©EntomologicaFennica.31May2011 Environmental conditions affecting spiders in grasslands at the lower reach of the River Tisza in Hungary RóbertGallé,NorbertVesztergom&TamásSomogyi Gallé,R.,Vesztergom,N.&Somogyi,T.2011:Environmentalconditionsaffect- ingspidersingrasslandsatthelowerreachoftheRiverTiszainHungary.— Entomol.Fennica22:29–38. Theaimsofthepresentstudyweretorevealthedifferencesbetweengrassland types,andtoidentifythelocalandlandscapeparametersthatinfluencethespider assemblagesatthereachoftheRiverTisza.Therarefiednumberofspiderspecies was negatively correlated with the proportion of forests in a radius of 500 m aroundeachsite.Anegativecorrelationwasfoundbetweenthenumberofgrass- landspecialistspeciesandtheproportionoftheforests,butthenumberofforest speciesincreasedsignificantlywiththeneighboringforestarea.Therelativearea ofneighboringforests,thenumberofplantspeciesandregularfloodingplayed majorrolesinshapingofthespeciescompositionofspiders.Theresultsofthe presentstudyemphasizetheimportanceoftheeffectofhabitatlandscapeproper- tiesonspiderassemblages.Thestructuraldiversityofthelandscapemayinflu- encespeciesrichnessandcompositionofthehabitats. R. Gallé, N. Vesztergom &T. Somogyi, Department of Ecology, University of Szeged, Középfasor 52, H-6726 Szeged, Hungary; Corresponding author’s e- mail:[email protected] Received15February2010,accepted3December2010 1.Introduction habitats(Wardetal.2002,Lambeetsetal.2008, 2009). In the Hungarian Great Plain, grasslands are The distribution of organisms across such a threatenedbytheexpansionofagriculturalactiv- mosaiclandscapeisinfluencedbynumerousfac- ity(Horváthetal.2009).Duringtheriverregula- torsandpresumablybythecomplexrelationships tionsinthe19thcenturythehistoricalfloodplain amongthesefactors(Turner2005). was divided by dikes into floodplain and non- Amongthehabitatfeatures,thecomposition flooded,protectedareas.Theremnantsofthepro- and structure of vegetation (Ysnel & Canard tectedgrasslandsaremainlyusedaspasturesor 2000,Heikkinen&MacMahon2004)influence meadows. the species composition and diversity of the in- These small patches are enclosed between vertebrate assemblages. Plant species richness highly modified landscape elements, i.e. arable and the height of the vegetation is supposed to fieldsandforestplantationsofmainlynon-native haveamajorinfluenceonthespiderassemblages, treespecies.Thenaturaldisturbanceoftheregu- as higher plant species richness offers more di- larfloodingeventsandtherelatedchangesinthe versehabitatstructureandmorepotentialsitesfor vegetationstructureareexpectedtoaffectstruc- webbuilding(Jeanneretetal.2003a,Horváthet turalandmicroclimaticparametersinfloodplain al.2009). 30 Galléetal. (cid:127) ENTOMOL.FENNICAVol.22 Onthelandscapescale,heterogeneity ofthe grasslandsaroundthestudysites,asthethe- surroundinghabitatpatchesmayinfluencethedi- ory of island biogeography states that more versityandthenumberofspeciesoftheassem- isolated habitats retain less habitat specialist blagesatagivenpatch(Duelli1997).Although speciesthanlessisolatedones(e.g.Löveiet numerousauthorshavedemonstratedthesignifi- al.2006). canceofthespatialstructureofthelandscapeon (4)Accordingtotheabove-mentionedhypothe- invertebrate assemblages (e.g. Diekötter 2008, sesweexpectedboththeproportionofforests Ricketts2001),itisdifficulttogeneralizetheef- andgrasslandstoinfluencethespeciescom- fect of the landscape heterogeneity, as various positionofspiderassemblages. taxareactdifferentlytothehabitatandlandscape features,sincespeciesecologyanddispersalabil- ities are different for every organism (Burel & 2.Materialsandmethods Baudry1995,Jeanneretetal.2003a). Thepresentstudyaimedattestingtheeffect 2.1.Studysitesandsampling of habitat parameters (soil humidity, regular flooding, structure and cover of the vegetation) TwohabitatcomplexesofthelowerTisza-valley andlandscape(proportionofgrasslands,forests were selected for sampling spider assemblages. andarablefields)onthespiderassemblages,and The southern habitat complex (Vessz(cid:1)s) is situ- torevealthedifferencesbetweenassemblagesof ated near Szeged (46°17’30”N; 20°14’20”E), thefloodplainandonprotectedgrasslands.Spi- where the landscape mainly consists of arable ders were chosen for the study as they are the fieldswithsmallpatchesofgrasslands,andoak mostdiverseandabundantpredatoryinvertebrate andpoplarforestplantationsareembeddedinthe groupofgrasslands(Wise1993). matrixofarablefields.TheDóchabitatcomplex