdluitsitoenrsoσfvs,usubbcsl(uCstoelr.s6,)M; t2h00e(eCstoilm.7at)e;dthveacluoerroef- Wealsoconsiderinternalandexternalregions,i.e.R < 0.5R200 spondingvaluesofσvandR200(Cols.8and9).Thevaluesofthe and 0.5R200 < R < R200, respectively. The centers for relaxed clustercenter,z,TX,σv,tot,andσv,subs canbeobtainedfromthe clusters are taken from X-ray studies, while those for DARC listed references. In particular, the notes list the source for the clustersarethoseusedinourpreviouspapers.Notethat,dueto valuesofσ ,hererounded.Othervaluesarehomogeneously v,subs the unrelaxedstate of DARC clusters, the choice of the cluster computedinthisstudy. center is not obvioussince gas and galaxy spatial distributions aregenerallydifferent.ForA697,A773andA2219clusterswe used the position of the brightest dominant galaxy, very close 3. Magnitudedataandbackgroundcontamination totheX-raycentroid(orX-raymainpeak),whileforA959and The magnitudedata (r′,i′) are taken from SDSS (Data Release A1240weuseX–raycentroid.However,inthesetwocases,X– 7). We retrieve model mag values. For each cluster, we create ray centroid is located in between the two brightest dominant a galaxy “cluster galaxy sample” by selecting the galaxies in galaxies. A radius of 0.5R is sufficient to contain the cores 200 an area centered on the cluster center listed in Tables 2 and 1 of galaxy subclusters, the most critical case being the bimodal and withinthe respectiveradiusR . We verifythatthe whole clusterA1240,stronglyelongatedintheplaneofthesky. 200 clusterareaiscoveredbySDSSdatabyvisualinspection. Asforthemassestimate,inarelaxedcluster,onecanusethe For each cluster, we also consider a galaxy sample select- measuredglobalvalueofvelocitydispersion,σ todetermine v,tot ing galaxies in one square degree field at 1.5 degree toward R andthenM withinR .Theestimationofmassisbased 200 200 200 the west of each cluster obtaining ten individualfield samples. onthevirialtheoremand,inparticular,we followtheprescrip- Together these samples, for a total area of ten square degrees, tionsofGirardietal.(1998;seealsoGirardi&Mezzetti2001). forms the “field galaxy sample” and are used to estimate the Weprompttotheoriginalpapersforthedetails,but,inpractice, field galaxy contamination. Fig. 1 shows the field counts for onecanuse: r′ and i′ magnitudes, and the logarithmic function fit. This fit M =A×[σ /(103kms)]3×h−11015M , (2) represents the count-magnitude relation expected for a homo- 200 v 70 ⊙ geneous galaxy distribution in a universe with Euclidean ge- ometry. We obtain the relations log(N ) = 0.455(±0.043)r′ − whereA∼1.4(heremedianA=1.416).Thusbothourestimates r (6.17±0.59) 0.5mag−1deg−2 for 15 < r′ < 22 and log(N) = ofR andM dependontheestimateoftheobservablevalue i 200 200 0.451(±0.046)i′−(5.70±0.58) 0.5mag−1deg−2 for 15 < i′ < ofσ .However,theydonotaremutuallyconsistentaccordingto v thedefinition:M =200×ρ ×4/3×π×R3 ,whereρ is 21.5. We used these fits with two purposes: i) to estimate the 200 crit 200 crit completenessofoursample;ii)tosubtractfieldgalaxycontam- thecriticaldensityoftheUniverseattheclusterredshift.Rather, inationineachcluster. accordingtothedefinition,theycorrespondtoR andM . 194 194 By comparison with the logarithmic fits, the completeness 2 NotethatweexcludeAbell611duetoitsunrelaxedappearancein magnitudecanbederived.So,weestimatethephotometricsam- theSDSSimage. ple is complete down to the magnitude counts are lower than 3 R.Barrenaetal.:Environmentaleffectsonthebrightendofthegalaxyluminosityfunctioningalaxyclusters Table1.Unrelaxedclusters(DARCsample). Name α,δ(J2000) z T σ σ M σ R X v,tot v,subs 200 v 200 keV kms−1 (kms−1) 1015M⊙ (kms−1) Mpc A697a 084257.55,+362159.9 0.2815 10.2 1334+114 200,600,400 0.40 660 1.39 −95 A773b 091753.26,+514336.5 0.2197 7.8 1394+84 950,500 1.39 994 2.16 −68 A959c 101735.04,+593327.7 0.2883 7.0 1170+83 600,700 0.76 824 1.73 −73 A1240d 112337.60,+430551.0 0.1948 6.0 870+91 700,1000 1.93 1103 2.43 −79 A2219e 164019.87,+464241.3 0.2254 10.3 1438+109 1000 1.41 1000 2.17 −86 a Ref.:Girardietal.2006;σ fromKMM4g1-2-4inTable4. v,subs b Ref.:Barrenaetal.2007;σ fromthemainandsecondarysubclustersinSect.5. v,subs c Ref.:Boschinetal.2008;σ fromtheaveragesofKMM1andV1,andofKMM2andV2inTable2.Herewenotconsiderthesubclump v,subs V3(=KMM3=DS-NE)alsodetectedinX-rayandthuslikelyinapremergingphaseandnotresponsableoftheongoingmerger. d Ref.:Barrenaetal.2009;σ fromA1240NandA1240SinTable2. v,subs e Ref.:Boschinetal.2004;σ fromNWinTable2.Theseparationofsuclumpsisnotobvious.Here,sincetheprimarysubclumpliesatthe v,subs SEoftheclustercenter(seealsothemorerecentpaperMillion&Allen2009),weconsiderthevalueofσ ofNWsector,wherethemain v clusterislikelyfreefromthesubclump. Table2.Relaxedcluster(Comparisonsample). Name α,δ(J2000) z T σ R M Refs.a X v 200 200 keV (kms−1) Mpc 1015M ⊙ A383 024803.50,−033145.0 0.188 3.9 802 1.78 0.74 Allenetal.2004,Maughanetal.2008 A963 101701.20,+390144.4 0.206 6.0 995 2.18 1.41 Allenetal.2004,Baldietal.2007 A1835 140102.40,+025255.2 0.252 8.1 1156 2.47 2.15 Allenetal.2004,Baldietal.2007 A2261 172227.60,+320757.2 0.224 7.2 1090 2.36 1.83 Baldietal.2007,Maughanetal.2008 ZwCl3146 102339.60,+041124.0 0.291 8.6 1191 2.49 2.31 Baldietal.2007,Baldietal.2007 a ReferencesforzandT arelistedinthefirstandsecondposition,respectively.ClustercentersaretakenfromEbelingetal.1996orEbeling X etal.1998. parametersusing either a globalor localfield subtractiontech- nique.Herewe considertheglobalfieldcorrection,subtracting the field counts derived from the logarithmic fits to the cluster counts. Note that the field counts are treated in a different and appropriatewayforeachclusterbeforethesubtraction. The magnitudesof each cluster are correctedfor the galac- ticabsorptionusingtheSchlegel,FinkbeinerandDavisGalactic reddeningmaps(Schlegelet al. 1998), derivedfrom IRAS and COBE/DIRBEdata. Thepossiblecontaminationofdistantclustersprojectedonto Fig.1. Values of r′− and i′−band counts for the 10 square de- thefield-of-viewofthetargetclustercanprovetobeproblematic greesconsideredasthefieldgalaxysample.Thesolidlineindi- inthederivationoftheLF,inparticularatthefaint-end.Onecan catesthelogarithmicfunctionfittothehistograms.Thedashed usethatthespectroscopicstudiesshowthatthereareessentially lineindicatesthecompletenessmagnitudes. no cluster galaxies significantly redward of the red sequence (e.g.Rines & Geller 2008). We minimizethe contaminationof backgroundclustersusingther′−i′vs.r′ colour-magnitudere- 5% of the fit. Therefore, we consider the r′- and i′-band pho- lationwhichisprovedtobethemostusefulfromtargetclusters tometry complete down to r′ = 22.4 and i′ = 21.4, respec- areat0.2<z<0.4(Luetal.2009,theirFig.6andSect.3.4.1). tively. We find that these values are in very good agreement For each cluster, we fit the red sequence (RS) r′ −i′ vs. r′ for with those reportedby the Sloan Digital Sky Survey DR7 (see galaxies.Werejectgalaxiesthatare0.15magredwardoftheRS http://www.sdss.org/dr7/). (i.e. & 3 times the average dispersion of the cluster RS). Fig.2 Twodifferentapproachestothestatisticalsubtractionofthe shows an example for the RS in the case of A383. After this galaxy foreground/background are discussed in the literature: backgroundcorrection,theclustersappearmorecontrastedwith several studies have examined the effect on the derived cluster respecttothesurroundingfield(seeFig.3forA383.) LF using a global galaxy field correction versus one measured Tab.3lists,foreachcluster,theslopeaandtheinterceptb, locally for each cluster. For instance, Popesso et al. (2004) has andstandarddeviations,oftheRSr′ −i′ vs.r′ obtainedwitha shown, for a study of about 100 clusters based on SDSS data, linear fit within 0.5 h−1 Mpc from the center and for galaxies 70 thatthereisnosignificantdifferenceinthemeasuredclusterLF withr′ <20.2(Col.2and3). 