ebook img

Emerging complexity of the HuD/ELAVl4 gene; implications for neuronal development, function, and dysfunction. PDF

2013·0.47 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Emerging complexity of the HuD/ELAVl4 gene; implications for neuronal development, function, and dysfunction.

REVIEW Emerging complexity of the HuD/ELAVl4 gene; implications for neuronal development, function, and dysfunction LUCASM. BRONICKI and BERNARDJ. JASMIN1 DepartmentofCellularandMolecularMedicine,FacultyofMedicine,UniversityofOttawa,Ottawa,Ontario,CanadaK1H8M5 ABSTRACT Precise control of messenger RNA (mRNA) processing and abundance areincreasingly being recognized as critical for proper spatiotemporal gene expression, particularly in neurons. These regulatory events are governed by a large number of trans- actingfactorsfoundinneurons,mostnotablyRNA-bindingproteins(RBPs)andmicro-RNAs(miRs),whichbindtospecificcis- acting elements or structures within mRNAs. Through this binding mechanism, trans-acting factors, particularly RBPs, control all aspects of mRNA metabolism, ranging from altering the transcription rate to mediating mRNA degradation. In this context the best-characterized neuronal RBP, the Hu/ELAVl family member HuD, is emerging as a key component in multiple regulatory processes—including pre-mRNA processing, mRNA stability, and translation—governing the fate of a substantial amount of neuronal mRNAs. Through its ability to regulate mRNA metabolism of diverse groups of functionallysimilar genes, HuDplaysimportant roles inneuronal developmentandfunction. Furthermore, compelling evidenceindicates supplementary roles for HuD in neuronal plasticity, in particular, recovery from axonal injury, learning and memory, and multiple neurological diseases. The purpose of this review is to provide a detailed overview of the current knowledge surrounding the expression and roles of HuD in the nervous system. Additionally, we outline the present understanding of the molecular mechanismspresidingoverthelocalization,abundance,andfunctionofHuDinneurons. Keywords: HuD/ELAVl4;RNA-bindingprotein;mRNAmetabolism;post-transcriptionalregulation INTRODUCTION post-transcriptional stages, thereby effectively coupling dis- tinct regulatory events during mRNA metabolism (Dahan TheflowofgeneticinformationfromDNAtoproteinrequires etal.2011).ThecoordinationofgroupsofmRNAsalongsuc- numerousstagesofintricatecontrol,withamyriadofregula- cessiveprocessingandregulatoryeventsformedthepremiseof toryeventsoccurringbetweentranscriptionandtranslation. theRNAoperontheory,whichhelpstoclarifytheorganiza- Theseregulatoryeventsareorchestratedbytrans-actingfac- tion and dynamics of post-transcriptional networks (Keene tors,agroupofregulatorymoleculescomprisingRNA-bind- 2007).Thesenetworks,collectivelyknownastheribonome, ingproteins(RBPs)andmultipleclassesofnoncodingRNAs confernumerousbenefitstocellsincludingincreasingprotein (ncRNAs),thataggregateontomRNAsandformmessenger diversityfromafixednumberofgenes,accuratespatialand ribonucleoprotein (mRNP) complexes (Lukong et al. 2008; temporalgeneexpression,andrapidmodificationofprotein Carninci2010).Thepasttwodecadeshaveseentremendous levels(MansfieldandKeene2009). advancesinthediscoveryofnoveltypesoftrans-actingfactors The advantages convened by post-transcriptional regu- andprovidedagreaterunderstandingoftheirdiverseandvital lation are particularly necessary in neurons since these cells rolesinmRNAmetabolism.Bybindingtocis-actingelements containcomplexcellulararchitectureduetoextensiveneurite and/or structures in mRNAs, trans-acting factors control a branching. In addition to playing critical roles in neuronal broadspectrumofprocessesthatrangefromalternativesplic- development, maintenance, and function, the importance ingandpolyadenylationinthenucleustolocalization,stabili- oftheseregulatoryeventsisfurtherhighlightedbythegrow- zation,andtranslationinthecytoplasm(CarmodyandWente ingnumberofdiseases associatedwithmutationsofcertain 2009; Licatalosi and Darnell 2010; Vazquez-Pianzola and mRNAsordysregulationofRBPsorncRNAs,notablysmall Suter2012;WuandBrewer2012).Sometrans-actingfactors, ncRNAs termed micro-RNAs (miRs), that associate with in particular, RBPs, have been shown to transition mRNAs them(Lukongetal.2008;Cooperetal.2009;Esteller2011; encoding proteins with similar functions through different Im and Kenny 2012). For example, defects affecting the normal expression of mRNAs and/or function of RBPs are 1Correspondingauthor centralintheetiologyandpathogenesisofabroadspectrum [email protected] of neuronal diseases, including the neurodegenerative dis- Article is online at http://www.rnajournal.org/cgi/doi/10.1261/rna. 039164.113. ordersfragileXsyndrome,fragileXtremorataxiasyndrome RNA19:1019–1037;©2013;PublishedbyColdSpringHarborLaboratoryPressfortheRNASociety 1019 BronickiandJasmin (LiandJin2012),spinalmuscularatrophy TABLE 1. Select AU-rich element targeting RNA-binding proteins in neurons and their (SMA)(Fallinietal.2012b),Huntington’s effectsonmRNAmetabolism disease (Krzyzosiak et al. 2012), and RNA-bindingprotein EffectonmRNA amyotrophiclateralsclerosis(ALS)(Fie- sel and Kahle 2011; Strong and Vol- HuB/ELAVl2,HuC/ELAVl3, Localtranscriptionrateenhancement(Zhouetal.2011) kening2011). HuD/ELAVl4 Alternativesplicing(Zhuetal.2006,2008) The nervous system encompasses an Alternativepolyadenylation(Zhuetal.2006) Nuclearexport(Kasashimaetal.1999) extensiveamountofRBPs,manyofwhich Stabilization(Jainetal.1997;Andersonetal.2000; arecriticalforneuronaldevelopment.In Mobaraketal.2000) support of this idea, one genome-wide Cytoplasmictransportation(Aronovetal.2002) screenfoundthat85%ofthe380RBPsex- Translationrepression(Kullmannetal.2002) aminedwereexpressedintheembryonic Translationenhancement(Anticetal.1999;Kullmann etal.2002;Fukaoetal.2009) (E13.5) and early postnatal (P0) mouse HuR/ELAVl1 Localtranscriptionrateenhancement(Zhouetal.2011) brain(McKeeetal.2005).Mostnotable Alternativesplicing(Izquierdo2008) arethewell-describedRBPsthatregulate Alternativepolyadenylation(Zhuetal.2006) variousstagesofmRNAmetabolismand Nuclearexport(FanandSteitz1998) areimportantforproperneuronaldiffer- Stabilization(FanandSteitz1998;Levyetal.1998;Peng etal.1998) entiationand/or function,such as buty- Destabilization(Kimetal.2009) rate-response factor 1 (BRF1) (Sanduja