lies40kmnorthofSzeged(46°26’20”N;20°10’ Thefollowinghypothesesweretested: 40”E),inastructurallymorecomplexlandscape. Higherproportionofsemi-naturalgrasslandsand (1)In terms of the habitat features we expected forestsoccurhere. thenumberofspeciestoincreasewithmore The spider assemblages were studied at six structuredvegetation,asitiswell-knownthat grasslands(samplingsites)inthesouthernhabitat vegetationheightanddensityisimportantfor complex and four in the northern habitat com- spiders (e.g. Greenstone 1984). We did not plex,respectively.Ineachhabitatcomplex,hay- expectthenumberofspeciestochangewith meadow, saline grassland, floodplain meadow, regularfloodingeventasfloodplainhabitats degraded grassland, and at the southern habitat do not necessarily harbor more species but complexapairofdike-sidemeadows(i.e.flood- rather exhibitdifferentspeciescompositions plainandprotected)werestudied. anddifferentdiversity patterns(Lambeetset Tosamplethefaunapitfalltrapswereapplied al.2009). (diameter65mm,filledwithethyleneglycolas (2)AccordingtoEntlingetal.(2007)andLam- preservative,Koivula2003,Schmidtetal.2006). beetsetal.(2008,2009)wealsoexpectedthe Ateachsitethreelinesoftraps(samplingplots) vegetationstructure,soilmoistureandregular were placed, each line consisted of five traps flooding to alter the species composition of keepingadistanceof4mbetweenthem.Theav- spiders. eragedistancebetweenthelineswas150m.Prior (3)Asregardstheeffectofthelandscapecompo- tothedataanalysis,thedataofthefivetrapswere sition,weexpectedthenumberofspeciesto pooled. We expected an underestimation of the increasewithincreasingproportionofforests abundance of web-building species, as pitfall aroundthestudysites,asaconsequenceofthe traps measure the activity-density of species at occurrenceofforestspecialistandgeneralist the ground level, thus they capture the spiders speciesinthegrasslands(Usheretal.1993). withanactivehunterlifestyleonthesoilsurface Wealsoexpectedthenumberofspeciestoin- more efficiently (Topping & Sunderland 1992, crease with the increasing proportion of Urák&Samu2008).However,pitfalltrapsoffer ENTOMOL.FENNICAVol.22 (cid:127) Spidersofrivervalleygrasslands 31 a relatively good alternative for comparing the Toassessthesignificanceoftheireffect,the activity-densityofepigaeicspiderfaunaofdiffer- explanatoryvariablessuggestedbytheURTme- ent habitats (Scmidt et al. 2005, Öberg et al. thod were subjected to a linear mixed-effect 2007).Thetrapswerekeptopenforfour2-week model with nested random effects using the li- samplingperiods(27May–13June,30June–15 brarynlmeinR(Pinheiroetal.2007).Theeffect July, 16–30 Aug., 18 Sept.–01 Oct.) in 2007 to ofthedifferenthabitatcomplexesandsampling coverthemainactivityperiodofthespiderspe- siteswereusedasrandomeffectsandtheexplan- cies.Thedataofthefoursamplingperiodswere atory variables suggested by the regression tree pooled. methodwereusedasfixedeffectsinthemixedef- To characterize the structure of the vegeta- fectlinearmodel(Crawley2007).Thecollected tion, the number of plant species and the total specieswerecategorizedaccordingtotheirhabi- coverofthevegetationatthegroundlevel,at10 tatrequirements(Buchar&Ruzicka2002,Szita and 40 cm above the ground, were measured etal.2006,Schmidt&Hanggi2007,Batáryetal. within 1 × 1 meter quadrates near the traps, as 2008). The significant landscape scale parame- structurallycomplexhabitatsmayprovidemore terswereincludedintwosubsequentlinearmod- potentialsitesforwebbuilding,andbecausespi- elstoassesstheireffectsonthenumberofforest dersarestronglyinfluencedbythehabitatstruc- andgrasslandspecialistspecies. ture(Schwabetal.2002). Rényi’sdiversityorderingwasusedtocom- To assess the features of the landscape, the parethediversityofthefloodplainandprotected proportion ofland-use types was measured in a habitats (hypothesis 1). Diversity ordering pro- radiusof500maroundeachsite,basedonaerial vides the diversity profiles of the assemblages. photographs (i.e. grasslands, forests and arable Thesecurvesconsistofaseriesofdiversityindi- fields),asseveralstudiessuggestthatlandscape ces,asthescaleparameterischanged,including compositionatscalesof500mradiuscanberele- indicessensitivetobothrareandabundantspe- vantforspiders(Cloughetal.2005,Schmidtet cies(Carranzaetal.2007).Anassemblageiscon- al. 2005). The remaining landscape elements sideredtobemorediversethananotherifitspro- (e.g.surfaceoftheriver)werenotenteredintothe