ebook img

Efficient fourth order symplectic integrators for near-harmonic separable Hamiltonian systems PDF

0.4 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Efficient fourth order symplectic integrators for near-harmonic separable Hamiltonian systems

Efficient fourth order symplectic integrators for near-harmonic separable Hamiltonian systems KristianMadsEgerisNielsen∗ Abstract Efficientfourthorder symplecticintegrators are proposedfor numericalintegration ofseparable Hamiltonian systems H(p,q) = T(p)+ V(q). Symmetricsplitting coefficients with five to nine stages are obtained by higher order decomposition of the simple harmonic oscillator. TheperformanceofthemethodsisevaluatedforvariousHamiltoniansystems: Integrationerrorsarecomparedtothoseofacclaimedintegrators composedbyS.Blanesetal.(2013),W.Kahanetal.(1999)andH.Yoshida(1990).Numericaltestsindicatethattheintegratorsobtainedinthis 5 paperperformsignificantlybetterthanpreviousintegratorsforcommonHamiltoniansystems. 1 0 Keywords: Hamiltoniansystem,symplecticintegration,simpleharmonicoscillator,optimizedfourthorder 2 b ntroduction undamental theorems I. I II. F e F Explicitsymplecticintegrators(SIs,singularSI)arenumer- Consider the general separable Hamiltonian H(q,p) = 9 ical integration schemes for separable Hamiltonian systems. V(q)+T(p)with p˙ =−∂H/∂qandq˙=∂H/∂pwhereqand p SIsarewidelyusedinfieldsofcelestialmechanics,accelerator arecanonicalcoordinatesconventionallylabeledpositionand ] h physics,moleculardynamics,and quantum chemistrydueto momentum respectively. Bydefining z = (q,p), the timeevo- p their structure-preservingpropertiesand simpleimplementa- lutionofzcanbeexpressedby[2]: - tion. nt z(τ)=eτ(A+B)z(0) (1) a u Numerous SIs with increased accuracy and stability have where A and B are non-commutative operators associated q been published since the first discovery of the fourth order with T and V, and τ is the time step. A set of real numbers [ SI [1]. The perhaps most acclaimed splitting composition is exist(c ,c ,...,c )and (d ,d ,...,d ),referredtoassplittingco- 1 2 k 1 2 k 2 derivedbyH.YoshidawhoprovedthatSIsofarbitrarilyhigh efficients, that satisfy ∑ki=1ci = ∑ki=1di = 1 suchthat the time even order exist and can be constructed using Lie algebra evolutionof zcan beapproximatedbyaproductofexponen- v 5 [2]. Other more recent studies on the topic of high stability tialfunctions[2]: SIs include force gradient schemes [3] and symplectic correc- 4 k 3 tors [4][5]. The integration orderis often associated with the eτ(A+B) =∏eciτAediτB+o τN+1 (2) 4 efficiency of numerical integration schemes. Nth order inte- 0 grators have their integration error reduced by a factor kN i=0 (cid:16) (cid:17) 1. when the time step is reducedby a factor k, making high or- where o(τN+1) denotes an error on the N+1 order term. It 0 derintegratorshighlyfavorableforsmalltimesteps. However, iscommonpracticetoexpandtheexponentialtermsbypower 5 higher order error terms cannot be neglected for large time series with respect to τ. Lie algebra can be applied to de- 1 steps. Symplecticcorrectorshave beenproposedforeliminat- termine the splitting coefficients which satisfy Eq. 2 exactly v: inghighordererrorsofSIs,althoughthesemethodsareonly up to a given order. The time evolution of z(0) → z(τ) or i competitivefor specificsystems. The force-gradientcomposi- (q0,p0)→(qk,pk)isexplicitlycomputableas[2]: X r