ebook img

Elementary fixed point theorems PDF

306 Pages·2018·1.773 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Elementary fixed point theorems

Forum for Interdisciplinary Mathematics P. V. Subrahmanyam Elementary Fixed Point Theorems Forum for Interdisciplinary Mathematics Editor-in-chief P. V. Subrahmanyam, Indian Institute of Technology Madras, Chennai, India Editorial Board Yogendra Prasad Chaubey, Concordia University, Montreal (Québec), Canada Jorge Cuellar, Principal Researcher, Siemens, Germany Janusz Matkowski, University of Zielona Góra, Poland ThiruvenkatachariParthasarathy,ChennaiMathematicalInstitute,Kelambakkam,India Mathieu Dutour Sikirić, Rudjer Boúsković Institute, Zagreb, Croatia Bhu Dev Sharma, Jaypee Institute of Information Technology, Noida, India The Forum for Interdisciplinary Mathematics series publishes high-quality monographs and lecture notes in mathematics and interdisciplinary areas where mathematics has a fundamental role, such as statistics, operations research, computer science, financial mathematics, industrial mathematics, and bio-mathematics. It reflects the increasing demand of researchers working at the interface between mathematics and other scientific disciplines. More information about this series at http://www.springer.com/series/13386 P. V. Subrahmanyam Elementary Fixed Point Theorems 123 P. V.Subrahmanyam (emeritus) Department ofMathematics Indian Institute of Technology Madras Chennai, Tamil Nadu,India ISSN 2364-6748 ISSN 2364-6756 (electronic) Forumfor Interdisciplinary Mathematics ISBN978-981-13-3157-2 ISBN978-981-13-3158-9 (eBook) https://doi.org/10.1007/978-981-13-3158-9 LibraryofCongressControlNumber:2018960278 ©SpringerNatureSingaporePteLtd.2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. Theregisteredcompanyaddressis:152BeachRoad,#21-01/04GatewayEast,Singapore189721, Singapore Preface Fixed point theorems constitute an important and interesting aspect of applicable mathematicsandprovidesolutionstoseverallinearandnonlinearproblemsarising in biological, engineering and physical sciences. This book, as the title suggests, deals with some fixed point theorems and applications. The choice of the topics is largely guided by personal preferences, and the book will serve as a subjective sampler of topics in fixed point theorems. This volume neither exhausts all the important fixed point theorems nor elabo- ratesthemostgeneralformulationsofthetheoremspresented.Noattemptismadeto provideahistorical/chronologicalbackgroundforthetopicscovered.Nevertheless, it hopefully supplements the extant publications and promotes interest for further study among thereaders. A quick run-through of the highlights of the individual chapters is not out of place. While Chap. 1 collects the analytic and topological preliminaries needed in the sequel, Chap. 2 describes the basic properties of iterates of real and complex functions. It details the theorems of Thron on the rates of convergence of certain classes of real functions. Cohen’s common fixed point theorem for commuting continuousfullsurjectionsonacompactinterval,Shield’stheoremontheexistence ofacommonfixedpointforacommutingfamilyofanalyticfunctionsontheclosed unit disc, an elementary proof of Sharkovsky’s theorem on periodic points of real functions and Bergweiler’s theorem on the existence offixed points of meromor- phic functions are other noteworthy features of Chap. 2. Chapter 3 explores the existence of fixed points in the setting of partially ordered sets. Knaster–Tarski principle is formulated leading to Tarski’s theorem, and its applications to set theory,generaltopology,nonlinearcomplementarityproblem,parabolicdifferential equations and formal languages are described. Also discussed are some general- izations due to Merrifield and Stein. MostofChap.4dealswithWard’stheoryofpartiallyorderedtopologicalspaces culminating in Schweigert’s fixed point theorem. Manka’s fixed point theorem on inductively and acyclically ordered posets is proved and used to deduce the fixed v vi Preface point property of continuous functions on dendroids. Also highlighted is Klee’s counterexampleinfixedpointtheory.Contractionprincipleandsomeofitsvariants