file lies above and they do not intersect (Tóth- analysisinordertodecreasethenumberoffac- mérész1995).Rsoftware(RDevelopmentCore torswhichweretested. Team 2007) with the BiodiversityR Package (Kindt2008)wasusedforthecalculations. The influence of the measured explanatory 2.2.Dataanalysis variableswastestedonspiderassemblages(hy- Habitatstructureaffectsthetrappabilityofspider pothesis2and4)byusingthemultivariateregres- individuals,whichmay resultinbiaseddatafor siontree(MRT)method.Thismethodisanexten- studies comparing species richness of habitats sionofunivariateregressiontreeshavingmulti- withdifferentstructures(Melburne1999).Dueto variateresponse(De’ath2002).MRTdoesnotas- the different habitat properties of the sampling sumeparticularformofrelationshipbetweenspe- plotsandthelargevariationinthenumberofindi- ciesabundancesandexplanatoryvariables.This viduals recorded over the trapping period, rar- method can be used to identify interactions be- efaction was used to standardise the number of tween explanatory variables (De’ath 2002, species recorded within each of the sampling 2010). plots(Hecketal.1975,Gotelli&Colwell2001). Thesizeofthetreewasselectedbasedonthe Asregardshypothesis1and3,theunivariate minimum tree size that falls below 1 SE of the regression tree method (URT) was used to gain minimum cross-validation estimate. The final insightintothestructureofthedataandidentify treesizewasselectedbasedonthefrequentlyoc- the interactions between the variables (Tree curring number of leaves from 100 individual Package, Ripley 2009). The method performs a trees(Worketal.2004). binaryrecursivepartitioningofthedataset.Italso The species that characterize each leaf and offers the opportunity to identify the influential nodeoftheMRTwereidentifiedusingtheindica- explanatoryvariables(Crawley2007). tor species index (IndVal) based on the relative 32 Galléetal. (cid:127) ENTOMOL.FENNICAVol.22 34,thusthespeciescompositiondifferedconsid- erablybetweenthestudiedgrasslands. 3.1.Hypothesis1:Theinfluenceofhabitat featuresontherarefiednumberofthe species According to the univariate regression tree me- thodthetotalvegetationcoveristheonlyhabitat parameterthathadapossibleinfluenceontherar- efiednumberofspeciesincaseofhigherpropor- tionofforests(Fig.1).However,thevegetation cover had no significant effect on the rarefied Fig.1.Univariateregressiontreefortherarefiedspe- numberofthespeciesaccordingtotheresultsof ciesrichness.Node1isbasedonForest(%),thepro- thelinearmixed-effectmodel(t =–0.361;p= portionofforestsaroundthesamplingplots;node2 17 0.722). onVeg.cov.(%),thetotalvegetationcover;node3on Arablefield(%),theproportionofthearablefield.The The diversity profiles of the spider assem- differentlengthsofthelinesfollowingeachsplitare blages inhabiting the floodplain and protected proportionaltothevarianceexplainedbythesplit.The habitatsaregiveninFig2.Thecurveforthepro- numbersbeloweachleafshowthenumberofsamp- tected grasslands runs above that for the lesfallingintothatleaf. floodplaingrasslandsandthetwocurvesdonot intersect.Thus,theassemblagesoftheprotected abundanceandrelativefrequencyofoccurrence grasslandsweremorediverseforthewholerange (Dufrene&Legendre1997,De’ath2002). ofthescaleparameter. 3.2.Hypothesis2.Theinfluenceofhabitat 3.Results featuresonthespeciescomposition Atotal number of 3547 spider specimens were The cross validation of 100 MRT trees yielded collected,representing95speciesin17families treesoftwo,fourandfiveleaves,11,46and40 (Appendix, downloadable from http://ojs.tsv.fi/ times, respectively, with three trees resulting in index.php/entomolfennica/). The species rich- 6–8leaves.Thefour-leaftreeispresentedinFig nessofgrasslandpatchesrangedbetween23and 3.TheMRT,indicatingtheinfluenceofthenum- Fig.2.Theresultsof Rényi’sdiverisityorder- ing.Thediversitypro- filesdonotintersect, thustheassemblages oftheprotectedgrass- landsaremorediverse. ENTOMOL.FENNICAVol.22 (cid:127) Spidersofrivervalleygrasslands 33 Fig.3.Multivariateregressiontreeforspiders.Bray-Curtisdissimilaritywasusedforsplitting.Thefinaltreesize wasselectedbasedonthemostfrequentlyoccurringnumberofleavesfrom100individualtrees.Thenumbers beloweachleafshowthenumberofsamplesfallingintothatleaf.Theabbreviatednamesofspecieswithsignifi- cantindicatorvaluearegivenateachleaf,theindicatorvaluesaregiveninparenthesis(***p<0.001,**p<0.01,* p<0.05).Abbreviations:Tare:Thanatusarenarius,Hrad:Hognaradiata,Mross:Micariarossica,Gluc:Gna- phosalucifuga,Zseg:Zelotessegrex,Zlon:Z.longipes,Dcon:Diplostylaconcolor,Pala:Pardosaalacris,Zlat: