P1:FYX/FYX P2:FYX/UKS QC:FYX/UKS T1:FYX PB091-FMI-Final January24,2002 15:33 ENCYCLOPEDIA OF SMART MATERIALS VOLUME 1 and VOLUME 2 Mel Schwartz TheEncyclopediaofSmartMaterialsisavailableOnlineat www.interscience.wiley.com/reference/esm AWiley-IntersciencePublication John Wiley & Sons, Inc. iii P1:FYX/FYX P2:FYX/UKS QC:FYX/UKS T1:FYX PB091-FMI-Final January24,2002 15:33 Thisbookisprintedonacid-freepaper.(cid:3)∞ Copyright(cid:3)C 2002byJohnWileyandSons,Inc.,NewYork.Allrightsreserved. PublishedsimultaneouslyinCanada. Nopartofthispublicationmaybereproduced,storedinaretrievalsystemortransmittedinany formorbyanymeans,electronic,mechanical,photocopying,recording,scanningorotherwise, exceptaspermittedunderSections107or108ofthe1976UnitedStatesCopyrightAct,without eitherthepriorwrittenpermissionofthePublisher,orauthorizationthroughpaymentofthe appropriateper-copyfeetotheCopyrightClearanceCenter,222RosewoodDrive,Danvers,MA 01923,(978)750-8400,fax(978)750-4744.RequeststothePublisherforpermissionshouldbe addressedtothePermissionsDepartment,JohnWiley&Sons,Inc.,605ThirdAvenue,NewYork, NY10158-0012,(212)850-6011,fax(212)850-6008,E-Mail:[email protected]. Fororderingandcustomerservice,call1-800-CALLWILEY. LibraryofCongressCataloginginPublicationData Encyclopediaofsmartmaterials/MelSchwartz,editor-in-chief. p. cm. “AWiley-Intersciencepublication.” Includesindex. ISBN0-471-17780-6(cloth:alk.paper) 1.Smartmaterials—Encyclopedias. I.Schwartz,MelM. TA4189.S62E63 2002 620.1(cid:4)1—dc21 2001056795 PrintedintheUnitedStatesofAmerica. 10987654321 iv P1:FYX/FYX P2:FYX/UKS QC:FYX/UKS T1:FYX PB091-FMI-Final January24,2002 15:33 CONTRIBUTORS D. Michelle Addington, Harvard University, Cambridge, MA, KojiFujita,KyotoUniversity,Sakyo-ku,Kyoto,Japan,Tribolumines- Architecture cence,ApplicationsinSensors YasuyukiAgari,OsakaMunicipalTechnicalResearchInstitute,Joto- TakehitoFukuda,OsakaCityUniversity,Sumiyoshi-ku,Osaka,Japan, ku,Osaka,Japan,PolymerBlends,FunctionallyGraded CureandHealthMonitoring U.O. Akpan,MartecLimited,Halifax,NS,Canada,VibrationControl C.R. Fuller, Virginia Polytechnic Institute and State University, inShipStructures Blacksburg,VA,SoundControlwithSmartSkins Samuel M. Allen, Massachusetts Institute of Technology, Cambridge, I.Yu.Galaev,LundUniversity,Lund,Sweden,Polymers,Biotechnology MA, Shape-Memory Alloys, Magnetically Activated Ferromagnetic andMedicalApplications Shape-MemoryMaterials David W. Galipeau, South Dakota State University, Brookings, SD, J.M. Bell, Queensland University of Technology, Brisbane Qld, Sensors,SurfaceAcousticWaveSensors Windows L.B.Glebov,UniversityofCentralFlorida,Orlando,FL,Photochromic YvesBellouard,InstitutdeSyste`mesRobotiquesEcolePolytechnique andPhoto-Thermo-RefractiveGlasses Fe´de´raledeLausanneSwitzerland,Microrobotics,MicrodevicesBased J.A.Gu¨emes,Univ.Politecnica,Madrid,Spain,IntelligentProcessing onShape-MemoryAlloys ofMaterials(IPM) DavideBernardini,Universita` diRoma“LaSapienza”,Rome,Italy, Andrew D. Hamilton, Yale University, New Haven, CT, Gelators, Shape-MemoryMaterials,Modeling Organic A.Berry,GAUS,UniversitydeSherbrroke,Sherbrooke,Quebec,Canada, TianHao,Rutgers—TheStateUniversityofNewJersey,Piscataway,NJ, VibrationControlinShipStructures ElectrorheologicalFluids O. Besslin, GAUS, University de Sherbrroke, Sherbrooke, Quebec, J.S.Harrison,NASALangleyResearchCenter,Hampton,VA,Polymers, Canada,VibrationControlinShipStructures Piezoelectric MaheshC.Bhardwaj,SecondWaveSystems,Boalsburg,PA,Nondes- Bradley R. Hart, University of California, Irvine, CA, Molecularly tructiveEvaluation ImprintedPolymers Vivek Bharti, Pennsylvania State University, University Park, PA, AlisaJ.MillarHenrie,BrighamYoungUniversity,Provo,UT,Magne- Poly(VinylideneFluoride)(PVDF)andItsCopolymers