tgieonnehraalssbeepeanrpabrolepoHseadmailstoanmiaonresyesffitecmiesntbsuptlirtteiqnugisrechseemvaelufoar- qi =qi−1+τci∂∂Tp (pi−1) (3) a tionoftheforcegradient[3]. Theforce-gradientcompositions pi = pi−1−τdi∂∂Vq (qi) benefit from all-positive splitting coefficients meaning that for i = 1,2,...,k. Note that the intermediate steps (q,p ),j = j j onlyforwardstepsaretakeninphasespaceandaretherefore 1,2,...,k−1, referredto assubsteps, donotrepresentthe time referred to as a forward SIs. Non-gradient splitting methods evolution of (q ,p ). SIs are time reversibleif the symplectic 0 0 ofordershigherthantwoalwaysinvolvenegativecoefficients coefficients are symmetric[2]. Time reversibilityimplies that [5]. ToconstructmoreefficienthighorderSIsithasbeenpro- z(0) → z(τ)can be exactlyrevertedby z(0) ← z(−τ). This posedthat the absolute valueof negative coefficients and the property is embraced throughout this paper. The symmetric sumofpositivecoefficientsshouldbeminimized[5]. compositionintheformofEq. 3withd =0isreferredtoas k ABA[5]. Iftherolesof AandBinEq. 2areswitchedthetime This paper presents a series of efficient fourth order SIs evolutionisexplicitlycomputableas: which are ideal for numerical integration of particle systems with quadratic kinetic energy. Additionally, some of the pre- pi = pi−1−τdi∂∂Vq (qi−1) (4) sented integrators exhibit higher order accuracy for systems qi =qi−1+τci∂∂Tp (pi) thatresembletheharmonicoscillator. Thepresentedsplitting coefficientsgenerallyhavesmallabsolutevaluesandarethere- fori=1,2,...,k. ThesymmetriccompositionintheformofEq. forereferredtoasnear-forwardSIs. 4 with c = 0 is referred to as BAB. Table 1 summarizes the k ∗[email protected] 1 symmetricstructuresoftheABA-andBAB-composition.Note by the entries Q in Table 2where h denotes the intermedi- h,λ thatthecanddcoefficientsareconsistentlyusedinconnection atestepnumber. ThisdecompositionfollowsdirectlyfromEq. with the ∂T/∂p and ∂V/∂q term respectively. The computa- 6. A similar decomposition can be constructed for the ABA tionalcostofSIsisapproximatelyproportionaltothenumber composition. Thepositioncontributionζλ foreachorderλis ofderivativeevaluations(stages). Thenumber ofstagesisde- introducedas: fined as s = k−1 for symmetric coefficients due to the first same as last property, which implies that the first derivative ζλτλ ≡Qs,λτλ,λ=0,1,...,λmax (7) evaluationisthe sameas the lastderivativeevaluationofthe wheresisthenumberofstages. Thenewpositioncanthenbe previousiteration. calculatedasthesumofallpositioncontributions: Table1:ABAandBABcompositionforsymmetriccoefficients qb =λ∑maxτλζλ+o τλmax+1 (8) λ=0 (cid:16) (cid:17) ABA BAB Supposethataknownfunctionq(t)existssuchthatq(t0)=qa d1 =dk−1 c1 =ck d1 =dk c1 =ck−1 and q(t0+τ) = qb+o(τλmax+1) then qb is expressed by the d2 =dk−2 c2 =ck−1 d2 =dk−1 c2 =ck−2 powerseries: . . . . . . . . . . . . q(t +τ) 0 ddkk−−21 ck−1 dk−1 cckk−−21 =qa+ q′(1t!0)τ1+ q′′2(!t0)τ2+...+ q(λλmmaxa)x(!t0)τλmax+o τλmax+1 dk =0 ck dk ck =0 =ζ0+ζ1τ1+ζ2τ2+...+ζλmaxτλmax+o τλmax+1 (cid:16) (cid:17) (cid:16) (cid:17) (9) IftheSIisof Nthorderthen ethods III. M q(λ)(t ) Thissectionfirstdescribesadecompositionmethodwhich λ! 0 τλ =ζλτλ,λ=0,1,...,N (10) followsdirectlyfromthecompositionofthesimpleharmonic for any function q(t) that qualifies as a time evolution in oscillator. It is then shown that this decomposition can be H(p,q)=T(p)+V(q). Thesimpleharmonicoscillator(SHO): used to satisfy general fourth order conditions and higher p2 1 orderconditionsforthesimpleharmonicoscillator. H= + kq2 (11) 2m 2 Asingleiterationfrom(qa,pa)to(qb,pb)usingthes-stage isenforcedbyapplyingthecondition Q¯h,λ = ∂V/∂q(Qh,λ)in BAB-composition(Eq. 4)canbeexpandedinto: Table2. TheSHOyieldsthewell-knownanalyticaltimeevolu- tionofq: p1 = pa−τd1∂∂Vq (qa) q1=qa+τc1∂∂Tp (p1) q(t)=acos kt +bsin kt (12) p = p −τd ∂V (q ) rm ! rm ! 