Z.latreillei,Osim:Ozyptilasimplex,Oapi:Oedothoraxapicatus,Aele:Antisteaelegans,Aleo:Arctosaleopar- dus,Eden:Erigonedentipalpis,Plat:Piratalatitans,A.hum:Araeoncushumilis,Dlut:Drassylluslutetianus, Pame:P.amentata,Pcri:P.cribrata,Pdeg:Pachygnathadegeeri,Ppro:Pardosaproxima,Tstr:T.striatus, Zmun:Z.mundus. berofplantspecies(node2,Fig.3),accountedfor Forthefourthleafweidentified14indicator 12.9%ofthetotalvarianceandtheregularflood- species.OutofthesespidersthegeneralistOedo- ingevents(node3,Fig.3)accountedfor8.9%of thoraxapicatus(Blackwall,1850),Erigoneden- thetotalvariance. tipalpis(Wider,1834)andPachygnathadegeeri The IndVal analysis identified one indicator Sundevall, 1830 occur under the regularly dis- speciesofthefirstleaf(ThanatusarenariusTho- turbed conditions of agricultural fields and 11 rell,1872).Thisspecieslivesinopen,dryhabi- species are associated with wet meadows and tats. pondmargins(Buchar&Ruzicka2002,Schmidt ForthesecondleaftheIndValanalysisidenti- &Hanggi2007). fied6species.Thesespidersoccurinthenatural alkali grasslands of the Great Hungarian Plain (Szitaetal.2006,Batáryetal.2008). 3.3.Hypothesis3.Theeffectoflandscape For third leaf the IndVal analysis identified scaleparametersontherarefiednumber two forest specialist species (Pardosa alacris ofthespecies (C.L.Koch,1833)andDiplostylaconcolor(Wi- der, 1834)), and the generalist Zelotes latreillei According to the URT the two most influential (Simon,1878)andOzyptilasimplex(O.P.-Cam- parametersweretheproportionofforestsandara- bridge,1862)(Buchar&Ruzicka2002). blefields(Fig.1).Aspredicted,theproportionof 34 Galléetal. (cid:127) ENTOMOL.FENNICAVol.22 forests had a significant effect according to the waterregimeplayanimportantroleintheshap- subsequent GLMM (t = –2.228, p = 0.039). ingofthediversityofspiderassemblagesatrive- 17 However, no significant relationship was found rinelandscapes.Numerousstudieshavedemon- between the proportion of arable fields and the strated that spiders are particularly sensitive to rarefiednumberofthespecies(t =–1.801,p= flooding. The spider diversity is not only influ- 17 0.089). The subsequent linear models revealed enced by the occurrence of flooding events but the significant negative effect of forests on the alsobythedurationandfrequencyoftheseevents number of grassland specialist species (t = – (Uetz1976,Paetzoldetal.2008). 19 2.166,p=0.043)andthemarginallysignificant positiveeffectontheforestspecialistspecies(t 19 =2.024,p=0.057). 4.2.Thenumberofplantspecies andtheregularfloodingeventsinfluenced thespeciescompositionofspiders 3.4.Hypothesis4.Theinfluenceoflandscape scaleparametersonthecomposition The vegetation and flooding events are con- ofspecies straintsforspideroccurrence,indicatingtheim- portanceofthequalityoflocalhabitats.Inlow- TheMRTanalysisidentifiedonlyoneinfluential land floodplains, flooding dynamics determine landscapescaleparameter.Theproportionoffo- thecompositionofthespeciesandthestructureof restsinaradiusof500maroundeachsite(Fig.3, thevegetationwhichinturninfluencethecompo- node1)accountedfor26.2%ofthetotalvariance. sitionofspiderfauna(Ballingeretal.2005).Asin mosthabitattypes,vegetationplaysamajorrole in determining the physical parameters of the 4.Discussion habitat,andtherefore,hasasignificantinfluence onthedistributionsofinvertebratespecies(Bonte 4.1.Noinfluentialhabitatparameteronthe 2002, Tews et al. 2004). Gravesen (2000) and rarefiednumberofthespecies,butthereis Lambeetsetal.(2006)alsosupportthehypothe- ahigherdiversityattheprotectedgrasslands sis that a combination of flooding intensity and vegetation structure is important factor for the Although numerous studies have demonstrated species composition of spiders in wet grassland the effect of plant species richness and habitat areas. structureonthenumberofspeciesandthediver- Saboetal.(2005)reviewedtheliteratureon sityofspiders(e.g.Jeanneretetal.2003b,Tewset thespeciesrichnessandassemblagecomposition al. 2004), we found no significant relationship of flooded and non-flooded habitats. In accor- betweenthevegetationalparametersandtherar- dance with the results of the present study they efied number of the species. Gallé & Torma found that the species composition differs be- (2009)andGalléetal.