Translationrepression(Kullmannetal.2002) etal.2011),neuro-oncologicventralanti- Translationenhancement(Mazan-Mamczarzetal.2003; gens 1/2 (NOVA 1/2) (Darnell 2006), A Mengetal.2005) +U binding factor 1 (AUF1) (Gratacos AU-richelementbinding Mostlydestabilization(BrewerandRoss1989;Brewer factor1(AUF1;p37,p40, 1991;Zhangetal.1993) and Brewer 2010), tristetraprolin (TTP) p42,andp45)/hnRNPD Translationenhancement(Liaoetal.2007) (Sandujaetal.2011),Khomologysplic- Khomology-typesplicing Transcriptionenhancement(Davis-Smythetal.1996) ing regulatory protein (KSRP) (Briata regulatoryprotein(KSRP) Alternativesplicing(Minetal.1997) etal.2012),andHu/embryoniclethalab- Destabilization(Chenetal.2001;Gherzietal.2004) normal vision-like (ELAVl) (Table 1; Cytoplasmictransport(Sneeetal.2002) Tristetraprolin(TTP) Transcriptionrepression(Liangetal.2009;Schichletal. Pascale et al. 2008). The majority of 2009) RBPscanbeclusteredaccordingtotheir Destabilization(Carballoetal.1998) similar molecular functions, such as Translationrepression(PfeifferandBrooks2012;Qietal. those belonging to the translation and 2012;Tiedjeetal.2012) turnover regulatory (TTR)-RBP group. Butyrate-responsefactor-1 3′Endprocessinginhibition(Desroches-Castanetal. (BRF1) 2011) Althoughnotlimitedtothesefunctions, Destabilization(Stoecklinetal.2002) TTR-RBPsareinvolvedinstabilizing/de- TINO/Mex3D/RKHD1 Destabilization(Donninietal.2004) stabilizing mRNAs and promoting/ Polyadenylate-bindingprotein- Stabilization(Onestoetal.2004) inhibitingtranslation,andcomprisevari- interactingprotein2(PAIP2) Translationrepression(Khaleghpouretal.2001) ous members, including TTP, KSRP, CUG-bindingprotein1 Alternativesplicing(Philipsetal.1998) (CUG-BP1) Destabilization(Moraesetal.2006) AUF, and Hu/ELAVl proteins (Table 1; Translationenhancement(Timchenkoetal.1999) Pullmann et al. 2007). Among all the CUG-BP2 Alternativesplicing(Zhangetal.2002) RBPsexpressedinneurons,thebestchar- RNAediting(Anantetal.2001) acterized is the predominantly neuron- Stabilization(Mukhopadhyayetal.2003) specific Hu member HuD. This review Translationrepression(Mukhopadhyayetal.2003) Nucleolin Transcriptionrepression(Yangetal.1994) will focus on the multifunctional roles Stabilization(Chenetal.2000) anddiverseregulatoryeventscontrolling Destabilization(ZaidiandMalter1995) theexpressionofHuDinneurons. Translationrepression(Takagietal.2005) Translationenhancement(Fahlingetal.2005) THE HuD GENE, mRNA, AND PROTEIN RNA-binding protein 9 (rbp9) genes. These four Drosophila ThenameofHu/ELAVlgenesoriginatedfromthefirstinitials genesencodeRBPsthatdisplaysimilarstructuresandoverlap- (Hu)ofthepatientinwhichtheywereidentifiedandtheclose pingfunctionsinneuronstoHuD(Belletal.1988;Robinow relation of these genes to the Drosophila embryonic lethal etal.1988;KimandBaker1993;SamsonandChalvet2003; abnormal vision (elav) gene (Graus et al. 1987; Okano and Colombritaetal.2013).Inmammals,Huproteinswerefirst Darnell1997).Inaddition,Hugenesarealsocloselyrelated discoveredasantigenstargetedbyauto-antibodiesinpatients totheDrosophilasexlethal(sxl),foundinneurons(fne),and with the neurological syndrome paraneoplastic encephalo- 1020 RNA,Vol.19,No.8 Expression,function,andregulationofHuD myelitis and sensory neuropathy (PEM/SN) (Dalmau et al. A ~2.3kb ~23kb ~13kb ~1.6kb 1990, 1992). This syndrome arises in a small subset of a a1 a2 a3a4 b c c1 2 3 4 5 67 8 patients when theectopicexpression ofHu proteins in cer- ~59kb~1.8kb~0.4kb~0.3kb~0.4kb ~12kb ~25kb ~1.5kb ~3kb tain types of cancers, typically small cell lung carcinomas B (SCLCs), provokes an autoimmune attack on the nervous a system. a1 67 a2 OutofthefourHumembers,HuDwasthefirsttobecloned a3 2 3 4 5 6 8 AAAAA and characterized, followed by HuC/ELAVl3, HuB/ELAVl2, a4 andHuR/ELAVl1 (Szaboetal.1991;King etal.1994;Sakai b c etal.1994;Maetal.1996).TheexpressionofthreeHumem- c c1 bers—HuB, HuC and HuD—is predominantly restricted toneurons(nELAVs),whileHuRisfoundinmostcelltypes C PP P P P PPMe P P (Szabo et al. 1991; King et al. 1994; Good 1995; Ma et al. RRM1 RRM2 67 RRM3 HuDpro 1996;OkanoandDarnell1997).Inaddition, nELAVsshare a higher degree of amino acid sequence identity (>80%) RRM1 RRM2 6 RRM3 HuD with each other compared to HuR (72.5%–73.6%) (Okano RRM1 RRM2 RRM3 HuDmex andDarnell1997).Despitethehighdegreeofsequenceiden- tity between nELAVs, variation of amino acid composition FIGURE1. OrganizationofthemouseHuDgene,mRNA,andprotein. inkeyregions,particularlytheN-terminalandlinkerregions (A)MouseHuDgeneorganizationwithnoncodingexonsdepictedas (seebelow),andspatiotemporalexpressionsuggestthatHuD orangerectangles,codingexonsasgrayandgreenrectangles,andin- trons as black lines. (B) Alternative splicing/processing of HuD pre- carriesoutsomeuniquerolesandissubjectedtopartiallydis- mRNAproducesdifferentHuDisoforms.5′/3′UTRsandcodingexons tinctregulation(OkanoandDarnell1997;Claytonetal.1998; arerepresentedbyorangeandgrayrectangles,respectively.Greenrect- Hambardzumyanetal.2009). anglesdenotealternativelysplicedexonsnearthe3′endofthegene.Also Overall,theHuDgeneiswellconservedamonghigherver- shown are the approximate locations of the Hu/ELAVl (white star), miR-375(blackstar),andputativeARE(graystars)bindingsites.(C) tebratesandislocatedonchromosome1inhumansandchro- ThethreemajorHuDproteinvariantsfoundinneuronswithposition mosome 4 in mice (Fig. 1A). The human and mouse HuD ofRRMs(gray)andaminoacidextensionsinthelinkerregion(green) genespans∼146kbofDNAandisdividedintosevencoding shown.“P”and“Me”indicateapproximatelocationsofserine/threo- exons(E2toE8)thatencompass∼44kbofDNA(Sekidoetal. nine and arginine residues that are subjected to phosphorylation by ′ PKCandmethylationbyCARM1,respectively. 