2 1 2∂q 1 ... (5) Using Eq. 10 where ζ0,ζ1,...,ζ6 are evaluated in Table 2 the following identities must be true for symmetric fourth order qs =qs−1+τcs∂∂Tp (ps)=qb splittingcoefficients: ps+1= ps−τds+1∂∂Vq (qs)= pb h1 =ζ0 =qa Suppose now that ∂T(p) ∂p = p m which applies to many 1 kb=ζ = pa (2c +c ) 1! m 1 m 1 2 classicalsystemsincludingthesimpleharmonicoscillator. Eq. (cid:14) (cid:14) −q1 ka=ζ =−kqa (d +d )(2c +c ) 5thenyields: 2!m 2 m 1 2 1 2 (13) 3 −1 k 2b=ζ =−2c d kpa (c +c ) qq12==qq1a(+1τ+c1Cpm2a)+−τC22Dqa1m+−τ12∂∂DVq2(mq−a)1∂∂Vq (q1) 41!3!m(cid:16)k m2(cid:17)a=ζ4 =3 c1d2km2q12a (22mc21d11+2c22d1+c2d2) q =q (1+C )−C q +τ2D m−1∂V (q ) (cid:16) (cid:17) 3 2 3 3 1 3 ∂q 2 Eliminationoftheconstantsaandbyieldstheidentities: . (6) . . 1=2(d +d )(2c +c ) 1 2 1 2 qs =qs−1(1+Cs)−Csqs−2+τ2Dsm−1∂∂Vq (qs−1) 1=12c1d2(c1+c2)/(2c1+c2) (14) ps+1=mqs−τcqss−1 −τds+1∂∂Vq (qs) 1=24c1d2(2c1d1+2c2d1+c2d2) ItisreadilyfoundthattheonlyrealsolutionsatisfyingEq. 14 where Cn = cn+1/cn and Dn = −cndn. The first same as last istheoneoriginallyfoundby[1]: propertyallowssubstitutionof pa by ps+1 yieldinganexpres- sionthatisindependentof p. Eq. 6yieldssignificantlylarger d =d = 1 = 1 −d = 1 −d truncation errors than Eq. 5 and is therefore not suitable for c1=c4= 2(21−21/=3) 1(12−c2) 2 3 (15) practicalimplementation. However,Eq. 6allowsseparationof 1 3 2−21/3 2 2 τλtermsforanyorderλ=0,1,...,λmaxwhereλmaxisthemax- A closerexamination of Table 2reveals that m, k and qa only imumnumberoferrortermswhichappearbydecomposition. appear as scalars of ζ0,ζ1,...,ζλmax the τ0, and that τ2 and τ4 Forinstanceconsiderthethreestagedecompositionexpressed separationscanbeexpressedasinTable3. 2 Table2:BABdecompositionforsymmetriccoefficientswhereC¯h=Ch+1,Q¯h,λ=m−1∂V/∂q(Qh,λ)andQh,λdenotesthetablevalueatindices(h,λ) hτλ τ0 τ1 τ2 τ3 τ4 τ5 τ6 0 qa 1 Q0,0 c1pam−1 D1Q¯0,0 2 Q C¯ −C Q Q C¯ Q C¯ +D Q¯ D Q¯ D Q¯ 1,0 2 2 0,0 1,1 2 1,2 2 2 1,0 2 1,1 2 1,2 3 Q C¯ −C Q Q C¯ −C Q Q C¯ −C Q +D Q¯ Q C¯ +D Q¯ Q C¯ +D Q¯ D Q¯ D Q¯ 2,0 3 3 1,0 2,1 3 3 1,1 2,2 3 3 1,2 3 2,0 2,3 3 3 2,1 2,4 3 3 2,2 3 2,3 3 2,4 Table3:Decomposition of even orders expressed in terms of the splitting objectives κ and κ are always 0 if ∑k c = ∑k d = 1. 0 1 i=1 i i=1 i coefficients.mandqaaresetto1 Additionally these identities eliminate one c and d variable from the minimization procedure. The minimization is per- hτλ τ0 τ2 τ4 formed using an adaptive simplex method [7] minimizing 0 1 only one objective κmax = max(κ1,κ2,...,κλ). Solutions are 1 1 provided in the following section with minimization criteria 1 1 − ∑ ci ∑ dj κmax < 1e−128 calculated using software-implemented ar- i=1 j=1 bitrary precision arithmetic (2048bit, 256bit exponent). Four 2 i 1 1 2 1 − ∑ ci ∑ dj − ∑ Qm,2dm+1 ∑ ck unique sets of splitting coefficients are presented in the fol- i=1 j=1 m=1 k=m+1 lowing section. The non-unique solutions are picked among . . . . .. .. .. .. thousands of solutions based on the sum of the absolute val- h i h−1 h−1 uesofthesplittingcoefficientsandhigherorderSHOerrors. h 1 − ∑ ci ∑ dj − ∑ Qm,2dm+1 ∑ ck i=1 j=1 m=1 k=m+1 Symmetriccoefficientsomitoddordererrorterms[2],im- plyingthatthefollowingidentitiesmustbetruetosatisfythe esults IV. R fourthconditionsfortheSHO: ζ = q′′(0) =−1 =− ∑h c ∑i d A. Obtainedsplitting coefficients 2 2! 