aretakenupinChap.5,includingKupka’stopologicalgeneralizationandNadler’s extension to multifunctions. Jachymski’s proof of the converse of the contraction principle is also elaborated. Applications to differential equations, functional equations, algebraic Weierstrass preparation theorem, Cauchy–Kowalevsky theo- rem and the central limit theorem are detailed in Chap. 6. Chapter 7 is devoted to Caristi’sfixedpointtheorem,ageneralizationofthecontractionprinciple.Separate proofs of Caristi’s theorem due to Siegel, Penot and Kirk are provided. The equivalence of Caristi’s theorem, Ekeland’s variational principle and Takahashi’s minimization theorem is proved. That these three equivalent theorems characterize metrical completeness is also established. Chapter 8 is on fixed points of contractive and non-expansive maps. Goebel’s proof of Browder–Gohde–Kirk fixed point theorem for nonexpansive mappings in thesettingofuniformlyconvexBanachspacesisprovided.Pasicki’stheoryofbead and discus spaces and his theorem on the fixed points of nonexpansive maps with an application of Matkowski to certain functional equations are other highlights. Ishikawa’s theorems on iterates are detailed as also a fixed point theorem due to Merrifield et al. on generalized contractions using combinatorial ideas. Chapter 9 using the concepts of the geometry of Banach spaces establishes that convexweaklycompactsubsetsofnearlyuniformlysmooth(NUS)andnon-square Banach spaces have fixed point property for nonexpansive mappings. Brouwer’s theoremistreatedinChap.10.BesidesananalyticproofduetoRogers,proofbased onSperner’slemmaisprovided.TheexistenceofWalrasianandNashequilibriafor economies isdeduced. Whyburn’sproof of Stallings'sgeneralization ofBrouwer’s fixed point theorem for connectivity maps has also been elaborated. Schauder’s theorem and its extensions and applications constitute the major part of Chap. 11. Besides Tychonoff’s fixed point theorem and Ky Fan–Browder–Glicksberg theo- rem for multifunctions, Kakutani–Markov and Ryll–Nardzewski theorems are described. The existence of Banach limits, Haar integral on compact groups and Nash equilibria is provided besides an introduction to measures of noncompactness. Chapter 12 describes the finite-dimensional degree theory as presentedbyHeinz.AppendicesAandBsummarizetheclassicalcounterexamples due to Huneke and Kinoshita, respectively. Appendix C deals with fractals and fixed points. The text closely follows the notation and organization of the papers quoted extensively,withinreasonablelimits,toaidthereaderstoperusethesepaperswith ease.AjudiciouschoiceofsectionsfromChaps.2–12canconstituteabasiccourse on fixed point theorems. Noexpressionofgratitudeisadequatefortheawardofasabbaticalleavegranted bythecompetent authorityof theIndian Institute of TechnologyMadrastomefor the preparation of an earlier concise version of this tract. I am thankful to my colleagues for their support during the preparation of this tract and to my wife Preface vii Dr. S. Alamelu Bai for proofreading the content and for the moral support. I am thankful to Dr. N. Sivakumar (Texas A&M University) and Dr. Antony Vijesh (IIT Indore) for getting several papers for reference. I am grateful to Profs. M. S. Rangachari, G. Rangan, (Late) K. S. Padmanabhan and (Late) K. N. Venkataraman of the Madras University, Chennai, for initiating me into different aspects of mathe- matical analysis. Thanks are due to Mr. E. Boopal for typesetting the manuscript. Suggestions for improvement and corrections of errors and misprints are earn- estly solicited. Chennai, India P. V. Subrahmanyam Contents 1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Topological Spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Metric Spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Normed Linear Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 Topological Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2 Fixed Points of Some Real and Complex Functions . . . . . . . . . . . . 23 2.1 Fixed Points of Continuous Maps on Compact Intervals of R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2 Iterates of Real Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3 Periodic Points of Continuous Real Functions . . . . . . . . . . . . . 