1994; Inman et al. 1998). For several years, the 5 region of HuDwasthoughttocontainthreepresumablyuntranslated exon1variants(termedE1a,E1b,andE1c)thatarealterna- andE7encodethelinkerregion(Inmanetal.1998).TheHuD tively spliced to the 5′ end of exon 2 (Inman et al. 1998). linkerregioncontainsmultipleresiduesthatarepost-transla- Recent findings in our laboratory, however, have identified tionally modified and housesthe nuclear export (NES) and the expression of five additional HuD E1 variants, resulting putativenuclearlocalization(NLS)signals(Kasashimaetal. in a total of eight (Fig. 1A,B; Bronicki et al. 2012). We also 1999). found that most E1 variants house an in-frame methionine HuD utilizes its RRMs to recognize and bind specific codon(withtheexceptionofE1a4,sinceitharborstwostop targetmRNAs.DeletionandmutationalanalysisoftheHuD codons downstream from the AUG), suggesting that they proteinrevealedthatthefirsttwoRRMsbindtothecis-acting ′ mayencodealternateHuDNtermini. elements,typicallyinthe3 UTR,whilethethirdRRMinter- Inadditiontothe5′ end,HuDpre-mRNAissubjectedto actswiththepoly(A)tailoftranscriptsandstabilizestheRBP- alternativesplicingofexons(E)6and7,resultinginthreead- mRNAcomplex(Chungetal.1996,1997;Maetal.1997;Ross ditional transcript isoforms (HuD, HuD , and HuD ) etal.1997;Andersonetal.2000;Parketal.2000;Wangand mex pro (Fig. 1B,C), two of which are predominantly expressed in TanakaHall2001;Beckel-Mitcheneretal.2002).Bindingto thepostnatalmousebrain(HuDandHuD )(Inmanetal. thepoly(A)tailseemstodependonthetaillength,sinceresults pro 1998). The combinatorial complexity of HuD alternative 5′ from in vitro binding assays demonstrated that the longer and3′exonsmayproduceupto24differentmRNAvariants. thepoly(A)tail,thehighertheaffinityofHuproteinbinding TheHuDprotein,likeallHumembers,hasamolecularweight toitstargetmRNA(Beckel-Mitcheneretal.2002).Another of ∼40 kDa and contains three RNA recognition motifs functionofthethirdRRMofHuDinvolvesinteractingwith (RRMs)withalinkerregionseparatingthesecondandthird other proteins, including homo- and hetero-multimerizing RRM (Fig. 1C; Good 1995; Liu et al. 1995; Okano and withHumembers(Kasashimaetal.2002).BoththeDroso- Darnell1997).TheRRMisthemostabundant(foundinup phila ELAV and other mammalian Hu proteins have also to1%ofhumangenes)andwell-characterizedRNA-binding beenshowntoformhomo-multimersontargetmRNAs,sug- domain,composedof∼90aminoacids(Cleryetal.2008).In gestingthatcomplexformationisanevolutionarilyconserved theHuDgenelocus,E2andE3,E4andE5,andE8encodethe mechanism necessary forefficient function of Hu members threeRRMs,respectively,whereasthealternativelysplicedE6 (Levine et al. 1993; Gao and Keene 1996; Kasashima et al. www.rnajournal.org 1021 BronickiandJasmin 2002;Devauxetal.2006;Fialcowitz-Whiteetal.2007;Toba 2011;Fallinietal.2012b).Inadditiontobeingexpressedin andWhite2008). variousneuronalsubpopulationsintheCNSandPNS,quan- titativeRT-PCRandWesternblotanalysisrevealedrelatively minor,althoughsignificant,HuDmRNAandproteinlevels TEMPORALAND SPATIALEXPRESSION OF HuD in several nonneuronal tissues including lung, testes, liver, Converging findings suggest that HuD is one of the earliest pituitary gland, pancreatic βcells, and fibercells of the lens markersoftheneuronalphenotype(Good1995;Okanoand (Abdelmohsenetal.2010;Biteletal.2010;Leeetal.2012). Darnell 1997; Wakamatsu and Weston 1997; Hambard- Theserecentfindingsindicatethat,inparalleltoitskeyfunc- zumyanetal.2009).Multiplelaboratorieshavedemonstrated tionsinneurons,HuDlikelyplaysimportantrolesinseveral viaNorthernblotsandquantitativeRT-PCRthatHuDmRNA othernonneuronalcelltypes. levels are detectable by day 10 of mouse and rat embryonic brain development, peak at E16, and slowly decline until Cis-ELEMENTAND TARGET mRNAs OF HuD birth (Clayton et al. 1998; Hambardzumyan et al. 2009; Abdelmohsen et al. 2010). This temporal pattern of mRNA The most extensively studied HuD-targeted cis-acting ele- expression is similar to that of HuB and HuC, although ments are adenosine/uridine (A/U)-rich elements (AREs) ′ there is some evidence that the relative abundance of each commonly found in the 3 UTR of almost 10% of cellular nELAVmembervariesatdifferenttimepointsofdevelopment mRNAs(Haleesetal.2008).AREsusuallyrangefrom50to (Good 1995; Okano and Darnell 1997; Hambardzumyan 150ntinsizeand,astheirnameindicates,consistofA-and etal.2009). U-richstretches.Thesemotifsvaryconsiderablyinsequence, InsituhybridizationanalysesofnELAVexpressioninthe andforsimplification,theyarecategorizedintothreemajor mousebrainatday14ofembryogenesis(E14)haverevealed classes;classIcontainsonetothreeAUUUApentamersina that the spatial expression of HuD mRNA is also partially U-richcontext,classIIincludesoverlappingUUAUUUAUU unique compared to HuB and HuC (Okano and Darnell nonamers,andclassIIIconsistsofU-richsequenceswithout 1997), thus further supporting the notion that HuD is not AUUUApentamers(Bakheetetal.2003,2006).AREmotifs completelyfunctionallyredundant.Inthedevelopingmouse are typically found in short-lived transcripts encoding pro- andratcerebralcortex,HuDmRNAispresentinproliferating teins with diverse functions such as cellular proliferation, neuronalstem/progenitorcellsintheventricularzone,neuro- differentiation, transcription, RNA metabolism, inflamma- blastsmigratingintheintermediatezones,andterminallydif- tion,andstress-response(Bakheetetal.2006;Khabar2010). ferentiatingneuronsinthecorticalplate(OkanoandDarnell TheseelementsaffectthestabilityofmRNAsbyservingastar- 1997;Claytonetal.1998).HuDtranscriptsarealsopresentin getsitesforARE-bindingRBP(s),alsoknownasAU-binding severalregionsofthedevelopinghippocampalformation,ol- proteins (AUBPs). Out of the roughly 20 currently known factorybulb,retinaandspinalcord,suchassensoryandmo- AUBPs,themajorityareexpressedinneuronsandpromote tor neurons (Okano and Darnell 1997; Clayton et al. 1998; mRNAdecayincluding,forexample,AUF1,TTP,andKSRP Bronickietal.2012).Intheadultmouseandrodentnervous (Table 1; Wu and Brewer 2012). Nevertheless, there are a system,expressionofHuDmRNAismostlyrestrictedtospe- few known AUBPs that enhance mRNA stability, with Hu cific neuronal populations, including large pyramidal-like proteins being the most notable (Brennan and Steitz 2001; neurons in layer V of the neocortex and cerebellar cortex HinmanandLou2008;Pascaleetal.2008). (Purkinje cells), the four Cornu Amonis (CA1-4) regions of ThecrystalstructureofHuDboundtoc-fosortumorne- the hippocampus, dorsal root ganglia, and motor neurons crosis factor α (TNFα) mRNAs illustrates that specific resi- inthespinalcord,mitralcellsintheolfactorybulb,ganglion dues within its first two RRMs preferentially bind the and internal plexiform layers in the retina, and enteric ner- pyrimidine-rich X-U/C-U-X-X-U/C?