2! i j i=1 j=1 (16) ζ4= q′′4′′(!0) = 41! =−mh∑−=11Qm,2dm+1k=∑mh+1ck in TSapbllietti4nigncaorerfafiycifeonrtmsawtitfhorficvoentvoenniiennetsitmagpelsemareenptaretisoenntfeodr variousprogramminglanguages. It has previously been shown that Eq. 16 is in fact general second and fourth order criteria [6]. This implies that split- TwodifferentkindsofBABsolutionsareevaluated: tingcoefficients satisfyingEq. 10to atleastfourthorderalso satisfyEq. 2toatleastfourthorder. Compositionswithmore • BAB: Solution to Eq. 10 using BAB decomposition(see stagesandhigherorderSHOcriteriacanbeexploitedforsig- Table2). nificantly reducing higher order error terms. In this sense, the higher order SHO criteria are used only as a constraint • BAB’:SolutiontoEq. 10usingABAdecompositionwith for obtaining efficient splitting coefficients for more general coefficientsc0 =cs+1=0inEq. 3. Hamiltoniansystems. The difference between the BAB and BAB’ solutions is re- Analyticalevaluationofsplittingcoefficientsformorethan vealedbyEq. 5wheretheerrorof ps+1 remainsunaddressed three stages quickly becomes hopeless. Instead a numerical for the BAB solutionas opposedto BAB’ solutionwhere the routine has been developed to satisfy the multi-objective op- error of qs+1 remains unaddressed. Thus the BAB and BAB’ timization problem with variables c and d and minimization solutions possess different constraints which may influence objectiveκ: theirperformanceineitherdirection. κλ ≡ q(λ)(ti)−λ!ζλ(c,d) =0,λ=1,2,...,λH (17) BAB and BAB’ solutions should be implemented accord- (cid:12) (cid:12) where λH(cid:12)(cid:12)is referred to as the(cid:12)(cid:12)SHO order constraint and κλ ingtoEq. 4. UniquesolutionssatisfyboththeABAandBAB forλ=1,2,...,λ aretheminimizationobjectives. Numerical decompositions and can therefore be implemented as either, H experiments suggest that for λ > 5 every additional stage althoughtheperformanceofthepresentedsolutionsdepends H yields two increments of λmax and a single increment of λH ontheappliedscheme. forwhichatleastonerealsolutionexists. The naming convention of the obtained methods is TheBABdecompositionisnumericallyevaluatedwiththe [scheme]s[stages]o[order]H, for instance BAB’s9o7H for a BAB- choice of constants in Eq. 12: a = −b = 1 and m = k = 1 optimizedschemewith nine stagesand seventh harmonicor- corresponding to the initial conditions qa = −pa = 1. The der. 3 B. Numericaltests −2 Ruth [ABA] s5odr4 [ABA] Common methods used to benchmark SIs for integration −4 ABA104 [ABA] ofautonomousHamiltoniansystemsinclude[4][5][8]: ABA864 [ABA] r ro −6 ABA1064 [ABA] r • ThemaximumHamiltonianerror: max(|∆H(t)/H0|) n e Yosh s7o6 A [ABA] a −8 • ThemeanHamiltonianerror: mean(|∆H(t)/H |) ni 0 o • Theaccumulatederrorofintegrals milt−10 a H m −12 where H istheinitialHamiltonian. Eachofthesebenchmark u 0 m methodsareappliedthroughoutthissection. xi−14 a m ABAs5o6H A [ABA] The following 10 symmetric SIs are benchmarked for three −16 BABs7o7H [BAB] autonomous Hamiltonian systems: The simple harmonic os- BAB’s8o7H [BAB] cillator,theHénonHeilessystemandtheKeplerproblem: −18 BAB’s9o7H [BAB] −3 −2.5 −2 −1.5 −1 −0.5 • Ruth[ABA]3-stage,4thorder[1] time per evaluation • s5odr4[ABA]5-stage,4thorder[9] • ABA104[ABA]7-stage,10-4generalizedorder[5] • ABA864[ABA]7-stage,8-6-4generalizedorder[5] −2 • ABA1064[ABA]8-stage,10-6-4generalizedorder[5] • Yoshs7o6A[ABA]7-stage,6thorder[2] −4 • ABAs5o6H[ABA]5-stage,4thorder • BABs7o7H[BAB]7-stage,4thorder −6 • BAB’s8o7H[BAB]7-stage,4thorder or r • BAB’s9o7H[BAB]9-stage,4thorder n er −8 a ni o−10 where [ABA] and [BAB] denote suggested ABA- and BAB- milt implementation respectively. It should be noted that the a generalizedorderschemesaredesignedforperturbedHamil- H−12 n tonian systems H = HA+ǫHB with ǫ ≪ 1. It should also a e−14 be noted Yosh s7o6 A yields the smallest errors of the three m stage-optimized sixthorder integrators presentedby [2], and −16 thatthisintegratorishereevaluatedtoreferencehigherorder accuracyandstability. −18 Numerical tests are performed using double precision −3 −2.5 −2 −1.5 −1 −0.5 floating point format with compensated summation. Com- time per evaluation pensated summation drastically reduces truncation errors for long-term symplectic integration (see [9] and references Figure1:Integrator benchmark using the SHO in the time interval t ∈ therein). AllnumericalintegrationsareperformedusingZym- [0,500]. Top: Maximum Hamiltonian error. Bottom: Average plectic (v.1.01.00) from Zymplectic.com, which is a numerical relativeHamiltonianerror.Thedashedlinesshowbenchmarkpro- frameworkdesignedfornumericalintegrationandbenchmark files for integrators of corresponding color using extended preci- ofseparableHamiltoniansystems. sion. Thehorizontalaxescorrespondtoτ/s. Allaxesareinbase 10logarithmicunits.Legendappliestobothgraphs Thesimpleharmonicoscillator Consider the Hamiltonian of the one-dimensional SHO (Eq. The ABA- and BAB-decompositionfrom the previoussec- 11) with k = m = 1 and initial conditions (p,q) = (0,1). tioncanbeutilizedtodetermineerrorcontributionsofdiffer- Figure 1 shows a benchmark profile of the 10 integrators for ent orders. More precisely, κλ can be evaluated for all λ to theSHO.Everypointoneachlinecorrespondstoacomplete resolvethemagnitudeofhigherordererrorsfortheSHO.This integration in a given time interval. The slopes of the lines canbeusedtocharacterizehigherordererrortermswhichof- read the integrator order. It is noticable that the integrators tendivergerapidlyforhighorderstage-optimizedintegrators. ABAs5o6H A, BABs7o7H, BAB’s8o7H and BAB’s9o7H be- While these error terms strictly apply to the SHO, they still haveassixthorderintegrators. covergeneralequationspresentintheexpansionofEq. 2. 4 Q : Ruth ABA Ruth [ABA] −2 QBAB: Ruth s5odr4 [ABA] Q : ABAs5o6H A ABA104 [ABA] ABA Q : ABAs5o6H A −4 ABA864 [ABA] BAB r 106QABA: BAB’s8o7H erro AYBosAh1 0s76o46 [ AAB [AA]BA] Q : BAB’s8o7H n −6 BAB a Q : ABA1064 ni ABA o 104QBAB: ABA1064 milt −8 Q : Yosh s7o6 A a ABA H Q : Yosh s7o6 A m −10 BAB u m 102 xi a−12 λ m κ ABAs5o6H A [ABA] BABs7o7H [BAB] −14 BAB’s8o7H [BAB] 0 10 BAB’s9o7H [BAB] −3.5 −3 −2.5 −2 −1.5 −1 −0.5 time per evaluation −2 10 −2 −4 10 −4 4 6 8 10 12 14 16 18 λ r o r −6 r e Figure2:SHOdecompositionofselectedintegratorsforboththeABA-(cir- n clemarker)andBAB-composition(solidline). Linesandmarkers a ni −8 ofthesamecolorintersectexactlyatevenorders o milt Figure2showspositionerrortermsofselectedintegratorsfor a−10 H the SHO. Notice that the obtained BAB methods have more n a error terms when