(2010)demonstratedthat tweentheregularlyfloodedandnon-floodedhab- differenthabitattypesmayexhibitspiderassem- itats.Thiscanincreasetheregionalspeciesrich- blageswithsimilarnumberofspeciesbutdiffer- ness.Severalstudieshaveconfirmedtheimpor- ent species compositions. Thus, for a detailed tanceoffluvialdynamicsaffectingspiderassem- study into the relationship between the spiders blagesbyalteringthehabitatconditions(Bonnet andthehabitatparameterstheexaminationofthe al.2002,Paetzoldetal.2008). speciesabundancedataisrequiredinordertoas- AtregularlyfloodedhabitatsLambeetsetal. sesstheimpactoftheseparametersonthespider (2009)foundthatthedispersalabilityofspecies assemblages without the loss of information playsaprominentroleinstructuringcarabidand whensummarizingthedataontheassemblagesin spiderassemblages,thuslife-historytraitsaffect asinglevaluesuchasspeciesrichness(Jeanneret species composition of spiders. Rothenbücher etal.2003b,c). andSchaefer(2006)studiedtheimpactofflood- In accordance with Bell et al. (1999) and ing on invertebrate assemblages. They distin- Bonnetal.(2002),ourresultsalsoindicatethat guishedtwotypesofadaptationininvertebrates: ENTOMOL.FENNICAVol.22 (cid:127) Spidersofrivervalleygrasslands 35 submersion tolerance and regular migration be- thustheisolationofthehabitats.Higherpropor- fore and after the flooding. Most spiders over- tionofforestsmayserveasdispersalbarriersfor winter at juvenile or adult stages (Pekár 1999). grasslandspecialistspecies. These stages of terrestrial arthropods are less flood-resistantthanaretheireggs,thusthey are not able to tolerate long winter submersions. 4.4.Thefaunaofthesurroundingforests RothenbücherandSchaefer(2006)demonstrated influencethespeciescompositionofspiders that the floodplain spider fauna consists of spe- ciesimmigratingwithrecedingwaterlevels.The AccordingtotheMRTlandscapecompositionis abundance of cursorial spiders depends on the importantindeterminingthespeciescomposition proximity and connectivity of natural habitats, ingrasslands.Similarlytoourresults,numerous possiblyforseasonalmigrationtowardshiberna- studieshaveshownthatlandscapevariablesare tion sites (Bonte et al. 2003, Lambeets et al. importantdeterminantsofspeciescompositionof 2008),whilegoodballoonersareabletocolonize spiders(e.g.Öbergetal.2007,Batáryetal.2008, formgreaterdistances(Bonteetal.2002). Schmidtetal.2008).TheIndValanalysesidenti- Although the IndVal analysis identified 14 fied two forest specialist species (P. alacris and species associated with floodplain grasslands, D. concolor) at non-flooded grasslands with a manyspeciesofthefloodplainhabitatsareoppor- high proportion of surrounding forests, and ac- tunistic species from the surrounding non- cordingtothelinearmodelsthenumberofforest floodedhabitatsthatcancolonizeaftertheflood- specialist species increased and the number of ingevents(Adis&Junk2002). grassland specialist species decreased with the proportion of surrounding forests. Although Schmidtetal.(2005)foundnosignificantcorre- 4.3.Theproportionofforests lationbetweenthepercentageofforestsandspi- hadasignificantnegativeeffect derassemblages,Kajak(2007)demonstratedthat ontherarefiednumberofthespecies forests influence the species composition of ce- real fields by enhancing the number and abun- In accordance with the results of the present danceofforestspecialistspecies.Shealsofound study,Cloughetal.(2005)reportedthattherar- significanteffectofforestageandnaturalness. efiednumberofspeciesisinfluencedbytheland- Landscape scale forestry operations may af- scapeparameters.Öbergetal.(2007)andDrape- fectthediversityandspeciescompositionofthe laetal.(2008)foundthatahigherproportionof surrounding grassland habitats by altering the forestsinthesurroundinglandscapewereassoci- proportionorthehabitatqualityofforests.This atedwithahighernumberofobservedspiderspe- emphasizestheimportanceofthelandscape-level cies,asforestsmayserveassourcehabitatforspi- approachtonatureconservation. ders.Ourresultsalsosupportthishypothesisas we found increasing number of forest specialist species with the proportion of surrounding fo- 5.Conclusions rests.Speciesarrivingingrasslandsfromforests arelikelytoaddnewspeciestothespiderassem- Inthepresentstudywehaveassessedthecompo- blage, as forests and open habitats are home to sitionaldifferencesofspiderassemblagesofvari- contrasting spider assemblages (Entling et al. ousgrasslandtypesandtheeffectsofhabitatand 