-U-U/C consensus se- vous system neurons (Okano and Darnell 1997; Clayton quencewherethe“?”denotes ambiguity whetheracytosine etal.1998;D’Autreauxetal.2011). in this position is tolerated (Wang and Tanaka Hall 2001). At the subcellular level, HuD is predominantlyexpressed Thisreportalsoshowedthattheaminoacidresiduesinteract- in the cytoplasm, with minor levels detected in the nucleus ing with RNA nucleotides arewell conserved among all Hu (Kasashimaetal.1999).Indevelopingneurons,HuDisfound proteins and the Drosophila ELAV protein. Several studies ingrowthconesofextendingneurites,whileinmatureneu- haveutilizedinvitroandinvivoapproachessuchasRNAelec- rons it is present in axons and dendrites, including at the trophoreticmobilityshiftassays(REMSAs)andRNA-immu- pre-andpost-neuriteterminals,respectively(Aranda-Abreu noprecipitation (IP), respectively, to demonstrate that HuD etal.1999;Aronovetal.2002).Closerinspectionofintraneu- binds to ARE sequences in mRNAs (Liu et al. 1995; Chung ronalcompartmentsrevealedthatHuDislocalizedtogran- et al. 1996, 1997; Deschenes-Furry et al. 2003; Ratti et al. ules, along with other proteins, such as kinesin-like protein 2008).However,itisimportanttopointoutthatthepresence (KIF3A)andsurvivalofmotoneuron(SMN),withinthecyto- ofanAUUUAsequenceisnotalwayssufficientforHuDbind- plasm and neurites (Aronov et al. 2002; Smith et al. 2004; ing,indicatingthatHuDdisplayspreferenceforspecificARE Tiruchinapallietal.2008a,b;Hubersetal.2010;Aktenetal. motifs(Tobaetal.2002). 1022 RNA,Vol.19,No.8 Expression,function,andregulationofHuD Interestingly,amicroarrayscreenofHuD-boundmRNAs rest(p21cip1/waf1)(Josephetal.1998),neuroblastproliferation found that less than half of its targets contain an ARE (MSI-1) (Ratti et al. 2006), neuron migration (MARCKS) (Bolognani et al. 2010). Instead, the investigators identified (Wein et al. 2003), neurite extension ([GAP-43] [Chung three novel consensus motifs that are present in ∼80% of et al. 1997], Tau [Aranda-Abreu et al. 1999], and AChE HuD-targeted mRNAs expressed in the mouse forebrain. [Cuadradoetal.2003;Deschenes-Furryetal.2006;Bronicki ThefirstmotifconsistsofC-andU-richstretches,withaprev- and Jasmin 2012]), synapse formation (NOVA-1) (Ratti ′ ′ alence of the former, and is located mostly in the 5 and 3 etal.2008),andneuronalgrowthandsurvival(NGF,BDNF, UTRs of mRNAs. The second and third motifs are U-rich andNT-3)(Table2;LimandAlkon2012). with interspersed guanines (G) or adenosines (A), respec- InadditiontotheseHuD-targetedmRNAs,threeindepen- tively. These latter two motifs are predominantly found in dent high-throughput studies have unravelled functionally ′ ′ the3 UTRandoccasionallyinthe5 UTRandcodingregions diverseclassesofgenesregulatedbyHuD.Oneofthesestud- ofmRNAs.Recenthigh-throughputanalyses,usingvariations ies purified HuD-containing mRNP complexes from HuD of cross-linking and immunoprecipitation (CLIP) such as overexpressing (HuD-Tg) adult mouse forebrains and sub- Photoactivatable-Ribonucleoside-EnhancedCLIP(PAR-CLIP) sequently pulled down target mRNAs with GST-HuD for and individual-nucleotide resolution CLIP (iCLIP), of HuR microarray examination. Gene ontology analysis identified andnELAVtargetmRNAscorroboratethesefindingsbydem- several mRNAs whose proteins are involved in regulating onstratingthatallfourHuproteinspreferentiallybindU-rich RNAprocessing,nuclearexport,translation,cell-to-cellsig- sequences interspersed withGsorAs(Lebedeva etal.2011; nalling,andvesicletrafficking(Bolognanietal.2010).Ofpar- Mukherjee et al. 2011; Uren et al. 2011; Ince-Dunn et al. ticularinterest,thisstudyalsofoundthatHuDbindsmRNAs 2012). These studies also found that Hu binding sites were of several RBPs, including its own, HuB, HuR, Cugbp2, ′ mostlylocatedin3 UTRsofmRNAs,withasignificantpor- Musashi 2, and Staufen 2, indicating a complex regulatory ′ tion in introns and relatively few in 5 UTRs. In terms of network between HuD and other components of the ribo- HuD,thevarioustypesofcis-actingmo- tifs that it targets are found in mRNAs encodingproteinswithdiversefunctions TABLE2. Establishedfunction(s)ofHuDonneuronaltargetmRNAs inneuronsrangingfromcellcyclearrest to synapse formation (Bolognani et al. Gene EffectofHuDonmRNA 2010). Growthassociatedprotein Stabilization(Liuetal.1995;Chungetal.1997;Tsaietal. Evidence that Hu proteins bind AREs 43(GAP-43) 1997;Andersonetal.2000;Mobaraketal.2000) originated from a study demonstrating Transportationintoneurites(Smithetal.2004) p21cip1/waf1 Stabilization(Josephetal.1998;Fujiwaraetal.2006) preferentialbindingofHuBtoA/GUUU ′ Tau Stabilization(Aronovetal.2002) A/G/U sequences located within the 3 Transportationintoneurites(Aranda-Abreuetal.1999) UTRs of mRNAs (Levine et al. 1993). Translationenhancement(Aronovetal.2002) This fundamental finding enabled the p27KIP Translationrepression(Kullmannetal.2002) subsequentidentificationofthefirsttar- Neuroserpin Stabilization(Cuadradoetal.2002) N-myc Stabilization(Manoharetal.2002) get mRNA of HuD, c-fos, a member of Myristoylatedalanine-richC Stabilization(Weinetal.2003) the immediate early (IE) gene family of kinasesubstrate(MARCKS) transcription factors (TFs) that encode Acetylcholinesterase(AChE) Stabilization(Deschenes-Furryetal.2003) proteins involved in cell proliferation Musashi1(Msi1) Stabilization(Rattietal.2006) and differentiation (Liu et al. 1995). Calcitonin/CGRP Alternativesplicing(exonexclusion)(Zhuetal.2006) Alternativepolyadenylation(Zhuetal.2006) UsingREMSAs,theauthorsshowedthat Ikaros Alternativesplicing(Bellaviaetal.2007) HuD binds specifically to an ARE se- Neurofibromatosis(NF-1) Alternativesplicing(exonexclusion)(Zhuetal.2008) ′ quence in the c-fos 3 UTR. Numerous Localtranscriptionrateenhancement(Zhouetal.2011) other ARE-harboring transcripts, such Neuro-oncologicalventral Stabilization(Rattietal.2008) asN-mycandc-myc,werelateridentified antigen1(NOVA1) Translationenhancement(Rattietal.2008) LIMdomaintranscription Stabilization(Chenetal.2007) as targets of HuD using similar in vitro factor(LMO4) approaches, indicating that HuD binds HuD Alternativesplicing(exoninclusion)(Wangetal.2010) short-livedmRNAswhoseproteinprod- HuR Alternativepolyadenylation(MansfieldandKeene2011) uct functions in cell proliferation (Liu Glutaminase(Gls1/Gls) Alternativesplicing(Ince-Dunnetal.2012) etal.1995;Rossetal.1997).Inaddition Stabilization(Ince-Dunnetal.2012) Translationenhancement(Ince-Dunnetal.2012) tothesetranscripts,HuDhasbeenshown Nervegrowthfactor(NGF) Stabilization(LimandAlkon2012) tobindandregulateseveralothermRNAs Neurotrophin3(NT-3) Stabilization(LimandAlkon2012) invitroandinvivo,manyofwhichencode Brain-derivedgrowthfactor