implemented as ABA methods. Further- e m−12 more the seventh harmonic order of BAB’s8o7H eliminates theseventhordererrortermofthepositioncoordinateforthe BAB implementation as opposed to the sixthharmonic order −14 integrator ABAs5o6H A. The largest integer value of λ with no integration error reads the SHO integration order. Stage- −16 optimizedintegratorsofhigherordersgenerallyhaverapidly −3.5 −3 −2.5 −2 −1.5 −1 −0.5 diverginghigher ordererror contributions. This implies that time per evaluation theseintegratorsarenotsuitableforintegratingtheSHOwith largetimesteps. Figure3:IntegratorbenchmarkusingtheHénonHeilessysteminthetime interval t ∈ [0,500]. Top: Maximum Hamiltonian error. Bot- TheHénonHeilessystem tom:AveragerelativeHamiltonianerror. Thehorizontalaxescor- TheHénon-HeilessystemisoneofthemoststudiedHamilto- respondtoτ/s.Allaxesareinbase10logarithmicunits.Legend niansystemsduetoitsapplicationsincelestialmechanics,its appliestobothgraphs non-integrable properties,chaoticdynamics and fractal struc- tures. Considerthe Hamiltonian of the Hénon-Heiles system TheKeplerproblem withinitialconditions[qx,qy,px,py]=[0.3,0.0,0.0,0.4]: Symplectic integration has been widely used for high accu- H= p2x+2p2y + qx2+2qy2 +qx2qy− 31qy3 (18) racy simulations of the Solar System (see [8] and references therein). IthasbeenproposedthatMercuryduetoitsfastor- where in this case H = 1/8, inside the chaotic domain. Fig- bital periodand higheccentricityislimitingthe performance ure3shows abenchmark profileof the 10 integratorsforthe of SIs when integrating the Solar System [8]. Consider the HénonHeilessystem.TheHénonHeilessystemcanbeconsid- HamiltonianoftheplanarSun-Mercurysystem: eredasaperturbedSHOforsmallvaluesofqxandqy. Forthis reasonitappears that especiallyBAB’s8o7Hand BAB’s9o7H exhibitasixthorderdescentoferrorforlargeτ. H= kpk2 −GmSmM ≈ kpk2 −GmSmM (19) 2M kqk 2mM kqk 5 where M isthereducedmass, G isthe gravitational constant, Ruth [ABA] and m and m are the masses of the Sun and Mercury re- S M s5odr4 [ABA] spectively. The planar Sun-Mercurysystemis hereevaluated −4.5 ABA104 [ABA] usingdata fromnssdc.gsfc.nasa.gov wherethe aphelionischo- ABA864 [ABA] senastheinitialSun-Mercurydistanceyieldingtheminimum or −5 ABA1064 [ABA] orbitalvelocity. rr e Yosh s7o6 A [ABA] n a−5.5 Figure 5 shows a benchmark profile of the 10 integrators ni o for the Sun-Mercury system. It is noticable that ABA104 milt −6 shows the best performance in regardto the maximum error a and BAB’s9o7Hshows the bestperformanceinregardto the H m averageerror. −6.5 u m xi The accumulated error in a two body system (Sun-Mercury) ma −7 ABAs5o6H A [ABA] manifestsasasecularadvanceoftheorbitalellipsesimilarto BABs7o7H [BAB] the precession of perihelion induced by general relativity or −7.5 BAB’s8o7H [BAB] the gravitational pull of other planets. The mathematical na- BAB’s9o7H [BAB] ture of the secular SI error is described by [10]. The secular advance of the orbital ellipse can be evaluated through the −8 0.4 0.6 0.8 1 1.2 1.4 rotationoftheLaplace-Runge-LenzvectorA: time per evaluation A=p×L−rˆ (20) −5.5 whererˆ =r/r, L= r×p,pisthemomentumvectorandris −6 thepositionvectorwithlengthr. r o r r e n −6.5 a ABAs5o6H A [ABA] ni o 104 BABs7o7H [BAB] milt −7 BAB’s8o7H [BAB] a H ry) BAB’s9o7H [BAB] an −7.5 u 3 e nt10 m e −8 c n a uli102 −8.5 J c/ e s −9 c ar101 0.4 0.6 0.8 1 1.2 1.4 dt| ( Rs5uothd r[4A B[AAB]A] time per evaluation