ENERGY RECOVERY No part of this digital document may be reproduced, stored in a retrieval system or transmitted in any form or by any means. The publisher has taken reasonable care in the preparation of this digital document, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained herein. This digital document is sold with the clear understanding that the publisher is not engaged in rendering legal, medical or any other professional services. ENERGY RECOVERY EDGARD DUBOIS AND ARTHUR MERCIER EDITORS Nova Science Publishers, Inc. New York Copyright © 2009 by Nova Science Publishers, Inc. All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted in any form or by any means: electronic, electrostatic, magnetic, tape, mechanical photocopying, recording or otherwise without the written permission of the Publisher. For permission to use material from this book please contact us: Telephone 631-231-7269; Fax 631-231-8175 Web Site: http://www.novapublishers.com NOTICE TO THE READER The Publisher has taken reasonable care in the preparation of this book, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained in this book. The Publisher shall not be liable for any special, consequential, or exemplary damages resulting, in whole or in part, from the readers’ use of, or reliance upon, this material. Any parts of this book based on government reports are so indicated and copyright is claimed for those parts to the extent applicable to compilations of such works. Independent verification should be sought for any data, advice or recommendations contained in this book. In addition, no responsibility is assumed by the publisher for any injury and/or damage to persons or property arising from any methods, products, instructions, ideas or otherwise contained in this publication. This publication is designed to provide accurate and authoritative information with regard to the subject matter covered herein. It is sold with the clear understanding that the Publisher is not engaged in rendering legal or any other professional services. If legal or any other expert assistance is required, the services of a competent person should be sought. FROM A DECLARATION OF PARTICIPANTS JOINTLY ADOPTED BY A COMMITTEE OF THE AMERICAN BAR ASSOCIATION AND A COMMITTEE OF PUBLISHERS. LIBRARY OF CONGRESS CATALOGING-IN-PUBLICATION DATA DuBois, Edgard. Energy recovery / Edgard DuBois and Arthur Mercier. p. cm. Includes index. ISBN 978-1-61728-402-1 (E-Book) 1. Waste products as fuel. I. Mercier, Arthur. II. Title. TP360.D82 2009 662'.87--dc22 2009024627 Published by Nova Science Publishers, Inc. New York CONTENTS Preface vii Chapter 1 Biogas Recovery from Landfills 1 Sherien A. Elagroudy and Mostafa A. Warith Chapter 2 Landfill Gas: Generation Models and Energy Recovery 69 Lidia Lombardi Chapter 3 Energy and Material Recovery from Biomass: The Biorefinery Approach. Concept Overview and Environmental Evaluation 97 Francesco Cherubini and Gerfried Jungmeier Chapter 4 Pinch Technology for Waste Heat Recovery Applications in Oil Industry 141 Mahmoud Bahy Noureldin Chapter 5 Treatment of Secondary Sludge for Energy Recovery 187 Chunbao (Charles) Xu and Jody Lancaster Chapter 6 Energy Recovery from Waste: Comparison of different Technology Combinations 213 Lidia Lombardi and Andrea Corti Chapter 7 Energy Recovery from Waste Incineration: Linking the Systems of Energy and Waste Management 229 Kristina Holmgren Chapter 8 Experimental Analysis of a Combined Recovery System 253 R. Herrero Martín Chapter 9 Energy Recovery Systems from Industrial Plant Waste: Planning of an Industrial Park Located in the South of Italy 289 Silvana Kühtz, Francesca Intini, Sara Bellini and Giovanna Matarrese Index 311 PREFACE Energy recovery occurs when the energy that is released from a resource recovery process (i.e., pyrolysis/gasification) is used for another purpose such as to generate steam, fuel or electricity generation. This book examines the energy recovery technologies which use landfill gas to produce energy directly. An overview of a variety of secondary sludge post treatment methods for energy recovery is given, including incineration, gasification, pyrolysis, direct liquefaction, supercritical water oxidation (SCWO) and anaerobic digestion. The several routes that energy recovery can follow from waste are looked at as well, of which the most common is waste direct combustion associated with conventional energy recovery in a steam turbine cycle. Energy recovery in air conditioning systems to promote energy saving and improve environmental quality is also explored in this book. Chapter 1 - Disposal of municipal wastes can produce emissions of most of the important greenhouse gases (GHG). Solid wastes can be disposed of through landfilling, recycling, incineration or waste-to-energy. This chapter will deal with emissions resulting from landfilling of solid waste. The most important gas produced in this source category is methane (CH4). Approximately 5-20 per cent (IPCC 1992) of annual global anthropogenic CH4 produced and released into the atmosphere is a by-product of the anaerobic decomposition of waste. A major source of this type of CH4 production is solid waste disposal to land. In landfills, methanogenic