Stabilization(LimandAlkon2012) proteinswithimportantfunctionsinneu- (BDNF) ronaldifferentiationsuchascellcyclear- www.rnajournal.org 1023 BronickiandJasmin nome (Pullmann et al. 2007; Mansfield and Keene 2009; specific exons remained hyperacetylated, which resulted in Bolognanietal.2010).Asecondstudyalsoemployedamicro- an increased RNAPII transcription rate and decreased exon arrayapproachtodetermineHuD-targetedmRNAsindentate inclusion atthesegenomicloci.ExperimentswithHuBand granulecellsofHuD-Tgmice(Perrone-Bizzozeroetal.2011). HuC deletion mutants indicated that the linker region and The authors found that the data set is mostly enriched in RRM3arenecessaryfornELAVregulationofalternativesplic- mRNAsencodingproteinsinvolvedinneuronaldevelopment ing(Zhuetal.2008;Zhouetal.2011). and axogenesis, such as Notch3 and Neurog2 (Perrone- Incontrasttothisfunction,evidencethatHuDandthetwo Bizzozeroetal.2011).Last,arecentstudyusedCLIPandmi- other nELAVs enhance exon inclusion also exists. For in- croarraytechnologiestorevealthatnELAVsregulatemultiple stance,allfourHumemberswereshowntopromoteinclusion transcripts,someofwhichencodecomponentsoftheamino ofHuDexon6bybindingtotwoAREsequencesinthedown- acidglutamatebiosyntheticpathway,suchasglutaminase1, streamintron(Wangetal.2010).Inaddition,arecentreport which indicatesthatanimportantfunction ofnELAVs isto identifiedintronicnELAVbindingsitesflankinganalternative ′ controlneuronalactivity(Ince-Dunnetal.2012). 3 SSintheGls1/GlsgeneanddemonstratedthatnELAVsgen- eratealongerGlsmRNAvariant,indicatingthattheymayen- ′ hanceinclusionofaGls3 exon(s)(Ince-Dunnetal.2012). MULTILEVEL CONTROLOFmRNA Thesamereportalsousedgenomewideanalysistomapthe METABOLISM BY HuD binding sites in nELAV targeted pre-mRNAs and revealed that these proteins preferentially bind introns surrounding Alternativesplicing cassette exons, especially near exon/intron splice junctions FollowingbindingtoatargetmRNA,HuDhasbeenshown (Ince-Dunn et al. 2012). In line with previous studies, to control one or multiple regulatory events during the nELAVswerefoundtoenhanceexoninclusionwhenbound transcript’s metabolism, with alternative splicing being one to5′SSsinthedownstreamintronandinhibitexoninclusion ′ ′ oftheearliest.ThefirstcluesthatHuDplaysaroleinalter- when bound to adjacent 3 and 5 SSs of alternative exons. nativesplicingwerebasedonitssignificanthomologytothe Altogether,thesestudiesclearlydemonstratethatHuD,along Drosophilasplicingfactorsxl(Szaboetal.1991)andexperi- withtheothernELAVproteins,canpromoteorsuppressexon mentsdemonstratingthattheDrosophilaELAVproteinpro- inclusionbyinteractingwith(orantagonizing)splicing,tran- motes neuron-specific alternative splicing (Koushika et al. scription,andchromatincomponents(Fig.2A). 1996).Followingtheseseminalfindings,amoredirectindica- tionthatHuDandtheotherthreeHuproteinsregulatealter- Alternativepolyadenylation nativesplicinginmammalsemergedfromastudythatshowed HuDbindingtobothexonicandintronicregionsofN-myc Inadditiontoalternativesplicing,boththeDrosophilaELAV pre-mRNA(Lazarovaetal.1999).Afewyearslater,aseries andthemammalianHuproteinsweredemonstratedtocon- of papers predominantly fromthe Hua Lou laboratory cor- trolalternativepolyadenylationspecificallyinneurons(Soller roborated thatall Hu proteins function as auxiliary splicing andWhite2003).TruncationofthemouseHuBproteinre- factors(HinmanandLou2008).Usingvariouscomplementa- vealed that all three RRMs are necessary for Hu proteins rymethods,suchasREMSAandUVcross-linking/IPassays, toperformthisfunction(Zhuetal.2006).Employingmainly onereportdemonstratedthatnELAVscompetewithTIA-1/ REMSAs and in vitro cleavage and polyadenylation assays, TIARRBPsforaU-richintronicsequenceinthecalcitonin/ one study determined that Hu proteins bind U-rich se- calcitoningene-relatedpeptide(CGRP)pre-mRNAtoblock quencesdownstreamfromtheexon4poly(A)signalincalci- inclusionofexon4.Throughthismechanism,nELAVspro- tonin/CGRPtoblockbindingofcleavagestimulationfactor moteexpressionoftheneuron-specificCGRPisoforminneu- 64 (CstF64) and cleavage-polyadenylation specificity factor rons(Zhuet al.2006). nELAVs werealso showntointeract (CPSF),essentialcomponentsofthecleavageandpolyadeny- withintronicAREssurroundingexon23aoftheneurofibro- lationmachinery.ThroughthismechanismHuproteinspre- matosistype1(NF1)pre-mRNAtoblockitsinclusionbyin- vent cleavage and polyadenylation atthe nonneuronal exon hibiting U1/U6 snRNP and U2AF auxiliary splicing factor 4 poly(A) signal, thereby promoting the neuron-specific ′ ′ binding to the 5 and 3 splice sites (SSs), respectively (Zhu CGRPpathway(Zhuetal.2006).Moreover,allfourHupro- etal.2008).Furthermore,overexpressionanddown-regula- teins were recently demonstrated to differentially regulate tionofHuDinT-celllinesdemonstratedthatitmediatesalter- alternative polyadenylation of HuR in neurons (Mansfield nativesplicingoftheIkarosgene,possiblybysuppressingexon and Keene 2011; also see Dai et al. 2012). Mansfield and 4inclusion(Bellaviaetal.2007;HinmanandLou2008).In KeeneshowedthattherearethreedifferentHuRmRNApoly- ′ additiontobindingintronicsequences,co-IPassaysrevealed adenylationvariants(1.5,2.4,and6.0kb),whichdifferin3 thatHuproteinsinteractwithRNApolymeraseIIandhistone UTR length. All four Hu members were found to bind and deacetylase2(HDAC2)toregulatealternativesplicing(Zhou blockU-richsequencesnearthe2.4-kbpolyadenylationsite et al. 2011).In vitrotranscription elongationassays showed and thereby promote expression of the 6.0-kb transcript. that, by blocking HDAC2 activity, histones surrounding Since the 6.0-kb variant is less stable and not as efficiently 1024 RNA,Vol.19,No.8 Expression,function,andregulationofHuD mRNA stability The initial demonstration that Hu proteins regulate mRNA ? ? E stability was based on the observation that HuB enhances GLUT1 mRNA half-life and, incidentally, translation (Jain A 7mG C A7AmAGA D A7AmAGA A7AmAGA etal.1997).Followingthislandmarkstudy,otherreportsde- scribedsimilarrolesforHuR(FanandSteitz1998;Levyetal. B 1998; Peng et al. 1998) and HuC/D (Anderson et al. 2000; AAAA Gm7 Mobaraketal.2000)inregulatingmRNAstability.Sincethese Legend: microtubules initialfindings,HuDhasemergedasthebest-describedstabi- 7mG AAAAmRNA miR lizingRBPinneurons,asevidencedbythenumerousstudies destabilizing RBPs ribosomes outlining itsrole inincreasingthehalf-livesofvarious neu- splicing factors HuD ronaltranscripts(Fig.2C).AmongalloftheHuD-regulated mRNP mRNAs, the most prominent is the GAP-43 mRNA, which ′ housesaclassIIIAREinits3 UTR(Chungetal.1997;Tsai FIGURE2. Modeldepictingtheintracellularlocalizationsandmultiple post-transcriptionalfunctionsofHuD.