4 R.Barrenaetal.:Environmentaleffectsonthebrightendofthegalaxyluminosityfunctioningalaxyclusters Table 3. Color-magnitude relations (CMR) r′ −i′ vs. r′ linear fits(az˙+b):RedSequences. Name (a,δa) (b,δb) A697 −0.0107,0.014 0.744,0.041 A773 −0.0213,0.007 0.861,0.037 A959 −0.0310,0.006 1.126,0.037 A1240 −0.0110,0.020 0.666,0.037 A2219 −0.0086,0.007 0.668,0.062 A383 −0.0160,0.001 0.763,0.047 A963 −0.0422,0.007 1.216,0.042 A1835 −0.0004,0.011 0.501,0.031 A2261 −0.0091,0.015 0.653,0.048 ZwCl3146 −0.0220,0.003 1.020,0.050 Fig.2.Colormagnitudediagramr′−i′vs.r′consideringgalaxies within 0.5h−1 Mpc fromthe center of Abell383.TheRS (red 70 solidline)isfittedusinggalaxieswithr′ < 20.2.Galaxieswith r′−i′ >RS+0.15(onthedashedline)areconsideredbackground galaxiesandrejectedfromtheanalysis. Fig.4.RSparametersvs.redshift:the(r′−i′)vs.r′slope(upper panel)and(r′−i′)coloratr′ =17(lowerpanel).Blacksymbols indicate DARC clustersand red symbolsindicate relaxedclus- ters.Thesolidlineintheupperpanelshowsthemeanvaluefor alltenclusters.Thesolidlineinthelowerpanelshowsthelinear Fig.3. Galaxies with r′ −i′ <RS+0.15 in the region of A383. fit.Thedashedlinesshowone-sigmauncertaintiesofthelinear TheredcircleindicatesR200forthiscluster. fit. Foreachcluster,wetransformgalaxyapparentintoabsolute magnitudesbyapplyingtherelation: Fig. 4 shows the RS parametersvs. cluster redshift. As for theRSslope,thereisnocorrelationwithzintheobservedrange M =r′−2.5−5log(D /1Mpc)−K(z)+E(z), (3) r L and we estimate a mean value of < a >= −0.017±0.008. As for the r′ −i′ colors at r′ = 17, as computedfrom the RS fits, where r′ is the apparent magnitude (already corrected for the there is no difference in the behaviour of DARC and relaxed Galactic absorption,see above), D is the luminosity distance; L clusters:weonlyobserveamarginallyhighervalueforthemost K(z)istheK-correctionandE(z)istheevolutionarycorrection. distantcluster A697,A959andZwCl3146,whichis consistent K(z)andE(z)correctionsareappliedusingasingleparametriza- withthek−correctioneffectonearly-typegalaxiesinthecentral tion based on early–type galaxies, which are dominant in the coreofclusters(seeFukugitaetal.(1995,tables3,6,7and8). cluster galaxy population. As for K(z), we use the correction Assuming a linear variation of the color with the redshift, we obtained from the Table 2, col. 3 in Roche et al. (2009). As obtaintherelation(r′−i′) = 1.24∗z+0.23,withaglobal for the evolutionary correction, we use E(z) = 0.86z (Roche r′=17 dispersionincolorof±0.02. et al. 2009). Given that the completeness of magnitude data is 5 R.Barrenaetal.:Environmentaleffectsonthebrightendofthegalaxyluminosityfunctioningalaxyclusters Table4.M⋆andαvaluesobtainedfromSchechterfitfortheLF. r R<R R<0.5R 200 200 Name M⋆,∆M⋆ α,∆α M⋆,∆M⋆ α,∆α r r r r A697 −21.19,0.30 −0.96,0.20 −20.95,0.16 −0.70,0.21 A773 −21.84,0.26 −1.01,0.13 −21.43,0.24 −0.61,0.18 A959 −21.60,0.62 −0.96,0.39 −22.00,0.94 −0.96,0.46 A1240 −22.31,0.36 −1.28,0.12 −21.61,0.37 −0.95,0.20 Fig.5.LFsforDARCclusters(rightpanel)andrelaxedclusters A2219 −21.74,0.28 −1.09,0.15 −21.79,0.08 −0.97,0.08 (leftpanel)ascomputedwithinR .Errorbarsareonlyplotted A383 −21.89,0.25 −1.30,0.17 −21.92,0.27 −1.26,0.21 200 intheA1240andA383LFsforthesakeofclarity. A963 −21.31,0.28 −0.83,0.19 −20.93,0.22 −0.27,0.25 A1835 −21.78,0.21 −1.02,0.15 −22.06,0.33 −1.13,0.18 A2261 −21.56,0.22 −0.88,0.16 −21.62,0.25 −1.01,0.19 r′ = 22.4 (Fig. 1) and the most distant cluster of our catalogs ZwCl3146 −21.36,0.26 −0.97,0.24 −20.89,0.23 −0.51,0.29 is at z = 0.29,we expectthat the LFs we obtainin the present studyareallreliableforabsolutemagnitudeM <−18.6. r Foreachcluster,beforethefieldsubtractionintheconstruc- tion of the LF (see below), the field galaxies are treated in the rameterandremakethefit.Whenfixingα=−1.00fortheslope same way of the respective cluster galaxies, i.e. we apply the parameter for all individual clusters, we find no longer differ- same correctionfor the Galactic absorption;the same rejection ence (see Table 5). Inparticular,whenfixing the slope,we ob- ofveryredgalaxies;thesametransformationinabsolutemagni- tain M∗ = −21.64±0.06and M∗ = −21.61±0.05within DARC rel tudes. R<R200andMD∗ARC =−21.82±0.14andMr∗el =−21.64±0.06 withinR < 0.5R .Fromthisresults,wecanconcludethatthe 200 globalLF profileis similar forDARC and relaxedclusters and 4. GalaxypopulationsinDARCandrelaxedclusters independentofthesamplingradius. 