torheologicalFluids Rafael Bravo, Universidad del Zulia, Maracaibo, Venezuela, Truss KazuyukiHirao,KyotoUniversity,Sakyo-ku,Kyoto,Japan,Tribolumi- StructureswithPiezoelectricActuatorsandSensors nescence,ApplicationsinSensors ChristopherS.Brazel,UniversityofAlabama,Tuscaloosa,Alabama, Wesley P. Hoffman, Air Force Research Laboratory, AFRL/PRSM, BiomedicalSensing EdwardsAFB,CA,Microtubes W.A.Bullough,UniversityofSheffield,Sheffield,UK,FluidMachines J.VanHumbeeck,K.U.Leuven-MTM,KatholiekeUniversiteitLeuven, Heverlee,Belgium,ShapeMemoryAlloys,TypesandFunctionalities J. David Carlson, Lord Corporation, Cary, NC, Magnetorheological Fluids Emile H. Ishida,INAXCorporation,Minatomachi,Tokoname,Aichi, Japan, Soil-Ceramics (Earth), Self-Adjustment of Humidity and AditiChattopadhyay,ArizonaStateUniversity,Tempe,AZ,Adaptive Temperature Systems,RotaryWingApplications TsuguoIshihara,Hyogo,PrefecturalInstituteofIndustrialResearch PeterC.Chen,Alexandria,VA,ShipHealthMonitoring Suma-ku,Kobe,Japan,Triboluminescence,ApplicationsinSensors Seung-BokChoi,InhaUniversity,Inchon,Korea,VibrationControl YukioIto,ThePennsylvaniaStateUniversity,UniversityPark,PA,Ce- D.D.L. Chung, State University of New York at Buffalo, Buffalo, NY, ramics,Transducers Composites,IntrinsicallySmartStructures Bahram Jadidian, Rutgers University, Piscataway, NJ, Ceramics, Juan L. Cormenzana, ETSII/Polytechnic University of Madrid, PiezoelectricandElectrostrictive Madrid,Spain,ComputationalTechniquesForSmartMaterials AndreasJanshoff,Johannes-Gutenberg-Universita¨t,Mainz,Germany, Marcelo J. Dapino, Ohio State University, Columbus, OH, Magne- Biosensors,PorousSilicon tostrictiveMaterials T.L.Jordan,NASALangleyResearchCenter,Hampton,VA,Character- JerryA.Darsey,UniversityofArkansasatLittleRock,LittleRock,AR, izationofPiezoelectricCeramicMaterials NeuralNetworks GeorgeKavarnos,PennsylvaniaStateUniversity,UniversityPark,PA, KambizDianatkhah,LennoxIndustries,Carrollton,TX,Highways Poly(VinylideneFluoride)(PVDF)andItsCopolymers Mohamed Dokainish, McMaster University, Hamilton, Ontario, AndreiKholkin,RutgersUniversity,Piscataway,NJ,Ceramics,Piezo- Canada,TrussStructureswithPiezoelectricActuatorsandSensors electricandElectrostrictive SherryDraisey,GoodVibrationsEngineering,Ltd,Nobleton,Ontario, JasonS.Kiddy,Alexandria,VA,ShipHealthMonitoring Canada,PestControlApplications L.C.Klein,Rutgers—TheStateUniversityofNewJersey,Piscataway, Michael Drake, University of Dayton Research, Dayton, OH, Vibra- NJ,ElectrochromicSol-GelCoatings tionalDamping,DesignConsiderations T.S.Koko,MartecLimited,Halifax,NS,Canada,VibrationControlin ThomasD.Dziubla,DrexelUniversity,Philadelphia,PA,Gels ShipStructures HiroshiEda,IBARAKIUniversity,Nakanarusawa,Japan,GiantMag- TatsuroKosaka,OsakaCityUniversity,Sumiyoshi-ku,Osaka,Japan, netostrictiveMaterials CureandHealthMonitoring ShigenoriEgusa(Deceased),JapanAtomicEnergyResearchInstitute, JosephKost,Ben-GurionUniversityoftheNegev,BeerSheva,ISRAEL, Takasaki-shi,Gunma,Japan,Paints DrugDeliverySystems HaroldD.Eidson,SouthwesternUniversity,Georgetown,TXUSA,Fish D.Kranbuehl,CollegeofWilliamandMary,Williamsburg,Virginia, AquaticStudies FrequencyDependentElectromagneticSensing(FDEMS) ArthurJ.Epstein,TheOhioStateUniversity,Columbus,OH,Magnets, SmadarA.Lapidot,Ben-GurionUniversityoftheNegev,BeerSheva, Organic/Polymer Israel,DrugDeliverySystems JohnS.O.Evans,UniversityofDurham,Durham,UK,Thermorespon- ManuelLaso,ETSII/PolytechnicUniversityofMadrid,Madrid,Spain, siveInorganicMaterials ComputationalTechniquesForSmartMaterials FrankFilisko,UniversityofMichigan,AnnArbor,MI,Electrorheolog- Christine M. Lee, Unilever Research US Edgewater, NJ, Langmuir– icalMaterials BlodgettFilms ix P1:FYX/FYX P2:FYX/UKS QC:FYX/UKS