2007,Drapelaetal.2008). landscapepropertiesontherarefiedspeciesrich- Theeffectofforestsonthegrasslandspecial- nessandcompositionofspiders.Lowlandflood- istspeciesispossiblyduetothefactthatsmaller, plainhabitatsareofhighconservationalvalue,as moreisolatedfragmentsretainfewerhabitatspe- theirassociatedarthropodfaunaconsistsofspe- cies than larger less isolated ones (e.g. Lövei cialistandrarespecies(Rothenbücher&Schae- 2006). Several papers emphasize the effects of fer2004).Evensmallfragmentsplayanimpor- surrounding habitats on the dispersal of species tantroleinmaintainingtheregionaldiversityof (Bonteetal.2004,Thorbek&Topping2005)and spiders,astheyarenotentirelyisolated,because 36 Galléetal. (cid:127) ENTOMOL.FENNICAVol.22 spiders are especially successful in dispersal fects of aerial dispersal, habitat specialisation, and (Horváthetal.2009). landscapestructureonspiderdistributionacrossfrag- mentedgreydunes.—Ecography27:343–349. Atotalnumberof95specieswerecollected, Buchar,J.&Ruzicka,V.2002:CatalogueofSpidersofthe and the species richness of grassland patches Czech Republic. — Peres Publishers: Praha, Czech rangedbetween23and34,thusthespeciescom- Republic.pp:1–349. positiondifferedconsiderablybetweenthestud- Burel,F.&Baudry,J.1995:Speciesbiodiversityinchang- iedgrasslands.Ourresultssuggestthatbesidethe ingagriculturelandscapes:AcasestudyinthePays d’Auge,France.—AgricultureEcosystemsandEnvi- conservationoffloodplaingrasslands,themain- ronment55:193–200. tenanceofdiversityofgrasslandhabitatsisalso Carranza,M.L.,Acosta,A.&Ricotta,C.2007:Analyzing essentialforpreservingtheregionalspeciespool landscapediversityintime:TheuseofRènyi’sgenera- ofinvertebrates. lized entropy function. — Ecological Indicators 7: 505–510. Clough,Y.,Kruess,A.&Tscharntke,T.2005:Spiderdi- Acknowledgements. We would like to thank László versityincerealfields:comparinglocal,landscapeand KörmöcziandMártaZalatnaifortheirhelpwiththebotan- regionalscales.—JournalofBiogeography32:2007– icalsurveys,GáborLaskayforthelinguisticcorrectionof 2014. the manuscript. We would also acknowledge Katja Crawley,M.J.2007:TheRBook.—JohnWiley:New Matveinen-HujuandananonymousRefereeforthecon- Yorkpp:627–685. siderableeffortsinsuggestingimprovementsinthemanu- De’ath,G.2002:Multivariateregressiontrees:anewtech- script. The present study was supported by NKFP nique for modeling species-environment relations- 6/013/2005grantandtheRegionalUniversityKnowledge hips.—Ecology83:1105–1117. Centre for Environmental and Nanotechnology, Univer- De’ath, G. 2010: mvpart: Multivariate partitioning. R sityofSzeged. package version 1.3-1. — [www document] URL http://CRAN.R-project.org/package=mvpart(Sitevi- References sitedon14August2010.) Diekötter,T.,Billeterand,R.&Crist,T.O.2008:Effectsof landscapeconnectivityonthespatialdistributionof AdisJ.&Junk,W.J.2002:Terrestrialinvertebratesinhabi- insectdiversityinagriculturalmosaiclandscapes.— ting lowland river floodplains of Central Amazonia BasicandAppliedEcology9:298–307. andCentralEurope:areview.—FreshwaterBiology Drapela,T.,Moser,D.,Zaller,J.G.&Frank,T.2008:Spi- 47:711–731. der assemblages in winter oilseed rape affected by Ballinger,A.,MacNelly,R.&Lake,P.S.2005:Immediate landscapeandsitefactors.—Ecography31:254–262. andlonger-termeffectsofmanagedfloodingonflood- Duelli, P. 1997: Biodiversity evaluation in agricultural plain invertebrate assemblages in south-eastern Au- landscapes:Anapproachattwodifferentscales.— stralia:generationandmaintenanceofamosaicland- AgricultureEcosystemsandEnvironment62:81–91. scape.—FreshwaterBiology50:1190–1205. Dufrene,M.&Legendre,P.1997:Speciesassemblages Batáry,P.,Kovács,A.&Báldi,A.2008:Managementef- andindicatorspecies:theneedforaflexibleasymme- fectsoncarabidbeetlesandspidersinCentralHunga- tricalapproach.—EcologicalMonographs67:345– riangrasslandsandcerealfields.—CommunityEco- 366. logy9:247–254. Entling, W., Schmidt, M. H., Bacher, S., Brandl, R. & Bell,D.,Petts,D.E.&Sadler,J.P.1999:Thedistribution Nentwig,W.2007:NichepropertiesofCentralEuro- ofspidersinthewoodedriparianzoneofthreeriversin peanspiders:shading,moistureandtheevolutionof Western Europe. — Regulated Rivers: Research & the habitat niche. — Global Ecology and Biogeo- Management15:140–158. graphy16:440–448. Bonn,A.,Hagen,K.&Reiche,D.W.2002:Thesignifi- Gallé, R. & Torma, A. 2009: Epigeic spider (Araneae) canceoffloodregimesforcarabidbeetleandspider assemblagesofnaturalforestedgesintheKiskunság communities in riparian habitats – a comparison of (Hungary).—CommunityEcology10:146–151. threemajorriversinGermany.