4.1.Individualluminosityfunctions Table5. M⋆ valuesobtainedfromtheSchechterfitwhenfixing Fig. 5 shows the individual LFs for DARC and relaxed clus- r α=−1.00fortheLF. ters within R , where the galaxy counts are computed as 200 N = N /N . N are the net counts, i.e. N = i net,i net,<−20 net,i net,i N −N wherethefieldcountsareopportunelynormal- cluster,i field,i ized to the cluster area. Nnet,<−20 is the number of net counts R<R200 R<0.5R200 for Mr < −20 and thus represents the “richness” here used to Name Mr⋆,∆Mr⋆ Mr⋆,∆Mr⋆ normalize.The errorbarsin Fig. 5 arethe richness-normalized A697 −21.30,0.12 −21.19,0.79 σ =(N +N +rms2)1/2,wherethefirsttwotermstakeintoac- A773 −21.85,0.11 −22.15,0.12 i i b,i f A959 −21.83,0.16 −22.25,0.19 countsthePoissonianerrorsoftheclusterandbackgroundfield A1240 −21.65,0.17 −21.69,0.18 samples,andthethirdtermmeasuresthefield-to-fieldvariation A2219 −21.57,0.12 −21.81,0.31 perbininthebackgroundfieldcounts(i.e.,thecosmicvariance A383 −21.51,0.14 −21.65,0.21 obtainedusingthetenindividualfieldsamples).Inordertosee A963 −21.54,0.12 −21.70,0.13 possible variations with the radius, we also compute the LFs A1835 −21.75,0.09 −21.95,0.14 within0.5R andR . 200 200 A2261 −21.72,0.09 −21.59,0.11 Each LF was fitted to a Schechter function (see Schechter ZwCl3146 −21.53,0.13 −21.33,0.08 1976) using the “minuit” procedure (CERN Libraries) to min- imize the three values, φ (richness), α (slope) and M∗ of the Schechterprofile.Wedonotdiscusstheφparametersincehere thecountsarealreadynormalizedbythe“richness”N for The mean LF will be studied in the following subsection, net,<−20 each cluster. Table 4 shows M∗ and αvaluesobtainedforeach andwewilldetailpossibledifferencesconsideringblueandred cluster,fittingSchechterfunctionwithinR and0.5R . galaxypopulationintheinnerandexternalregions. 200 200 Fig. 6 shows α vs. M∗ values estimated for each cluster within R : the absence of difference between DARC and re- 200 4.2.Thecompositeluminosityfunctions laxedclustersisshown.WeobtainthesameresultforLFswithin 0.5R andwhencomparingR and0.5R results. For both DARC and relaxed clusters separately, we construct 200 200 200 FortheDARCsampleweobtainameanvalueof M∗ = thecompositeLFsbycombiningintoasingle”ensemble”LF,in DARC −21.73±0.16 and −21.57±0.16, considering galaxies within ordertoimprovetheratherpoornumberstatisticsforeachindi- R and0.5R ,respectively.Ontheotherhand,fortherelaxed vidualLF. The composite LF is built by averaging,in absolute 200 200 clusters, we derive M∗ = −21.58± 0.11 and −21.48± 0.12. magnitudebins,therichness-normalizednetcountsasobtained rel Fortheslopeparameter,weestimateα =−1.06±0.09and aboveforeachindividualLF.Weassumethestandarderrorson DARC −0.84±0.10 within R and 0.5R , respectively. For the re- theaverage. 200 200 laxedclusters,weobtainα = −1.00±0.12and−0.84±0.10. Fig.7showsthecompositeLFsforDARCandrelaxedclus- rel Duetothecorrelatednatureofαand M⋆ parametersinthefit- terswithinR and0.5R .Table 6summarizesthe M∗ andα 200 200 tingprocedure,whichlikelyleadstotheapparentcorrelationin parameters obtained for the composite LFs. In agreement with Fig. 6, we preferto compareindividualclustersfixingonepa- the above section, there is no evidence of difference between 6 R.Barrenaetal.:Environmentaleffectsonthebrightendofthegalaxyluminosityfunctioningalaxyclusters Fig.6.αvs. M⋆ derivedfromtheSchechterLFfit.Blacksym- Fig.8. Upper panels: LFs and Schechter fits for red and blue r bols indicate DARC clusters and red symbols indicate relaxed galaxiescomputedwithin R200. Lower panels: the same within clusters. 0.5R200.SolidlinesindicateDARCclustersanddashedlinesin- dicaterelaxedclusters. Fig.7.CompositeLFswithinR (leftpanel)and0.5R (right Fig.9.Errorcontoursatthe1and3σc.l.forthebest-fittingLF 200 200 panel). Solid lines show the counts for DARC clusters and parameters considering the galaxy population within R < R 200 dashed lines show the counts for the relaxed clusters. The red (left panel)and R < 0.5R (rightpanel).Black, red and blue 200 linesindicatethecorrespondingSchechterfits. lines show the composite LF for the whole galaxysample, red andbluegalaxies,respectively.SolidlinesindicateDARCclus- tersanddashedlinesindicaterelaxedclusters. DARC and relaxed samples and there is no dependenceon the samplingradius. for DARC clusters and 0.35 for relaxed clusters (both within R ) and χ2 = 0.33 for DARC clusters and 0.27 for relaxed 200 Table6.M∗ andαforthecompositeLFs. clusters (both within 0.5R ). On the contrary, the bright-end 200 (M < −22.5) is not well represented by Schechter functions. r′ Inanycase,weobtainχ2 valueshigherthan1.4.Therefore,the