T1:FYX PB091-FMI-Final January24,2002 15:33 x CONTRIBUTORS F.Rodriguez-Lence,EADS-CASAGetafe,Madrid,Spain,Intelligent Jeffrey Schoess, Honeywell Technology Center, Minneapolis, MN, ProcessingofMaterials(IPM) SensorArrayTechnology,Army MalgorzataM.Lencka,OLISystems,Inc.MorrisPlains,NJ,Intelligent JohannesSchweiger,EuropeanAeronauticDefenseandSpaceCom- SynthesisofSmartCeramicMaterials pany,MilitaryAircraftBusinessUnit,Muenchen,Germany,Aircraft T.W.Lewis,UniversityofWollongong,Wollongong,Australia,Conduc- Control,ApplicationsofSmartStructures tivePolymers K.H. Searles, Oregon Graduate Institute of Science and Technology, FangLi,TianjinUniversity,Tianjin,China,Chitosan-BasedGels Beaverton,OR,Composites,Survey AnthonyM.Lowman,DrexelUniversity,Philadelphia,PA,Gels Kenneth J. Shea, University of California, Irvine, CA, Molecularly DaoqiangLu,InstituteofTechnology,Atlanta,GA,ElectricallyConduc- ImprintedPolymers tiveAdhesivesforElectronicApplications SonghuaShi,InstituteofTechnology,Atlanta,GA,Flip-ChipApplica- ShijianLuo,GeorgiaInstituteofTechnology,Atlanta,GA,Conductive tions,UnderfillMaterials PolymerCompositeswithLargePositiveTemperatureCoefficients I.L. Skryabin, Queensland University of Technology, Brisbane Qld, L.A.P.Kane-Maguire,UniversityofWollongong,Wollongong,Australia, Windows ConductivePolymers N.Sponagle,DREA,Dartmouth,NS,Canada,VibrationControlinShip A.Maignan,LaboratoireCRISMAT,ISMRA,CAENCedex,FRANCE, Structures ColossalMagnetoresistiveMaterials R.Stalmans,Flexmet,Aarschot,Belgium,ShapeMemoryAlloys,Types ArumugamManthiram,TheUniversityofTexasatAustin,Austin,TX, andFunctionalities BatteryApplications DaveS.Steinberg,WestlakeVillage,CA,VibrationalAnalysis P. Masson, GAUS, University de Sherbrroke, Sherbrooke, Quebec, Canada,VibrationControlinShipStructures Claudia Steinem, Universita¨t Regensburg, Regensburg, Germany, Hideaki Matsubara, Atsuta-ku, Nagoya, Japan, Self-diagnosing of Biosensors,PorousSilicon DamageinCeramicsandLarge-ScaleStructures MorleyO.Stone,Wright-PattersonAirForceBase,Dayton,Ohio,Bio- J.P. Matthews, Queensland University of Technology, Brisbane Qld, mimeticElectromagneticDevices Windows J.Stringer,EPRI,PaloAlto,CA,PowerIndustryApplications B.Mattiasson,LundUniversity,Lund,Sweden,Polymers,Biotechno- A. Suleman, Instituto Superior Te´cnico, Lisbon, Portugal, Adaptive logyandMedicalApplications CompositeSystems:ModelingandApplications RaymondM.Measures,Ontario,Canada,FiberOptics,BraggGrating J. Szabo,DREA,Dartmouth,NS,Canada,VibrationControlinShip Sensors Structures RosaE.Mele´ndez,YaleUniversity,NewHaven,CT,Gelators,Organic DanielR.Talham,UniversityofFlorida,Gainesville,FL,Langmuir– J.M.Menendez,EADS-CASAGetafe,Madrid,Spain,IntelligentPro- BlodgettFilms cessingofMaterials(IPM) Katsuhisa Tanaka, Kyoto Institute of Technology, Sakyo-ku, Kyoto, ZhongyanMeng,ShanghaiUniversity,Shanghai,People’sRepublicof Japan,Triboluminescence,ApplicationsinSensors China,Actuators,PiezoelectricCeramic,FunctionalGradient MamiTanaka,TohokuUniversitySendai,Japan,BiomedicalApplica- Joel S. Miller, University of Utah, Salt Lake City, UT, Magnets, Or- tions ganic/Polymer;Spin-CrossoverMaterials BrianS.Thompson,MichiganStateUniversity,EastLansing,MI,Com- NezihMrad,InstituteforAerospaceResearch,Ottawa,Ontario,Canada, posites,FutureConcepts Optical Fiber Sensor Technology: Introduction and Evaluation and Application HarryTuller,MassachusettsInstituteofTechnology,Cambridge,MA, Electroceramics RajeshR.Naik,Wright-PattersonAirForceBase,Dayton,Ohio,Biomi- meticElectromagneticDevices KenjiUchino,ThePennsylvaniaStateUniversity,UniversityPark,PA, R.C.O’Handley,MassachusettsInstituteofTechnology,Cambridge,MA, Ceramics,Transducers Shape-MemoryAlloys,MagneticallyActivatedFerromagneticShape- EricUdd,BlueRoadResearch,Fairview,Oregon,Fiberoptics,Theory