—RiverResearchand Gallé,R.,Torma,A.&Körmöczi,L.2010:Small-scaleef- Applications18:43–64. fectofhabitatheterogeneityoninvertebrateassembla- Bonte,D.,Baert,L.&Maelfait,J.-P.2002:Spiderassem- gesinHungariansandygrasslands.—PolishJournal blagestructureandstabilityinaheterogeneouscoastal ofEcology58:333–346. dune system(Belgium). — Journalof Arachnology Gotelli,N.J.&Colwell,R.K.2001:Quantifyingbiodiver- 30:331–343. sity:proceduresandpitfallsinthemeasurementand Bonte,D.,Lens,L.,Maelfait,J.-P.,Hoffmann,M.&Kuij- comparisonofspeciesrichness.—EcologyLetters4: ken,E.2003:Patchqualityandconnectivityinfluence 379–391. spatialdynamicsinadunewolfspider.—Oecologia Gravesen,E.2000:Spiders(Araneae)andotherinverteb- 135:227–233. rategroupsasecologicalindicatorsinwetlandarea.— Bonte,D.,Baert,L.,Lens,L.&Maelfait,J.-P.2004:Ef- Ekologika(Bratislava)19:39–42. ENTOMOL.FENNICAVol.22 (cid:127) Spidersofrivervalleygrasslands 37 Greenstone,M.H.1984:Determinantsofwebspiderspe- reonpitfalltraps:anexperimentalevaluation.—Au- ciesdiversity:vegetationstructuraldiversityvs.prey stralianJournalofEcology24:228–239. availability.—Oecologia62:299–304. Öberg,S.,Ekbom,B.&Bommarco,R.2007:Influenceof Heck,K.L,vanBelle,G.&Simberloff,D.1975:Explicit habitattypeandsurroundinglandscapeonspiderdi- calculationoftherarefactiondiversitymeasurement versity in Swedish agroecosystems. — Agriculture, and the determination of sufficient sample size. — EcosystemsandEnvironment122:211–219. Ecology52:1459–1461. Paetzold,A.,Yoshimura,C.&Tockner,K.2008:Riparian Heikkinen,M.W.&MacMahon,J.A.2004:Assemblages arthropodresponsestoflowregulationandriverchan- ofspidersonmodelsofsemi-aridshrubs.—TheJour- nelization.—JournalofAppliedEcology45:894– nalofArachnology32:313–323. 903. Horváth,R.,Magura,T.,Szinetár,Cs.&Tóthmérész,B. Pearce,J.L.&Venier,L.A.2006:Theuseofgroundbeet- 2009:Spidersarenotlessdiverseinsmallandisolated les(Coleoptera:Carabidae)andspiders(Araneae)as grasslands,butlessdiverseinovergrazedgrasslands: bioindicatorsofsustainableforestmanagement:Are- Afieldstudy(EastHungary,Nyírség).—Agriculture, view.—EcologicalIndicators6:780–793. EcosystemsandEnvironment130:16–22. Pekár, S. 1999: Some observations on overwintering of Jeanneret,Ph.,Schüpbach,B.,Pfiffner,L.,Herzog,F.& spiders(Araneae)intwocontrastingorchardsinthe Walter,Th.2003a:TheSwissagri-environmentalpro- CzechRepublic.—Agriculture,EcosystemsandEn- grammeanditseffectsonselectedbiodiversityindica- vironment73:205–210. tors.—JournalforNatureConservation11:213–220. Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. 2007: Jeanneret,Ph.,Schüpbach,B.,Pfiffner,L.&Walter,Th. nlme:Linearandnonlinearmixedeffectsmodels.R 2003b:Arthropodreactiontolandscapeandhabitatfe- packageversion3,1–86.—[wwwdocument]URL aturesinagriculturallandscapes.—LandscapeEco- http://ftp.uni-bayreuth.de/math/statlib/R/CRAN/doc/ logy18:253–263. packages/nlme.pdf(Sitevisitedon14February2010). Jeanneret,Ph.,Schüpbach,B.&Luka,H.2003c:Quanti- RDevelopmentCoreTeam.2007:R:ALanguageandEn- fyingtheimpactoflandscapeandhabitatfeatureson vironmentforStatisticalComputing.RFoundationfor biodiversityincultivatedlandscapes.—Agriculture, StatisticalComputing,Vienna.—[wwwdocument] EcosystemsandEnvironment98:311–320. URL http://www.R-project.org. (Site visited on 14 Kajak,A.2007:Effectsofforestedstripsonspiderassem- August2010). blagesinadjacentcerealfields:dispersalactivityof Ricketts,T.H.2001:Thematrixmatters:effectiveisola- spiders.—PolishJournalofEcology55:691–704. tioninfragmentedlandscapes.—TheAmericanNa- Kindt, R. 2008:TheBiodiversityR Package. R package turalist158:87–99. ver.1.2.—[wwwdocument]URLhttp://cran.r-pro- Ripley,B.2009:Tree:Classificationandregressiontrees. ject.org/.(Sitevisitedon14August2010). Rpackageversion1.0-27.—[wwwdocument]URL Koivula,M.,Kotze,D.J.,Hiisivuori,L.&Rita,H.2003: http://CRAN.R-project.org/package=tree(Sitevisited Pitfalltrapefficiency:dotrapsize,collectingfluidand on14August2010). vegetationstructurematter?—EntomologicaFennica Rothenbücher,J.&Schaefer,M.2006:Submersiontole- 14:1–14. ranceinfloodplainarthropodcommunities.—Basic Lambeets,K.,Bonte,D.,VanLooy,K.,Hendrickx,F.& andAppliedEcology7:398–408. Maelfait,J.-P.2006:Synecologyofspiders(Araneae) ofgravelbanksandenvironmentalconstraintsalonga Sabo,J.L.,Sponseller,R.,Dixon,M.,Gade,K.,Harms,T., lowlandriversystem,theCommonMeuse(Belgium, Heffernan,J.,Jani,A.,Katz,G.,Soykan,C.,Watts,J. theNetherlands)—In:DeltshevC&StoevP(eds.), &Welter,J.2005:Riparianzonesincreaseregional EuropeanArachnology2005ActaZoologicaBulgari- speciesrichnessbyharboringdifferent,notmore,spe- caSuppl.1,pp:137–149. cies.