contributionofthesebrightgalaxies(hereafterBGs)havetobe R<R200 R<0.5R200 analyzedseparately(seeSect.5). Wholegalaxypopulation Sample M∗,δM∗ α,∆α M∗,δM∗ α,∆α 4.3.BlueandredLFs DARC −22.00,0.41 −1.20,0.17 −21.64,0.35 −0.86,0.27 Relaxed −21.63,0.24 −1.03,0.20 −21.74,0.29 −0.99,0.21 We also estimate LF for red and blue galaxieswithin R and 200 Redgalaxies 0.5R200.WeselectredandbluegalaxiesfromtheRS(seeabove). WeassumeredgalaxiesthoseobjectswithintheRS,thatisRS- DARC −21.62,0.25 −0.76,0.22 −21.23,0.28 −0.47,0.27 Relaxed −21.51,0.28 −0.76,0.23 −21.50,0.36 −0.70,0.30 0.15< r′ −i′ <RS+0.15, while blue galaxies were selected as r′−i′ <RS-0.15.ResultsarepresentedifFig.8andsummarized Bluegalaxies inTable6. DARC −22.55,0.27 −2.03,0.10 −22.98,0.37 −1.79,0.24 When considering the whole galaxy population, no differ- Relaxed −21.66,0.52 −1.44,0.46 −23.63,0.53 −2.07,0.23 encesarefoundbetweenDARCandrelaxedclusterswithinR 200 orinsidethecoreoftheclusters,within0.5R .Thedifferences 200 inM⋆andαarenotsignificantandwithin3σerrors(seeFig.9). Thesameisalsotruefortheredgalaxypopulation.Weonlynote Fig. 7 shows as the Schechter functionsfit reasonablywell thecountsforgalaxieswithM >−22.5.Weobtain3χ2 =0.45 a marginaldifferencein the LF parametersof blue galaxies, in r′ particularinthecoreoftheclusters,inside0.5R . 200 3 The χ2 statistic has been calculated considering three degrees of To check the significance of these differences, we fit the freedom,thenormalizationcoefficient,M⋆andtheslope. Schechter profiles to the composite LFs fixing the slope pa- 7 R.Barrenaetal.:Environmentaleffectsonthebrightendofthegalaxyluminosityfunctioningalaxyclusters rameter. Table 7 lists the results obtained. Again, we confirm no differences between DARC and relaxed LFs. As above, we onlyfindsmalldifferencesforthebluegalaxypopulationwithin 0.5R .However,thisdifferenceshouldbetakenwithcaresince 200 thebluegalaxypopulationisverypoorintheinternalregionsof theclustersthuslimitingnumberofconsideredcounts. Table7.M∗ forthecompositeLFs(atfixedα). R<R R<0.5R 200 200 Wholegalaxypopulation (α=−1.00) Sample M∗,δM∗ M∗,δM∗ DARC −21.61,0.07 −21.83,0.06 Relaxed −21.59,0.05 −21.75,0.06 Redgalaxies (α=−0.70) Fig.10. Fraction of blue galaxies within 0.5R for DARC DARC −21.54,0.07 −21.52,0.05 200 (black symbols) and relaxed clusters (red symbols). The solid Relaxed −21.44,0.05 −21.48,0.06 linedescribesthelinearfitofthisrelation.Thedashedlinesshow Bluegalaxies (α=−2.00) one-sigmauncertaintiesofthelinearfit. DARC −22.74,0.52 −23.18,0.11 Relaxed −22.38,0.11 −23.56,0.06 4.4.Butcher-Oemlereffect The window opened by the redshift dependence of the galaxy properties has been used to set constraints on the time-scales ofthe processesofgalaxyevolution(Butcher& Oemler,1978, 1984;Stanfordetal.1998).Inthiscontext,theobservationalev- idenceof the environmentaleffectis still uncertain.In orderto clarify whether merging processes in clusters can enhance the star formationin the galaxy populations,we compare the frac- tionof bluegalaxies, f , inDARC andrelaxedclusters. So we B quantify the Butcher-Oemler effect (Butcher & Oemler, 1978, 1984)intwohomogeneousclustersampleswithsimilarvelocity dispersionsandmasses. StudiesofAndreonetal.(2006)showthattheradialdepen- Fig.11.NumberofbrightgalaxieswithinR .Verticaldashed 200 denceofthebluefractionisquiteshallow,anditsmoothlyand lines separate DARC and relaxed cluster samples. Labels indi- monotonicallyincreasesfromthecenteroftheclustertothefield cateindividualclusters.Theredpointsrepresentthemeanvalue (seeFig.10inAndreonetal.2006).However,thecontamination computedforeachclustersampleseparately. contribution of field galaxies is lower in the inner regions. For thisreason,weestimate f within0.5R . B 200 Fig. 10 shows as f increases towards high redshifts being B at the 95% c.l. according to the Kendall statistics. A linear fit mean richness as computed on all clusters. Here we multiply gives f (z) = 1.18(±0.07)z−0.07(±0.06)(see also Sect. 7 for B forthemeanrichnesstoobtainmorerealisticBG counts.Error further discussions). We find no significant difference between barsare assumedto bethe Poissonianerrors.Thefigureshows f ofDARCandrelaxedclusters. B as the BG counts are higher in