MemoryMaterials andApplications Yoshiki Okuhara, Atsuta-ku, Nagoya, Japan, Self-diagnosing of AnthonyFariaVaz,AppliedComputingEnterprisesInc.,Mississauga, DamageinCeramicsandLarge-scaleStructures Ontario,Canada&UniversityofWaterloo,Waterloo,Ontario,Canada, Christopher O. Oriakhi, Hewlett-Packard Company, Corvallis, OR, TrussStructureswithPiezoelectricActuatorsandSensors ChemicalIndicatingDevices A.G. Vedeshwar, University of Delhi, Delhi, India, Optical Storage Z. Ounaies, ICASE/NASA Langley Research Center, Hampton, VA, Films,ChalcogenideCompoundFilms CharacterizationofPiezoelectricCeramicMaterials;Polymers,Piezo- Aleksandra Vinogradov, Montana State University, Bozeman, MT, electric PiezoelectricityinPolymers ThomasJ.Pence,MichiganStateUniversity,EastLansing,MI,Shape- G.G.Wallace,UniversityofWollongong,Wollongong,Australia,Conduc- MemoryMaterials,Modeling tivePolymers Darryll J. Pines, University of Maryland, College Park, MD, Health LejunWang,InstituteofTechnology,Atlanta,GA,Flip-ChipApplica- Monitoring(Structural)UsingWaveDynamics tions,UnderfillMaterials JesseE.Purdy,SouthwesternUniversity,Georgetown,TX,FishAquatic Zhong L. Wang,GeorgiaInstituteofTechnology,Atlanta,GA,Smart Studies Perovskites JinhaoQiu,TohokuUniversitySendai,Japan,BiomedicalApplications PhillipG.Wapner,ERCInc.,EdwardsAFB,CA,Microtubes JohnRajadas,ArizonaStateUniversity,Tempe,AZ,AdaptiveSystems, RotaryWingApplications ZhongguoWei,DalianUniversityofTechnology,Dalian,China,Hybrid CarolynRice,Cordis-NDC,Fremont,CA,ShapeMemoryAlloys,Appli- Composites cations MichaelO.Wolf,TheUniversityofBritishColumbia,Vancouver,British R.H.Richman,DaedalusAssociates,MountainView,CA,PowerIndus- Columbia,Canada,Poly(P-Phenylenevinylene) tryApplications C.P. Wong, Georgia Institute of Technology, Atlanta, GA, Conductive RichardE.Riman,RutgersUniversity,Piscataway,NJ,IntelligentSyn- Polymer Composites with Large Positive Temperature Coefficients; thesisofSmartCeramicMaterials ElectricallyConductiveAdhesivesforElectronicApplications PaulRoss, Alexandria,VA,ShipHealthMonitoring C.P. Wong, Georgia Institute of Technology, Atlanta, GA, Flip-Chip Ahmad Safari, Rutgers University, Piscataway, NJ, Ceramics, Piezo- Applications,UnderfillMaterials electricandElectrostrictive Chao-NanXu,NationalInstituteofAdvancedIndustrialScienceand DanielS.Schodek,HarvardUniversity,Cambridge,MA,Architecture Technology(AIST),Tosu,Saga,Japan,Coatings P1:FYX/FYX P2:FYX/UKS QC:FYX/UKS T1:FYX PB091-FMI-Final January24,2002 15:33 CONTRIBUTORS xi Hiroaki Yanagida, University of Tokyo, Mutuno, Atsuta-ku, RudolfZentel,UniversityofMainz,Mainz,Germany,Polymers,Ferro- Nagoya, Japan, Environmental and People Applications; Ken- electricliquidCrystallineElastomers Materials; Self-diagnosing of Damage in Ceramics and Large-scale Q.M. Zhang, Pennsylvania State University, University Park, PA, Structures Poly(VinylideneFluoride)(PVDF)andItsCopolymers Dazhi Yang,DalianUniversityofTechnology,Dalian,China,Hybrid FengZhao,TianjinUniversity,Tianjin,China,Chitosan-BasedGels Composites LiboZhou,IBARAKIUniversity,Nakanarusawa,Japan,GiantMagne- Kang De Yao, Tianjin University, Tianjin, China, Chitosan-Based tostrictiveMaterials Gels XinhuaZhu,NanjingUniversity,Nanjing,People’sRepublicofChina, YuJiYin,TianjinUniversity,Tianjin,China,Chitosan-BasedGels Actuators,PiezoelectricCeramic,FunctionalGradient P1:FYX/FYX P2:FYX/UKS QC:FYX/UKS T1:FYX PB091-FMI-Final January24,2002 15:33 ENCYCLOPEDIAOFSMARTMATERIALS Editor-in-Chief CraigA.Rogers MelSchwartz JamesSirkis EditorialBoard CiDRACorporation AlokDas AirForceResearchLaboratory/VSD JunjiTani USAirForce TohokuUniversity MichaelL.Drake C.P.Wong UniversityofDaytonResearchInstitute