31 2.4 Common Fixed Points, Commutativity and Iterates. . . . . . . . . . 35 2.5 Common Fixed Points and Full Functions . . . . . . . . . . . . . . . . 41 2.6 Common Fixed Points of Commuting Analytic Functions . . . . . 44 2.7 Fixed Points of Meromorphic Functions. . . . . . . . . . . . . . . . . . 48 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3 Fixed Points and Order. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.1 Fixed Points in Linear Continua . . . . . . . . . . . . . . . . . . . . . . . 51 3.2 Knaster–Tarski Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.3 Tarski’s Lattice Theoretical Fixed Point Theorem and Related Theorems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.4 Some Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4 Partially Ordered Topological Spaces and Fixed Points . . . . . . . . . 73 4.1 A Precis of Partially Ordered Topological Spaces. . . . . . . . . . . 73 4.2 Schweigert–Wallace Fixed Point Theorem . . . . . . . . . . . . . . . . 81 4.3 Set Theory, Fixed Point Theory and Order. . . . . . . . . . . . . . . . 86 4.4 Multifunctions and Dendroids . . . . . . . . . . . . . . . . . . . . . . . . . 90 ix x Contents 4.5 Some Spaces with Fixed Point Property. . . . . . . . . . . . . . . . . . 92 4.6 An Example in Fixed Point Theory . . . . . . . . . . . . . . . . . . . . . 94 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5 Contraction Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.1 A Simple Proof of the Contraction Principle. . . . . . . . . . . . . . . 97 5.2 Metrical Generalizations of the Contraction Principle . . . . . . . . 100 5.3 Fixed Points of Multivalued Contractions. . . . . . . . . . . . . . . . . 105 5.4 Contraction Principle in Gauge Spaces. . . . . . . . . . . . . . . . . . . 107 5.5 A Converse to the Contraction Principle . . . . . . . . . . . . . . . . . 109 5.6 A Topological Contraction Principle . . . . . . . . . . . . . . . . . . . . 114 5.7 Another Proof of the Contraction Principle. . . . . . . . . . . . . . . . 116 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 6 Applications of the Contraction Principle . . . . . . . . . . . . . . . . . . . . 121 6.1 Linear Operator Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 6.2 Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 6.3 A Functional Differential Equation. . . . . . . . . . . . . . . . . . . . . . 128 6.4 A Classical Solution for a Boundary Value Problem for a Second Order Ordinary Differential Equation . . . . . . . . . . 129 6.5 An Elementary Proof of the Cauchy–Kowalevsky Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 6.6 An Application to a Discrete Boundary Value Problem. . . . . . . 133 6.7 Applications to Functional Equations . . . . . . . . . . . . . . . . . . . . 135 6.8 An Application to Commutative Algebra . . . . . . . . . . . . . . . . . 140 6.9 A Proof of the Central Limit Theorem. . . . . . . . . . . . . . . . . . . 143 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 7 Caristi’s Fixed Point Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 7.2 Siegel’s Proof of Caristi’s Fixed Point Theorem . . . . . . . . . . . . 151 7.3 Ekeland’s Variational Principle . . . . . . . . . . . . . . . . . . . . . . . . 156 7.4 A Minimization Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 7.5 An Application of Ekeland’s Principle . . . . . . . . . . . . . . . . . . . 161 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 8 Contractive and Non-expansive Mappings . . . . . . . . . . . . . . . . . . . 165 8.1 Contractive Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 8.2 Non-expansive Maps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 8.3 Browder–Gohde–Kirk Fixed Point Theorem. . . . . . . . . . . . . . . 173 8.4 A Generalization to Metric Spaces. . . . . . . . . . . . . . . . . . . . . . 176 8.5 An Application to a Functional Equation . . . . . . . . . . . . . . . . . 181 8.6 Convergence of Iterates in Normed Spaces. . . . . . . . . . . . . . . . 184

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.