DARC clusters than in relaxed clusters. Considering the cluster regions within R , the mean 200 values for both samples separately are N = 23.1±3.1 5. ThebrightendoftheLF BG,DARC andN 12.0±2.7forDARCandrelaxedclusters.Therefore, BG,rel Herewedefinebrightgalaxies(BGs)thosegalaxieswith Mr′ < DARCclusterscontainafactortwomoreBGsthanrelaxedclus- −22.5andanalyzewhetherDARCandrelaxedclustersdifferfor tersandthedifferenceissignificantatthe2.7σc.l.. theirBGs,incountsorluminosity. We also study the spatial distribution of BG galaxies. We compute BG counts in two separate regions, R < 0.5R and 200 0.5R < R < R (see Fig. 12). For the inner cluster region, 5.1.CountingBGs 200 200 R < 0.5R , we obtain N = 10.9±2.7 and N = 200 BG,DARC BG,rel Fig. 11 shows the number of BGs for each cluster N = 7.2±2.4.Forthe outercluster region,0.5R < R < R , we BG 200 200 Nr′<−22.5/Nr′<−20<˙N >, where Nr′<−22.5 is the numberof galax- obtainNBG,DARC = 20.2±2.5andNBG,rel = 8.3±2.1.Thusthe ies brighter than M < −22.5 (normalized to the cluster rich- differencein BG countsis restricted to the outer region,where r′ ness, see the above Sect. 4) and < N >=< N > is the issignificantat3.6σc.l.. r′<−20 8 R.Barrenaetal.:Environmentaleffectsonthebrightendofthegalaxyluminosityfunctioningalaxyclusters wherethesumisperformedoveralltheN magnitudebinswith galaxynumber N(m) and meanluminosity l(m). The transfor- i i mationfromabsolutemagnitudestoabsoluteluminosityinunits of solar luminosities is performed using the solar magnitude M = 4.62. The luminosity associated to BGs, L , is com- r⊙ BG putedinthesame wayoutto Mr′ < −22.5.Table9liststhelu- minositiesforeachcluster.Valueswithinparenthesisareerrors estimatedat1σc.l.. Fig.12.BG countsintheinnerregion,R < 0.5R (leftpanel) 200 Table9.LuminositycontentofBGs. and in the outer region, 0.5R < R < R (right panel). 200 200 SymbolsarethesameasinFig.11. Name L L global BG WecorrelateNBG withtheredshiftandthemassoftheclus- (1012L⊙) (1012L⊙) ter. We do not observe any clear relation in both N − z and BG A697 4.38(0.24) 0.68(0.04) N −M relations. BG 200 A773 10.71(2.33) 3.43(0.75) Our above results are based on photometricBG counts op- A959 7.20(2.11) 2.53(0.74) portunelycorrectedwiththeaveragefieldcounts(seeSect.4.1). A1240 16.14(4.74) 10.78(3.17) Due to the poornumberstatistic of BGs in the individualclus- A2219 12.08(2.96) 3.32(0.81) ters, we also use another approach to check the above results. A383 3.03(0.63) 2.90(0.60) We also resortto the SDSS spectroscopicsurveysince redshift A963 6.29(0.67) 0.78(0.08) datacanprovidethecorrectclustermembership.Unfortunately, A1835 16.95(2.74) 7.04(1.14) SDSS surveyis notspectroscopicallycomplete.Indeed,within A2261 12.31(2.52) 2.55(0.53) theclusterregionsofoursample,SDSSDR8provideredshiftsz ZwCl3146 6.95(3.52) 1.74(0.09) for60%ofgalaxieshavingM <−22.5.Thus,wecannotassess r′ the cluster membershipfor all BGs. Here we considera mixed approach: we counts BGs in the photometric sample and then weightthesenumbersonthebaseofthespectroscopicinforma- Note that LBG represents a non-negligible fraction of the tion. globalluminosityfor Mr′ < −20andtheten clustersspanover As for photometric data, Table 8 lists the mean number of a wide range of luminosities. We observe two dramatic cases, BGsforDARCandrelaxedcluster(Cols.2and3);therespective these are A1240 in the DARC cluster sample and A383 in the differenceandratiobetweenN inDARCandrelaxedclusters relaxedsample,wheretheluminosityfractionassociatedto the BG (Cols.4and5).Thesevaluesconfirmthatthestrongdifference BGs, fL,BG,areabout67%and96%ofthetotalluminosity,re- betweenDARCandrelaxedclustersareduetotheoutercluster spectively.Consideringthewholesamples,wefindthatthemean region,whilenothingcanbesaid aboutthe innerregiondueto luminosity fractions of BGs are fL,BG,DARC = 0.35±0.19 and the poornumberstatistics. Note thathere we do notnormalize fL,BG,rel = 0.39 ± 0.33 for DARC and relaxed clusters. If we with the respectivecluster richnessas in the abovesection:the donotconsiderthetwoextremecasesofA1240andA383,we neteffectwouldbeofslightlyreducingtheobserveddifference find fL,BG,DARC = 0.27±0.09 and fL,BG,rel = 25±0.13. From between DARC and relaxed clusters. Therefore, the