GeorgiaInstituteofTechnology CarolineDry NaturalProcessDesign EditorialStaff SchoolofArchitecture Vice-President,STMBooks:JanetBailey UniversityofIllinois Vice-PresidentandPublisher:PaulaKepos LisaC.Klein Rutgers—TheStateUniversityofNewJersey ExecutiveEditor:JacquelineI.Kroschwitz S.EswarPrasad Director,BookProductionandManufacturing: SensorTechnologyLimited CamilleP.Carter ManagingEditor:ShirleyThomas BuddyD.Ratner UniversityofWashington EditorialAssistant:SurlanMurrell ii P1:FYX/FYX P2:FYX/UKS QC:FYX/UKS T1:FYX PB091-FMI-Final January24,2002 15:33 PREFACE TheEncyclopediaofSmartMaterials(ESM)containsthe environments,suchasathightemperaturesorincorrosive writings, thoughts, and work of many of the world’s fore- atmospheres. most people (scientists, educators, chemists, engineers, Automotive companies are investigating the use of laboratory and innovative practitioners) who work in the smart materials to control vehicles in panels, such as fieldofsmartmaterials.Theauthorsdiscusstheory,funda- damping vibration in roof panels, engine mounts, etc. mentals,fabrication,processing,application,applications Aerospaceapplicationsincludethetestingofaircraftand andusesoftheseveryspecial,andinsomeinstancesrare, satellitesforthestrenuousenvironmentsinwhichtheyare materials. used, both in the design phase and in use, as well as for Theterm“smartstructure”and“smartmaterials”are actuatorsordevicestoreacttoorcontrolvibrations,orto muchusedandabused. changetheshapeofstructures. ConsiderationofthelexicologyoftheEnglishlanguage Incivilengineering,especiallyinearthquake-pronear- shouldprovidesomeguidelines,althoughengineersoften eas,anumberofprojectsareunderwaytoinvestigatethe forget the dictionary and evolve a language of their own. useofmaterialssuchasactivecompositestoallowsupport Here is what the abbreviated Oxford English Dictionary systems of bridges (and the like) to handle such shocks says: withoutcatastrophicfailure.Thesematerialscanbeused (cid:1) inmanystructuresthathavetowithstandseverestresses, Smart:severeenoughtocausepain,sharp,vigorous, suchasoffshoreoilrigs,bridges,flyovers,andmanytypes lively,brisk...clever,ingenious,showingquickwitor ofbuildings. ingenuity...selfishly clever to the verge of dishon- The ESM will serve the rapidly expanding demand esty; for information on technological developments of smart (cid:1) Material:matterfromwhichathingismade; materialsanddevices.Inadditiontoinformationformanu- (cid:1) Structure: material configured to do mechanical facturersandassemblersofsmartmaterials,components, work...athingconstructed,complexwhole. systems, and structures, ESM is aimed at managers re- sponsible for technology development, research projects, The concept of “smart” or “intelligent” materials, sys- R&D programs, business development, and strategic tems, and structures has been around for many years. planning in the various industries that are considering A great deal of progress has been made recently in the thesetechnologies.Theseindustries,aswellasaerospace developmentofstructuresthatcontinuouslyandactively and automotive industries, include mass transit, marine, monitor and optimize themselves and their performance computer-relatedandotherelectronicequipment,aswell throughemulatingbiologicalsystemswiththeiradaptive as industrial equipment (including rotating machinery, capabilitiesandintegrateddesigns.Thefieldofsmartma- consumer goods, civil engineering, and medical applica- terialsismultidisciplinaryandinterdisciplinary,andthere tions). areanumberofenablingtechnologies—materials,control, Smart material and system developments are diversi- informationprocessing,sensing,actuation,anddamping— fied and have covered many fields, from medical and bio- and system integration