(A)Inthenucleus,HuDregu- et al. 1997). HuD-dependent control of GAP-43 expression latesalternativesplicingandpolyadenylationbycompetingforspecific isparticularlyinterestingbecauseGAP-43playsmultipleroles pre-mRNAbindingsiteswithothertrans-actingfactors.(B)HuDforms in neurons, including functioning as a critical component partofanmRNPcomplex,anditlikelyfacilitatesmRNAexportintothe in neural development (Maier et al. 1999; Mani et al. 2001; cytoplasm. (C) In the cytoplasm, HuD and destabilizing RBPs bind competitively or cooperatively to mRNAs. HuD might also prevent Shen et al. 2008) and synaptic remodeling during learning bindingofmiRstothemRNAorantagonizetheirfunction.Through and memory (Routtenberg et al. 2000). Multiple studies thesemechanisms,HuDincreasesthehalf-livesofmRNAs.(D)HuD have shown that overexpression or down-regulation of transportsmRNAstodifferentcompartmentsofneurons,mostnotably HuDresultsinincreasedordecreased,respectively,GAP-43 neurites,alongmicrotubules.(E)Atthesynapticterminal,HuDmay promoteorrepresstranslationoftranscripts. mRNAlevelsand/orstabilityinculturedcellsandthemouse nervous system (Anderson et al. 2000, 2001; Mobaraket al. 2000; Bolognani et al. 2006, 2007a). Interestingly, HuD is translatedasthe2.4-kbtranscript,theauthorspostulatedthat more effective at stabilizing GAP-43 mRNAs that contain a the reduction of HuR expression prevents HuR’s ability to longer poly(A) tail, indicating that HuD binds to both the promoteproliferationandtherebypermitsneuronstotermi- ARE and poly(A) tail to increase GAP-43 mRNA half-life nally differentiate (Mansfield and Keene 2011). The role of (Beckel-Mitcheneretal.2002).InadditiontoGAP-43tran- Hu proteins in controlling alternative polyadenylation is scripts,HuDhasalsobeenshowntopromotethestabilityof likely extended to several of their target mRNAs, given that several other ARE-containing mRNAs in neurons, such as the ELAV protein in Drosophila was found to coordinate AChE (Deschenes-Furry et al. 2003) and Nova1 (Ratti et al. ′ 3 UTR extension of multiple mRNAs in neuronal cells 2008),bothinvitroandinvivo(Table2;Perrone-Bizzozero (Hilgersetal.2012). and Bird 2013). Despite mRNA stabilization being one of thebetter-knownrolesofHuD,themoleculareventsbehind thisfunctionarenotwellunderstood. Nucleocytoplasmic shuttling OnelikelymechanismthroughwhichHuDandotherHu Another chief function of HuD involves shuttling of target members stabilize mRNAs involves antagonizing destabi- mRNAsintothecytoplasm.Aspreviouslymentioned,HuD lizingRBPssuchasAUF1frombindingtocis-actingelements containsaNESandputativeNLSlocatedinthevariablelink- (Barreau et al. 2006). Once bound to a target mRNA, des- erdomain,betweenthesecondandthirdRRM,whichpermit tabilizingRBPsmaypromotedeadenylationthroughavariety nucleocytoplasmic shuttling of HuD (Fig. 2B; Kasashima ofmannerssuchasblockingpoly(A)bindingprotein(PABP) etal.1999).Overexpressionofwild-typeanddeletionmutant binding and/or recruitment of decapping, deadenylation, HuD proteins revealed that cytoplasmic shuttling of HuD and exosome components (Wu and Brewer 2012). Thus, it requirestheNESregion (Kasashimaetal.1999).Moreover, is feasible that, by binding to AREs or other motifs, HuD in vitro binding assays showed that the first two RRMs of blocks accesstothebindingsite andconsequently prolongs HuDassociatewiththeprimarygeneralmRNAexportadap- mRNA half-life (Fig. 3). However, there is evidence indi- tor complex (TAP-p15; also known as NXF1/NXT1) in a cating that this mechanism is more complex since both RNA-independent mannerand thatthis interaction maybe stabilizing and destabilizing RBPs can bind the same tran- necessary for shuttling of HuD (Saito et al. 2004). Further scriptsimultaneously.Fluorescenceresonanceenergytrans- studies are necessary to establish whether TAP-p45 and/or fer (FRET) and biochemical techniques revealed that HuR another export pathway, such as the karyopherin CRM1, is interactswithAUF1,KSRP,andTIA-1inthenucleusandcy- used by HuD for nuclear export of mRNAs (Carmody and toplasmic stress granules (David et al. 2007; David Gerecht Wente2009). etal.2010).Moreover,theseinteractionsrequirethepresence www.rnajournal.org 1025 BronickiandJasmin A B ingprotein(PABP),translationinitiation factor 4E (eEF4E) (Tiruchinapalli et al. 2008b) and the microtubule-associat- ed component MAP1B (Fujiwara et al. 2011b). Various conditions, including KCldepolarizationofprimaryhippocam- palneurons,cocaine,orseizuretreatment RNAation RNAation of mice and phorbol esteror bryostatin- increased mstability/transl decreased mstability/transl 1(drNiateanBspc),pecaloienclfadlstH,iiorutnesDsui,tnolitctrsihenruaeasmdendiasanturaisgbnsmuoeutceiirnoaotntbeiodltanosatbnwoueminutha-- mRNAsandmRNPcomponents(Pascale etal.2005;Tiruchinapallietal.2008a,b). ComplementarytoitsroleinmRNAlocal- C ization, evidence for the direct involve- m7Gppp AAAAAn m7Gppp AAAAAn ment of HuD in regulating translation wasunveiledwhenFukaoandcolleagues D showed that HuD binds to eIF4A and m7Gppp AAAAAn m7Gppp AAAAAn the poly(A) tail of transcripts, via its linkerregionandthirdRRM,toenhance E cap-dependent protein synthesis (Fukao m7Gppp AAAAAn m7Gppp AAAAAn et al. 2009). Moreover, this mechanism wasdeterminedtobeimportantforHuD- FIGURE3. RelativelevelsofRBPsandtheircooperativeandcompetitivebindingtomRNAs controlsgeneexpression.TherelativeexpressionofRBPsthat(A,B)promote(e.g.,Hu/ELAVl dependent neurite extension in PC12 proteins;green)orinhibit(e.g.,AUF1;red)mRNAstability/translationinfluencesgeneexpres- cells. sion.FunctionallyantagonisticRBPscanalsobind(C)competitivelyor(D,E)cooperativelyto In addition to enhancing translation, regulatemRNAfate.Cooperativebindingcouldpotentiallyallowforaquickerresponsetoextra- HuDiscapableofrepressingproteinsyn- cellularcuesindeterminingmRNAfate. thesis,asshownforp27andpreproinsulin (Ins2)mRNAs(Kullmannetal.2002;Lee ofRNA,sinceHuRandAUF1wereshowntosimultaneously etal.2012).Eventhoughthemechanismoftranslationalsi- orcompetitivelybindontoexclusiveorcommon,respective- lencingisunclear,itwasdemonstratedtorequireHuDbind- ly,cis-actingelementsinthe3′UTRsofp21cip1/waf1,CyclinD, ing