results of these values, we conclude that DARC and relaxed clusters do thissectionshouldbelookedatasbeingveryconservative. not significantly differ for the luminosity content associated to We use the spectroscopic information to weight the above theirBGs. ratios. We consider galaxy members those galaxies with a dif- ference of δz = 0.01 (δz = 0.007) from the cluster red- shift, i.e. δcz ∼ 3000 km s−1(∼ 2000 km s−1) from the mean 7. Discussion&conclusions cluster velocity. Table 8 lists the number of cluster BGs over We compare five unrelaxed clusters (DARC sample) with re- the number of all BGs having redshift, N /N , for DARC mem z laxedclusters.Asfaraspossiblewehavepotentialbiasesunder and relaxed cluster (Cols. 6 and 7), and the values of the ra- control.Therelaxedclustersaresimilartounrelaxedclustersfor tiosDARC/relaxednowweightedwiththerespective N /N , mem z theirredshiftrange,X-raytemperature,andmass(see Tables1 i.e.WRatio(DARC/rel)=Ratio(DARC/rel)*[N /N (DARC)]× mem z and 2).Moreover,we alwaysworkwithinphysicalratherthan [N /N (rel)]−1 (Col. 8). When comparing the values of mem z fixedradii. “WRatio”withthoseofabove“Ratio”wesee thattheresultof Wefindthatveryunrelaxedarecomparabletorelaxedclus- DARC clusters beingricherin BGs than relaxedcluster within ters for the statistical properties, i.e. the parameters of the LF 0.5R isconfirmed. 200 andtherelativebehaviourbetweenredandbluegalaxies.Inpar- ticular,weagreewithaseriesofpreviousresults. 6. BGsLuminosity We compare M∗ and α parameters of the composite SchechterluminosityfunctionswithresultsobtainedbyPopesso WeinvestigatewhetherthecontributioninluminosityofBGsis etal.(2006).Transformingtheir M∗ estimates(seetheirTables differentbetweenDARC and relaxedclusters. We computethe 1 and 2) to our cosmology, applying the factor 5log(h ), we 70 “global”luminosityfor Mr′ < −20 usingthe countsof Sect. 4, obtainvaluesinperfectagreement. i.e.: In addition, in agreement with Popesso et al. (2006, their Fig. 10) and de Filippis et al. (2011, their Fig. 11) the LF pro- N file does not depend on the considered cluster region within Lglobal =XNi(m)li(m), (4) M <−19. i r 9 R.Barrenaetal.:Environmentaleffectsonthebrightendofthegalaxyluminosityfunctioningalaxyclusters Table8.BGsinphotometricsamplesweightedwithspectroscopicsamples. fromphotometricsurvey fromspectroscopicsurvey photo+spec N N Diff. Ratio N /N(DARC)a N /N(rel)a WRatioa BG,DARC BG,rel mem z mem z R<R 65 45 20±10 1.4 10/41(8/41) 8/25(6/25) 1.1(0.9) 200 R<0.5R 13 16 3±6 0.8 4/13(4/13) 4/8(4/8) 0.5(0.5) 200 R>0.5R 52 29 23±9 1.8 6/28(4/28) 4/17(2/17) 1.6(2.2) 200 a Wheremembergalaxiesarethosehavingδz=0.01(δz=0.007). Wealsofindevidenceofthevariationofthebluefractionof Institutions. TheSDSSWebsiteis http://www.sdss.org/.Thisworkhas galaxies with redshift. It is very noticeably that we can detect beenfundedbytheSpanishMinistryofScienceandInnovation(MICINN)under the effect even if our study is limited to a smallredshiftrange. thecollaborationgrantsAYA2010-21887-C04-04andAYA2010-21322-C03-02. MGacknowledgesfinancialsupportfromPRIN-INAF-2010. Inparticular,notethatextrapolatingour f (z)relationtoz=0.35, B weobtaina f (z=0.35)=0.34±0.05.Thisestimatewellagrees B withthoseobtainedbyAndreonetal.(2006).Theyfind f (z = B 0.35)=0.33±0.05withclusterslocatedinaredshiftrange0.3− References 0.4.Whenextrapolatingtoz=0.5,weobtain f (z=0.5)∼0.5. B Allen,S.W.,Ettori,S.,&Fabian,A.C.2001,MNRAS,324,877 Thisfindingisinverygoodagreementwithcosmologicalgalaxy Allen, S.W.,Schmidt,R.W.,Ebeling, H.,Fabian,A.C.,vanSpeybroeck, L. formationmodelsforclusterwithsimilarmass(seeMencietal. 2004,MNRAS,353,457 2008,theirFig.3). Andreon,S.,Quintana,H.,Tajer,M.,Galaz,G.,Surdej,J.2006,MNRAS,365, 915 Our new first result is that relaxed clusters contain fewer Ascaso,B.,Aguerri,J.A.L.,Varela,J.,etal.2011,ApJ,726,69 BGs and these BGs are more concentrated in cluster inner re- Baldi,A.,Ettori,S.,Tozzi,P.