across a wide range of industrial logicaltoelectronicandmechanical.Forexample,amanu- applications. facturerofspinalimplantsandprostheticcomponentshas Thediversetechnologiesthatmakeupthefieldofsmart produced a prosthetic device that dramatically improves materials and structures are at varying stages of com- themobilityoflegamputeesbycloselyrecreatinganatu- mercialization. Piezoelectric and electrostrictive ceram- ralgait. ics,piezoelectricpolymers,andfiber-opticsensorsystems Scientistsanddoctorshaveengineeredforamputeesa arewell-establishedcommercialtechnologies,whereasmi- solutionwithcontrollablemagneto-rheological(MR)tech- cromachinedelectromechanicalsystems(MEMS),magne- nologytosignificantlyimprovestability,gaitbalance,and tostrictivematerials,shapememoryalloys(SMA)andpoly- energyefficiencyforamputees.Combiningelectronicsand mers, and conductive polymers are in the early stages of software, the MR-enabled responsiveness of the device commercialization. The next wave of smart technologies is 20 times faster than that of the prior state-of-the-art willlikelyseethewiderintroductionofchromogenicmate- devices,andthereforeallowstheclosestneuralhumanre- rialsandsystems,electro-andmagneto-rheologicalfluids, actiontimeofmovementfortheuser.Thenewlydesigned andbiometricpolymersandgels. prostheticdevicethereforemorecloselymimicstheprocess Piezoelectric transducers are widely used in automo- ofnaturalthoughtandlocomotionthanearlierprosthetic tive, aerospace, and other industries to measure vibra- designs. tionandshock,includingmonitoringofmachinerysuchas Another example is the single-axis accelerometer/ pumpsandturbomachinery,andnoiseandvibrationcon- sensor technology, now available in the very low-profile, trol. MEMS sensors are starting to be used where they surface-mount LCC-8 package. This ceramic package al- offer advantages over current technologies, particularly lows users to surface-mount the state-of-the-art MEMS- forstaticorlowfrequencymeasurements.Fiber-opticsys- based sensors. Through utilization of this standard temsareincreasinglybeingusedinhazardousordifficult packaging profile, one is now able to use the lowest v P1:FYX/FYX P2:FYX/UKS QC:FYX/UKS T1:FYX PB091-FMI-Final January24,2002 15:33 vi PREFACE profile, smallest surface-mountable accelerometer/sensor lowermanufacturingcosts,andoperationatspeedsupto currently available. This sensor/accelerometer product 1000timeshigherthansensorsfabricatedfrommagnetic technologyofferson-chipmixedsignalprocessing,MEMS materials. sensor, and full flexibility in circuit integration on a sin- Envisioned are numerous other applications of EMR gle chip. Features of the sensor itself include continuous sensors in areas such as consumer electronics, wireless self-test as well as both ratiometric and absolute output. telephones, and automobiles, which utilize magnetic sen- Othersensorattributesincludehighlong-termreliability sors in their products. Future EMR sensors will deliver resultingfromnomovingparts,whicheliminatesstriction dramatically greater sensitivity, and will be considerably andtap-sensitive/stickyqualityissues. lessexpensivetoproduce. Application areas include automotive, computer de- Another recent development is an infrared (IR) gas vices, gaming, industrial control, event detection, as well sensor based on MEMS manufacturing techniques. The asmedicalandhomeappliances.Inhigh-speedtrainstrav- MEMS IR gas SensorChip will be sensitive enough to eling at 200 km/h, a droning or rumbling is often heard compete with larger, more complex gas sensors, but in- bypassengers.Tinyimperfectionsintheroundnessofthe expensiveenoughtopenetratemass-marketapplications. wheelsgeneratevibrationsinthetrainthatarethesource MEMS technology should simplify