bacteria break down organic matter in the waste to produce CH4. In addition to CH4, solid waste disposal sites can also produce substantial amounts of carbon dioxide (CO2) and non-methane volatile organic compounds (NMVOC). The gases produced in solid waste disposal sites, particularly CH4, can be a local environmental hazard if precautions are not taken to prevent uncontrolled emissions or migration into surrounding land. Landfill gas is known to be produced both in managed “landfill” and “open dump” sites. Both are considered here as solid waste disposal sites (SWDSs). Gas can migrate from SWDSs either laterally or by venting to atmosphere, causing vegetation damage and unpleasant odors at low concentrations, while at concentrations of 5- 15 per cent in air, the gas may form explosive mixtures. With the recognition of the formation of landfill gas and its associated hazards, and the potential to utilize the energy content of the gas, the modern landfill site is designed to trap the gases for flaring or use in energy recovery systems, particularly for the landfilling of biodegradable municipal solid waste in non-hazardous waste landfills. The priority for control of the gases is to protect the environment and prevent unacceptable risk to human health, and viii Edgard DuBois and Arthur Mercier a landfill gas control system is therefore required. In addition, control mechanisms are required to minimize the risk of migration of the gases out of the site. This chapter will describe the processes that result in gas generation from SWDSs and the factors which affect the amount of CH4 produced. It will then describe two methodologies for estimating CH4 emissions from SWDSs. One of these methods is a default base method which all countries can use to estimate CH4 emissions from different types of SWDSs. It is recommended that countries which have adequate data also estimate their emissions using the second method presented. Finally, this section discusses sources of uncertainty associated with any estimates of CH4 emissions from SWDSs, in particular the availability and quality of data required. Chapter 2 - In this chapter different landfill gas production mathematical models have been analysed, implemented and compared among themselves and with data collected from existing landfills. These models will be presented in the chapter. One of these models has been selected for application to some study cases. The selected model is based on first-order decay equation and considers as basic inputs the years of landfill operation, the amount of municipal solid waste landfilled per year, the municipal solid waste component characterisation and biodegradability. Three different behaviours, in reference to biodegradation rate, have been considered dividing the material categories into rapidly, moderately and slowly biodegradable. The model has been used to predict the landfill gas production of a case-study landfill in order to properly size the energy recovery system. In particular, reciprocating engines were considered for energy recovery purposes. The landfill gas energy recovery by means of reciprocating engines is a quite widespread practice in modern landfills, but the energy recovery system definition and sizing, also in reference to its economic convenience, is a crucial and tricky issue. For this reason, the selection of an appropriate combination of engines has been carried out with the aim of obtaining the maximum profits from selling the produced electric energy. The obtained configuration for energy recovery was evaluated also from an energetic and environmental point of view, estimating the overall contribution to Greenhouse Effect from escaped landfill gas, collected and combusted landfill gas and recovered electric energy avoided emissions. Further, in order to investigate the management possibilities to enhance energy recovery, the behaviour of a landfill where leachate is recirculated was observed, recording a more concentrated landfill gas production in a shorter time than in conventional landfills - and reproduced by means of adapting the landfill gas production model. The landfill gas production and energy recovery for the conventional landfill and the landfill with leachate recirculation were compared from different points of view: economic evaluation, energy conversion and environmental impact. The economic analysis showed that the specific disposal cost is lower for the landfill with leachate recirculation with respect to the conventional landfill. Moreover, the landfill with leachate recirculation shows better indicator values both for the overall energy conversion efficiency and for Greenhouse Effect specific emission. Chapter 3 - A great fraction of worldwide energy carriers and material products come from fossil fuel refinery. Because of the on-going price increase of fossil resources, the uncertain availability, the environmental concerns and the fact that they are not a renewable resource, the feasibility of their exploitation is predicted to decrease in the near future. Therefore, alternative solutions able to reduce the consumption of fossil fuels should be promoted. Electricity and heat can be provided by a variety of renewable alternatives (wind,