&Borgani,S.2007,ApJ,666,835 gions.Onthecontrary,unrelaxedclusterspresentmoreBGsand Barkhouse,W.A.,Yee,H.K.C.,&Lo´pez-Cruz,O.2007,ApJ,671,1471 more homogeneouslydistributed within the whole cluster. The Barrena,R.,Boschin,W.,Girardi,M.,&Spolaor,M.2007a,A&A,467,37 BG richnessof DARC clusters is the robustand significantre- Barrena,R.,Girardi,M.,Boschin,&Das´ı,M.2009,A&A,503,357 Bautz,L.P.,&Morgan,W.W.1970,ApJ,162,149 sultofSect.5. Binggeli,B.,Sandage,A.,Tamman,G.A.1988,ARA&A,26,509 Our result is not in contrast with that of de Propris et al. Biviano, A.,Murante, G.,Borgani,S.,Diaferio, A.,Dolag,K.,&Girardi, M. (2003) who found similar LF between substructured and non 2006,A&A,456,23 substructuredclusters since: i) their study is devotedto LF pa- Boschin,W.,Barrena,R.,Girardi,M.,&Spolaor,M.2008,A&A,487,33 Boschin,W.,Girardi,M.,Barrena,R.,etal.2004,A&A,416,839 rameters, for which we find no difference, too; ii) our sample Butcher,H.,&Oemler,A.1978,ApJ,219,18 ofDARC clustersare likely to bemuchmorefar fromdynam- Brunetti,G.,Cassano,R.,Dolag,K.,&Setti,G.2009,A&A,507,661 ical equilibrium than their sample of substructured clusters. In Buote,D.A.2002,in“MergingProcessesinGalaxyClusters”,eds.L.Feretti, fact,DARCclustersarefoundtobecasesofmajor,veryimpor- I.M.Gioia,&G.Giovannini(TheNetherlands,KluwerAc.Pub.):Optical tant mergers, in agreement with the rarity of the diffuse radio AnalysisofClusterMergers Butcher,H.,&Oemler,A.1984,ApJ,285,426 sources phenomena (∼ 10% of clusters, Giovannini & Feretti Carlberg,R.G.,Yee,H.K.C.,Ellingson,E.,etal.1996,ApJ,462,32 2002). Moreover, DARC clusters should all be recent mergers Carlberg,R.G.,Yee,H.K.C.,&Ellingson,E.1997,ApJ,478,462 sinceradioemissionsareexpectedtohaveashortlifetime,i.e. Cassano,R.,Ettori,S.,Giacintucci,S.,etal.2010,ApJ,721,82 oftheorderofafew108years(e.g.,Giovannini&Feretti2002; deFilippis,E.,Paolillo,M.,Longo,G.,etal.2011,MNRAS,414,277 deLucia,G.&Blaizot,J.2007,MNRAS,375,2 Skillman et al. 2010), in agreement with times estimated in a dePropris,R.,Pritchet,C.J.,Harris,W.E.,McClure,R.D.1995,ApJ,450,534 few individualclusters (e.g.,Markevitchet al. 2002; Girardiet dePropris.,R.,etal.2003,MNRAS,342,725 al.2008). Dressler,A.1978,ApJ,223,765 Oursecond,newresultisthattheluminositycontentinBGs Dressler,A.1980,ApJ,236,351 Driver,S.P.,Couch,W.J.,&Phillipps,S.1998,MNRAS,301,369 isthesameinDARCandrelaxedclusters.Theconsequentsce- Dubinski,J.1998,ApJ,502,141 narioisthatthe(morenumerous)BGslyingintheouterregions Durret,F.,Lagana´,T.F.,&Haider,M.2011,A&A,529,A38 of merging clusters will merge to form (more luminous) BGs Ebeling,H.,Voges,W.,Bo¨hringer,H.,etal.1996,MNRAS,281,799 in the inner regions of relaxed clusters. This combined forma- Ebeling,H.,Edge,A.C.,Bo¨hringer,H.,etal.1998,MNRAS,301,881 tion/evolution of BGs and the parent clusters well agree with Ensslin,T.A.,Biermann,P.L.,Klein,U.,&Kohle,S.1998,A&A,332,395 Feretti,L.,GioiaI.M.,andGiovanniniG.eds.,2002b,AstrophysicsandSpace the resultsof Lin& Mohr(2004) whoanalyzedthe correlation ScienceLibrary,vol.272,“MergingProcessesinGalaxyClusters”,Kluwer betweenBCG luminosityandparentclustermass,supportinga AcademicPublisher,TheNetherlands recent formation of the brightest galaxies in the context of the Feretti, L. 2006, Proceedings of the XLIst Rencontres de Moriond, XXVIth hierarchicalscenario. Astrophysics Moriond Meeting: ”From dark halos to light”, L.Tresse, S. MaurogordatoandJ.TranThanhVan,Eds,e–printastro–ph/0612185 We plan to extend our study to a larger sample of DARC Feretti,L.2008,Mem.SAIt,79,176 clusters,byexaminingtheirdynamicstocomputemorereliable Fukugita,M.,Shimasaku,K.,&Ichikawa,T.1995,PASP,107,945 massestimates.Anotherpossibleextensionofthisworkislook- Gilbank,D.G.,Yee,H.K.C.,Ellingson,E.,etal.2008,ApJ,673,742 ingatdeepermagnitudesthusto investigatepossible effectson Giovannini,G.,&Feretti,L.2002,in“MergingProcessesinGalaxyClusters”, thefaintendofthegalaxyLFconnectedwiththeclusterevolu- eds.L.Feretti,I.M.Gioia,&G.Giovannini(TheNetherlands,KluwerAc. Pub.):DiffuseRadioSourcesandClusterMergers tion. Girardi,M.,Boschin,W.,&Barrena,R.2006,A&A,455,45 Girardi,M.,Fadda,D.,Giuricin,G.etal.1996,ApJ,457,61 Acknowledgements. Weare indebt with Andrea Biviano forhis useful com- Girardi,M.,Giuricin,G.,Mardirossian,F.,Mezzetti,M.,&Boschin,W.1998, mentsonthiswork.WealsothanksforthecreationanddistributionoftheSDSS ApJ,505,74 Archive, provided by the Alfred P. Sloan Foundation and other Participating Girardi,M.,&Mezzetti,M.2001,ApJ,548,79 10