the construction of IR ofthisnoise.Inadditiontoincreasingthenoiselevel,these gas sensors by integrating all the active functions onto a imperfectwheelsleadtoacceleratedmaterialfatigue.An singleintegratedcircuit. effective countermeasure is the use of actively controlled Tiny electronic devices called “smart dust,” which are dampers. Here a mechanical concept—a specific counter- designedtocapturelargeamountsofdataabouttheirsur- weight combined with an adjustable sprint and a power- roundings while floating in the air, have been developed. fulforce-actuator—iscoupledwithelectroniccomponents. Theprojectcouldleadtowidearrayofapplications,from Simulationsshowwhatweightsshouldbeappliedatwhich following enemy troop movements and detecting missiles pointsonthewheeltooptimallyoffsetthevibrations.Sen- beforelaunchtodetectingtoxicchemicalsintheenviron- sorsdetectthedegreeofvibration,whichvarieswiththe mentsandmonitoringweatherpatterns.The“SmartDust” train’sspeed.Theelectronicregulatorthenadjuststheten- project aims to create massively distributed sensor net- sioninthespringsandpreciselysynchronizesthetiming works, consisting of hundreds to many thousands of sen- and the location of the counter-vibration as needed. Un- sornodes,andoneormoreinterrogatorstoquerythenet- desirablevibrationenergyisdiffused,andthewheelrolls work and read out sensor data. The sensor nodes will be quietly and smoothly. In this way, wear on the wheels is completely autonomous, and quite small. Each node will considerablyreduced. containasensor,electronics,powersupply,andcommuni- The prospects of minimized material fatigue, a higher cationhardware,allinavolumeof1mm3. leveloftravelcomfortforpassengers,andlowernoiseemis- The idea behind “smart dust” is to pack sophisticated sions are compelling reasons for continuing this develop- sensors, tiny computers, and wireless communications ment. onto minuscule “motes” of silicon that are light enough Novel composite materials discovered by researchers to remain suspended in air for hours at a time. As the exhibit dramatically high levels of magneto-resistance, motesdriftonthewind,theycanmonitortheenvironment and have the potential to significantly increase the per- for light, sound, temperature, chemical composition, and formance of magnetic sensors used in a wide variety of awiderangeofotherinformation,andtransmitthedata important technologies, as well as dramatically increase backtoadistantbasestation.Eachmoteofsmartdustis datastorageinmagneticdiskdrives.Thenewlydeveloped composedofanumberofMEMS,wiredtogethertoforma extraordinarymagnetoresistance(EMR)materialscanbe simple computer. Each mote contains a solar cell to gen- applied in the read heads of disk drives, which, together erate power, sensors that can be programmed to look for with the write heads and disk materials, determine the specificinformation,atinycomputerthatcanstorethein- overallcapacity,speed,andefficiencyofmagneticrecord- formationandsortoutwhichdataareworthreporting,and ingandstoragedevices.EMRcompositematerialswillbe acommunicatorthatenablesthemotetobeinterrogated abletorespondupto1000timesfasterthanthematerials bythebaseunit.Thegoalsaretoexplorethefundamental usedinconventionalreadheads,thussignificantlyadvanc- limitstothesizeofautonomoussensorplatforms,andthe ingmagneticstoragetechnologyandbringingtheindustry newapplicationswhichbecomepossiblewhenautonomous closertoitslong-rangetargetofadiskdrivethatwillstore sensorscanbemadeonamillimeterscale. aterabit(1000gigabits)ofdatapersquareinch. Laserlightcanquicklyandaccuratelyflexfluid-swollen The new materials are composites of nonmagnetic, plasticscalledpolymergels.Thesepotentialpolymermus- semiconducting,andmetalliccomponents,andexhibitan cles could be