—Ecology86:56–62. Lambeets,K.,Hendrickx,F.,Vanacker,S.,VanLooy,K., Samu,F.,Sunderland,K.D.&Szinetár,Cs.1999:Scale- Maelfait,J.-P.&Bonte,D.2008:Assemblagestructu- dependentdispersalanddistributionpatternsofspi- reandconservationvalueofspidersandcarabidbeet- dersinagriculturalsystems:areview.—Journalof lesfromrestoredlowlandriverbanks.—Biodiversity Arachnology27:325–332. andConservation17:3133–3148. Schmidt,M.H.&Hänggi,A.2007:Zelotesmundus(Ara- Lambeets, K., Vandegehuchte, M. L., Maelfait, J.-P. & neae: Gnaphosidae) in the Camargue: a continental Bonte,D.2009:Integratingenvironmentalconditions speciesreachesthewesternMediterraneancoast.— andfunctionallifehistorytraitsforriparianarthropod BulletinoftheBritishArachnologicalSociety14:27– conservation planning. — Biological Conservation 29. 146:625–637. Schmidt,M.H.,Roschewitz,I.,Thies,C.&Tscharntke,T. Lövei,G.L.,Magura,T.,Tóthmérész,B.,Ködölöcz,V. 2005:Differentialeffectsoflandscapeandmanage- 2006:Theinfluenceofmatrixandedgesonspecies ment on diversity and density of ground-dwelling richnesspatternsofgroundbeetles(Coleoptera:Cara- farmlandspiders.—JournalofAppliedEcology42: bidae)inhabitatislands.—GlobalEcologyand.Bio- 281–287. geography15:283–289. Schmidt,M.H.,Clough,Y.,Schulz,W.,Westphalen,A., Melbourne,B.A.1999:Biasintheeffectofhabitatstructu- Tscharntke,T.2006:Captureefficiencyandpreserva- 38 Galléetal. (cid:127) ENTOMOL.FENNICAVol.22 tion attributes of different fluids in pitfall traps. — ofthescience?—AnnualReviewofEcology,Evolu- JournalofArachnology34:159–162. tion,andSystematics36:319–44. Schmidt,M.H.,Thies,C.,Nentwig,W.&Tscharntke,T. Uetz,G.W.1976:Gradientanalysisofspidercommunities 2008:Contrastingresponsesofarablespiderstothe inastreamsideforest.—Oecologia22:373–385. landscapematrixatdifferentspatialscales.—Journal Urák,I.&Samu,F.2008:Contributiontothespiderfauna ofBiogeography35:157–166. oftheMoho(cid:2)peatbogfromTransylvania,withsome Schwab,A.,Dubois,D.,Fried,P.M&Edwards,P.J.2002: newdataforRomania.—North-WesternJournalof Estimatingthebiodiversityofhaymeadowsinnorth- Zoology4:50–60. easternSwitzerlandonthebasisofvegetationstructu- Usher,M.,Field,J.P.,Bedford,S.E.,1993:Biogeography re.—Agriculture,EcosystemsandEnvironment93: anddiversityofground-dwellingarthropodsinfarm 197–209. woodlands.—BiodiversityLetters1:54–62. Szita,É.,Samu.F.,Szinetár,Cs.,Dudás,Gy.,Botos,E., Vasques, G. M., Grunwald, S. & Sickman, J. O. 2008: Horváth,R.&Szalkovszki,O.2006:Newdataonthe Comparison of multivariate methods for inferential occurenceofGnaphosarufula(L.Koch,1866)and modeling of soil carbon using visible/near-infrared GnaphosamongolicaSimon,1895inHungary(Ara- spectra.—Geoderma:146:14–25. neae:Gnaphosidae)—In:Deltschev,C.&Stoev,P. Ward,J.V.,Tockner,K.,Arscott,D.B.&Claret,C.2002: (eds.),EuropeanArachnology2005pp.329–334. Riverinelandscapediversity.—FreshwaterBiology Tews,J.,Brose,U.,Grimm,V.,Tielbörger,K.,Wichmann, 47:517–539. M.C.,Schwager,M.&Jeltsch,F.2004:Animalspe- Wise,D.H.1993:Spidersinecologicalwebs.—Cam- ciesdiversitydrivenbyhabitatheterogeneity/diversi- bridgeUniversityPress.pp:1–328. ty:theimportanceofkeystonestructures.—Journalof WithK.A,Pavuk,D.M.,Worchuck,J.L,Oates,R.K.& Biogeography31:79–92. Fisher, J. L. 2002: Threshold effects of landscape Thorbek,P.&Topping,C.J.2005:Theinuenceoflandsca- structureonbiologicalcontrolinagroecosystems.— pediversityandheterogeneityonspacialdynamicsof EcologicalApplications12:52–65. agrobiontlinyphiidspiders:Anindividualbasedmo- Work,T.T.,Shorthouse,D.P.,Spence,J.R.,Volney,W.J. del.—BioControl,50:1–33. A.&Langor,D.2004:Standcompositionandstructu- Topping,C.J.&Sunderland,K.D.1992:Limitationsto reoftheborealmixedwoodandepigaeicarthropodsof theuseofpitfalltrapsinecologicalstudiesexemplifi- theEcosystemManagementEmulatingNaturalDis- edbyastudyofspidersinafieldofwinterwheat.— turbance(EMEND)landbaseinnorthwesternAlberta. JournalofAppliedEcology29:485–491. —CanadianJournalofForestResearch34:417–430. Tóthmérész,B.1995:Comparsionofdifferentmethodsfor Ysnel,F.&Canard,A.2000:Spiderbiodiversityincon- diversityordering.—JournalofVegetationScience6: nectionwiththevegetationstructureandthefoliage 283–290. orientationofhedges.—JournalofArachnology28: Turner,M.G.2005:Landscapeecology:Whatisthestate 107–114.