toan internal ribosomeentrysite (IRES) in the5′ UTR TNFα, and β -adrenergic receptor mRNAs (Lal et al. 2004; of p27 mRNA (Kullmann et al. 2002) and a short ∼22-nt 2 ′ Davidetal.2007).Together,thesefindingssuggestthatregu- sequenceinthe5 UTRofIns2mRNA(Leeetal.2012).The lationofmRNAstability,andlikelyothermRNAmetabolism reportbyKullmanetal.suggeststhatinhibitionofp27trans- events,byHuproteinsisatleastpartiallydependentonabal- lationbyHuproteinsisaneventthatsustainscellsinaprolif- ancebetweenstabilizinganddestabilizingRBPs(Fig.3). erativestate(Kullmannetal.2002).Ontheotherhand,the studybyLeeetal.showedthattherepressionofIns2translation byHuDislikelyrequiredtomaintaininsulinhomeostasis(Lee mRNA localizationand translation etal.2012).Takingintoaccountthesefindings,itisplausible thatHuDinhibitstranslationofselecttargetmRNAsinneuro- AlongwithpromotingmRNAstability,compellingevidence nal stem/precursor cells or in response to a neuronal stress supports a role for HuD in regulating both localization and suchashypoxia.Altogether,thesestudiesindicatethatHuD translationoftranscriptsinthecytoplasmandpossiblyinneu- recruitsmRNAstomicrotubulesandmaytransportthemto rites(Fig.2D,E).Forexample,twotargetmRNAsofHuDin- neuritestocontroltheirlocaltranslationinresponsetoextra- volvedinaxonal outgrowth, namely GAP-43 andTau,were cellularcues,particularlyduringneuronaldevelopmentand found to colocalize with HuD protein and polysomes in function. growth cones during neuronal differentiation (Smith et al. 2004;Atlasetal.2007).Co-IPandimmunocytochemistryex- perimentsrevealedthatHuDinteractswithahostofmRNP MOLECULAR MECHANISMS REGULATING HuD componentsinvolvedintransportandtranslationinthecyto- plasmandneuritessuchasthemotorproteinKIF3A(Aronov ThekeyrolesofHuDinneuronaldevelopmentandplasticity etal.2002),IGF-IImRNAbindingprotein1(IMP-1)(Atlas anditsimplicationsinneuronaldiseasesraiseimportantques- etal.2004,2007),survivalofmotorneuron(SMN)(Hubers tions regarding the molecular mechanisms that regulate its etal.2010;Aktenetal.2011;Fallinietal.2011),poly(A)bind- expression.Todate,onlyafewstudieshavestartedtodescribe 1026 RNA,Vol.19,No.8 Expression,function,andregulationofHuD the post-translational, post-transcriptional, and transcrip- to increase nELAV levels and provoke their nuclear export tionalmechanismsthatcontroltheexpressionandfunction followingtreatmentofSH-SY5YNBcellswiththePKC-acti- of HuD (Fig. 4). However, given the key functions of HuD vating compounds phorbol esters and bryostatin-1 (Pascale inneurons,moresystematicinvestigationsofthe molecular et al. 2005). Moreover, stimulation of PKCα promotes its eventsthatregulateitsexpressionarenecessary. interaction with nELAV proteins resulting in their phos- phorylationatthreonineresidues,redistributiontotheneu- ronalcytoskeletalandmembranefractions,andstabilization Post-translationalcontrolofHuD ofGAP-43mRNA.Inaddition,arecentstudydemonstrated expressionand function that PKCε also interacts with HuD, and activation of both Althoughsomeconditions,suchasapplicationofgrowthfac- PKC isoforms by bryostatin-1 results in HuD phosphoryla- tors (Aranda-Abreu et al. 1999; Abdelmohsen et al. 2010), tion on nine residues (Lim and Alkon 2012). Importantly, pharmacological agents (Pascale et al. 2005; Tiruchinapalli HuD is a focal downstream target of this neurite-extending et al. 2008a,b), and cellular stress (Burry and Smith 2006), pathway since nerve growth factor (NGF) or phorbol ester have been documented to alter the expression or function treatmentofPC12cellsfollowingHuDknockdownprevents ofHuD,themolecularpathwaysanddownstreamregulators neuriteoutgrowth(Mobaraketal.2000). involved areonly beginning to emerge. Currently, thereare Another pathway that has been documented to regulate only three known pathways that regulate the abundance or HuD function involves the methyltransferase CARM1 (also function of HuD: protein kinase C (PKC) (Mobarak et al. knownasproteinargininemethyltransferase4[PRMT4]),a 2000;Pascaleetal.2005;LimandAlkon2012);coactivator- memberofthePRMTfamilythatperformsavarietyofcellular associated arginine methyltransferase1(CARM1)(Fujiwara functionssuchasregulatingtranscriptionandRNAprocess- etal.2006;Hubersetal.2010);andproteinkinaseB(PKB/ ing by methylating arginine residues in substrate proteins AKT)(Fujiwaraetal.2011a). (Bedford and Clarke 2009). Using a variety of comple- The ubiquitously expressed serine/threonine PKC family mentary techniques, including an in vitro protein methyla- consistsofatleast10isoformswithdiversefunctionsranging tion assay, CARM1 was demonstrated to interact with and from controlling cell proliferation to synaptic remodeling methylate an amino acid located in the hinge region of (Amadioetal.2006).TheclassicalPKCαisoformwasshown rat (Arg236) (Fujiwara et al. 2006) and mouse (Arg248) (Hubersetal.2010)HuD(Fig.1C). Moreover, methylation of HuD de- creased p21cip1/waf1 mRNA stability mRNA processing Legend: DNA and maintained neuronal precursor mmRRNNAA strtaanbsilliaztaiotinon ? RBPs ribosomes cells in a proliferative state. On the P phosphorylation mRNP otherhand,inhibitionofHuDmeth- HuD interactor AAAA mRNA B miR-375 proteins 7mG ylation or knockdown of CARM1 A PKC resulted in increased p21cip1/waf1 PHuD AAAA ? mRNA levels, cell-cycle withdrawal, 7mG CARM1 and neuronal differentiation. Sur- cytoplasm prisingly,althoughreducedCARM1 nucleus levelsalsoincreasedGAP-43mRNA expression, they had no effect on 7mG otherknownHuD-targetedmRNAs, T3+TR FoxO1 C including Tau and p27, suggesting D Hu thatstabilizationoftheseothertarget Ngn2 E47 E1c E2 PolII mRNAs requires additional post- HuD gene translational modifications of HuD and/or other trans-acting factors FIGURE4. SimplifiedmodelofthemoleculareventsgoverningHuDexpression,processing,and (Fujiwara et al. 2006; Hubers et al. functioninneurons.(A)CARM1methylationofHuDpreventsitsbindingtospecificmRNAtargets andmaintainsneuronalprecursorsinanundifferentiatedstate.Ontheotherhand,anincreasein 2010). These findings provide evi- unmethylatedHuDproteinlevels,itspost-translationalmodification(suchasphosphorylationby dence that methylation of HuD by PKCisoforms),andinteractionwithotherproteins(e.g.,AKT1)enableHuDtoregulatemRNAme- CARM1 may be a universal switch tabolismofproneuralgenesandpromoteneuronaldifferentiation/neuriteextension.