used to power robot arms, because they ex- EMR at room temperature of the order of 1,000,000% at pand and contract when stimulated by heat or certain highfields.Moreimportantly,thenewmaterialsgivehigh chemicals. Gel/laser combinations could find applications valuesofroom-temperaturemagnetoresistanceatlowand rangingfromactuatorstosensors,andpreciselytargeted moderate fields. Embedding a highly conducting meal, laser light could allow very specific shape changes. Poly- such as gold, into a thin disc of a nonmagnetic semicon- mer gels have been made to shrink and swell in a frac- ductor,suchasindiumantimonide,booststhemagnetore- tion of a second. Targeting laser light at the center of a sistance,andoffersanumberofotheradvantages.These cylindermadeof N-isopropylacrylamidepinchestogether includeveryhighthermalstability,thepotentialformuch the tube’s edges to form a dumb-bell shape. The cylinder P1:FYX/FYX P2:FYX/UKS QC:FYX/UKS T1:FYX PB091-FMI-Final January24,2002 15:33 PREFACE vii returns to its original shape when the laser is switched ofend-usersectorsindustries.Notonlyaretheorganiza- off. This movement is possible because in polymer gels, tions involved in research and preliminary development the attractive and repulsive forces between neighboring keentogrowtheirmarketsinordertocapitalizeontheir molecules are finely balanced. Small chemical and phys- R&Dinvestment,butothertechnologicallyawarecompa- ical changes can disrupt this balance, making the whole niesarealertedtonewbusinessopportunitiesfortheirown polymer to violently expand or collapse. Also it has been productsandskillsets. shownthatradiationforcesfromfocusedlaserlightdisturb The readers of this ESM will appreciate the efforts of this delicate equilibrium, and induce a reversible phase a multitude of researchers, academia, and industry peo- transition. Repeated cycling did not change the thresh- ple who have contributed to this endeavor. The editor is oldsofshrinkageandexpansion;also,theshrinkingisnot thankful to Dr. James Harvey and Mr. Arthur Biderman causedbytemperatureincreasesaccompanyingthelaser fortheirinitialeffortsingettingtheprojectofftheground radiation. andmovingtheprogram. Thefieldofsmartmaterialsoffersenormouspotential forrapidintroductionandimplementationinawiderange MelSchwartz Table of Contents Preface vii Actuators to Architecture Actuators, Piezoelectric Ceramic, Functional Gradient 1 Introduction 1 Actuators 1 Piezoelectric Ceramics 2 Functionally Graded Materials 7 Summary 1 Acknowledgments 14 Bibliography 15 Adaptive Composite Systems: Modeling and Applications 16 Introduction 16 Actuators and Sensors 16 Adaptive Composite Modeling 18 Applications 20 Concluding Remarks 25 Bibliography 25 Adaptive Systems, Rotary Wing Applications 28 Introduction 28 Active / Passive Control of Structural Response 29 Passive / Active Control of Damping 30 Trailing Edge Flaps 32 Servoflap 34 Active Twist 35 Modeling 37 Future Directions 39 Bibliography 40 Aircraft Control, Applications of Smart Structures 42 Introduction 42 Smart Structures for Flight in Nature 43 General Remarks on Aspects of Aircraft Design 44 Traditional Active or Adaptive Aircraft Control Concepts 44 The Range of Active Structures and Materials Applications in Aeronautics 45 Aircraft Structures 45 Smart Materials for Active Structures 47 The Role of Aeroelasticity 47 Overview of Smart Structural Concepts for Aircraft Control 50 Quality of the Deformations 54 Achievable Amount of Deformation and Effectiveness of Different Active Aeroelastic Concepts 55 Need for Analyzing and Optimizing the Design of Active Structural Concepts 56 Summary, Conclusions, and Predictions 57 Bibliography 58 This page has been reformatted by Knovel for easier navigation.