(B)Thestabil- inneuronalprecursorsthatregulates ityandtranslationofmatureHuDmRNAisnegativelycontrolledbymiR-375andpotentiallyother trans-actingfactors.(C)HuDpre-mRNAundergoesalternativesplicing,includinginclusionofE6 the transition from proliferation to mediatedbyHuproteins.(D)DuringneuronaldevelopmenttranscriptionoftheHuDgeneispos- neuronaldifferentiation. itivelyregulatedbytheNgn2-E47heterodimerbindingtoE-boxesupstreamofE1c.SynthesisofHuD Arecentreportfoundadirectlink mRNAisnegativelyregulatedbythyroidhormone(presumablyboundtothyroidhormonereceptor) inneuronsandFoxO1inpancreaticβcells.Greenandredlinesrepresentpathwaysthatpromoteand between the antagonistic effects of inhibitneuronaldifferentiation,respectively. PKCandCARM1onHuDfunction www.rnajournal.org 1027 BronickiandJasmin andcellfate(LimandAlkon2012).Inhippocampalneurons, AnalysisoftheXenopusHuDhomologelrDsequenceillus- thestudydemonstratedusingpathway-specificinhibitorsthat tratedthatthe3′UTRcontainsan∼100-ntstretchofnucleo- ′ activatedPKCisoformsinteractandphosphorylateCARM1, tideswith90%identitytothehumanHuD3 UTR,implying whichleadstodecreasedCARM1methyltransferaseactivity. that this fragment encompasses an important evolution- Furthermore,activatingtheclassicalPKCisoformsandsimul- arily conserved regulatory structure and/or cis-element(s) taneouslyblockingCARM1activitypotentiatesHuDbinding (Good 1995). Indeed, analysis of HuD-targeted mRNAs in to target mRNAs and hippocampal neurite extension. This themouseforebrainshowedthatHuDbindstoitsowntran- studyclearlyillustratesthatPKCactivationnegativelycontrols script,althoughtheroleofthisinteractionremainsunknown CARM1-mediatedmethylationofHuDtopromoteneuronal (Bolognanietal.2010).Onefunctionalconsequenceofthis differentiation. auto-regulatorybindingispresumablyincontrollingalterna- The phosphatidylinositol 3-kinase (PI3K)/AKT1 pathway tivesplicing of its own pre-mRNA (see above) (Wang et al. wasalso found to regulate HuD function, specifically at the 2010). Another possible significance of thisinteraction may translational level (Fujiwara et al. 2011a). This finding is in besimilartotheonefoundfortheDrosophilaELAVhomolog, agreementwithPI3K/AKT1beingoneoftheprominentsig- whichwasdemonstratedtonegativelyregulateitsowntran- nallingpathwaysregulatingtranslation(RouxandTopisirovic script (Samson 1998; Borgeson and Samson 2005). This 2012).InthestudybyFujiwaraetal.,HuDmutantswereused auto-regulatorymechanismisthoughttooccurwhenELAV to demonstrate direct binding of active (phosphorylated) levels pass a certain threshold, resulting in increased ELAV ′ AKT1 to a sequence in the linker region of HuD and that bindingtoanAU-richsiteinanoncoding3-terminalexon thisinteractionisrequiredforHuD-dependentneuriteout- and production of a noncoding transcript (Borgeson and growth(Fujiwaraetal.2011a).InadditiontobindingHuD, Samson 2005). Given the multifunctional roles of HuD on chronic (7-day) activation of AKT1 enhances HuD protein mRNA metabolism and the numerous putative ARE signa- ′ levels,suggestingthatAKT1alsopositivelycontrolsHuDex- turesinits3 UTR(LBronickiandBJJasmin,unpubl.),itis pression(Tiruchinapalli etal.2008a).Theseresultsindicate conceivable that HuD also controls other regulatory events thatAKT1increasestheabundanceofHuDproteinandin- suchaspolyadenylation,stability,localization,andtranslation teracts with the HuD-mRNA complex to promote neurite ofitsownmRNA. elongation, possibly through regulation of HuD-mediated Furthersupportofthenotionthattrans-actingfactorsreg- translation.Basedonthesefindings,anemergingmodelsug- ulate HuD mRNA metabolism surfaced when miR-375 was ′ geststhat,throughpost-translationalcontrolofHuDexpres- demonstratedto target the3 UTRof HuD and decrease its sionandfunction,activationofdifferentsignallingpathways abundancebyreducingbothitsmRNAstabilityandtransla- canmaintainneuronalprecursor/stemcellsinaproliferative tion(Abdelmohsen etal.2010). KnockdownofmiR-375in state (CARM1) or promote neuronal differentiation (PKC culturedcellsandmousebrainrevealedthatthismicroRNA andAKT1)(Fig.4A). prevents neurite outgrowth through negative control of HuD expression. Altogether, these studies stress that HuD transcriptsarelikelysubjectedtointricatepost-transcription- Post-transcriptional controlofHuD alcontrolinvolvingRBPsandmiRs. expression Recentstudieshavestartedtodecipherthemolecularmecha- Transcriptional controlofHuD expression nismscontrollingHuDmRNA(Fig.4B)andpre-mRNA(Fig. 4C)expression.ThemammalianHuDmRNAcontainsatleast Despiteafewstudiesdemonstratingdirectorindirectregula- threealternate5′UTRsandalong3′UTR(∼2.6kb),charac- tionofHuDatpost-translational,translational,andpost-tran- teristicsthatareastrongindicationofpredispositiontopost- scriptional levels, little was known regarding the molecular transcriptional regulation. As mentioned above, previous mechanismsthatcontroltranscriptionofthisgeneinneurons. studies, along with datafrom our laboratory, revealed eight As discussed above, a previous study suggested that at least HuDE1variants,indicatingtheexistenceofatleasteightdif- threeHuDE1variantsexist,pointingtothepotentialpresence ′ ferent5 UTRs(Fig.1A,B),withmostcontaininganin-frame ofmultiplepromoters(Inmanetal.1998).Workinourlabo- translation start site (Abe et al. 1994; Inman et al. 1998; ratoryhasshownthatthemammalianHuDgeneactuallycon- Bronickietal.2012).RT-PCRanalysisrevealedthatalleight tainseightE1variantsthatarewellconservedamonghigher exons are expressed in embryonic and adult mouse brain vertebrates,addingtothespeculationthatmultiplepromoters and areinduced during neuronaldifferentiation. Moreover, controlHuDexpression(Bronickietal.2012).Inlinewiththis ′ ourdatasuggestthatE1cisthepredominantlyexpressedE1 possibility,the5 genomicregionofelrDwasdemonstratedto variant (Bronickietal.2012).AlthoughthefunctionofE1c containtwodistinctpromotersthatdriveneuron-specificex- ′ andtherestoftheE1variantsisunknown,itistemptingto pressionoftwoE1variants,E1andE1(NassarandWegnez ′ speculatethattheyencodeHuD5 UTRsand/orN-terminal 2001). These variants encode transcripts exhibiting unique peptidesthathaveimportantfunctionssuchasintranslational temporalexpressionduringXenopusnervoussystemdevelop- ′ controlorintracellularlocalization(Davulurietal.2008). ment (Nassar 2011). Remarkably,E1 and E1partiallyalign 1028 RNA,Vol.19,No.8

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.