θ/ d ABA104 [ABA] Figure5:Integrator benchmark using the planar Sun-Mercury system in |100 ABA864 [ABA] thetimeintervalt ∈ [0,10yr]. Top: MaximumHamiltonian er- ror. Bottom: AveragerelativeHamiltonianerror. Thehorizontal ABA1064 [ABA] axescorrespondtoτ/sinunitsofhours. Allaxesareinbase10 Yosh s7o6 A [ABA] logarithmicunits.Legendappliestobothgraphs 10−1 2 10 Theorbitalprecessionadvanceslinearlywithtimet[10]. The orbital periods/(τ/s) rotation θ is introduced as the angle of A implying that θ(t) is a linear function and is chosen such that θ(0) = 0. Fig- Figure4:Advanceofperihelion(absoluterotationvelocity)asafunctionof ure 5 shows the perihelion precession dθ/dt which has been thenumberofevaluationsperorbit. Linearfit95%confidencein- obtained numerically through linear regression of θ(t) over tervalsoftheperihelionadvancearesignificantlysmallerthanthe dotsize. TheintegratorsABAs5o6H,ABA104andBAB’s8o7H numerousorbitalperiods. ComparisonofFigure4and5sug- achieve approximately the same performance, obfuscating their gests that the accumulated error is in better agreement with plots theaverageerrorthanthemaximumerror. 6 0.2 0.4 0.6 0.8 1 1.2 1.4 0.05 0.1 0.15 0.2 0.25 0.3 (A) (C) 1 0.4 0.3 0.8 0.2 0.1 0.6 0 p p 0.4 −0.1 −0.2 0.2 −0.3 0 −0.4 −0.5 −0.2 (B) (D) 1 0.4 0.3 0.8 0.2 0.1 0.6 0 p p 0.4 −0.1 −0.2 0.2 −0.3 0 −0.4 −0.5 −0.2 −0.2 0 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 q q Figure6:PhasespaceillustrationofthesubstepsperformedovertwoiterationsbyYoshs7o6A(A)(C)andBABs7o7H(B)(D).Theintegratorsareappliedto theSHO(A)(B)withinitialconditions(q,p)=(0,1)andtimestepτ=π/4,andtheHénon-Heilessystem(C)(D)inthey-plane(qx= px =0) withinitialconditions (q,p) =(qy,py) = (0.4,0.4)andtimestepτ =2. BluecirclesandXsindicatetheinitialandfinalpositionsrespectively foreachiteration. Bluedotsindicatesubstepswithpositivec andd coefficientforcalculatingthenextsubstep. Reddotsandgreendotsindicate i i substepswithnegative c andd coefficientsrespectivelyforcalculatingthenextsubstep. Agreendotwithinareddotindicatesthatbothc and i i i d arenegative. ThecontourcolorsdisplaytheHamiltonianwithvaluesgivenbythecolorbars. (C)showsanunstableintegrationwhereHisnot i conserved.(A)(B)and(D)showstableintegrationswhichpreserveHindefinitely iscussion V. D evitablycausehigherrorsultimatelywaivingsymplecticprop- ertiesofSIs. Higherorderintegratorsaregenerallymorecon- Athoroughbenchmarkanalysisof10differentintegrators strained and usually involve several negative splitting coeffi- has been performed for the SHO, the Hénon Heiles system cientswithlargeabsolutevalues. Theperformancebreakpoint and the Keplerproblem. All numerical tests suggestthat the of higher order integrators can be visualized by considering obtainedintegratorsinspiteofanincreasednumberofstages the executed substeps. Figure 6 illustrates the substeps per- greatlyandconsistentlyimprovetheintegrationaccuracyand formedbytwo sevenstageSIs (Yoshs7o6Aand BABs7o7H) stability. Infact, thenewschemesoutperformstheacclaimed for the SHO and Hénon-Heiles system. Figure6 reveals that stage-optimized integrator Ruth by several orders of magni- Yosh s7o6 A (A) (C) performs large forward and backward tude. The higher order behavior for SHO-perturbed systems stepscomparedtoBABs7o7H(B)(D).Thestepsaretoolarge is an additional perk of the obtained integrators. This prop- in (C) for the Hamiltonian to be preserved. BABs7o7H and ertymay be particularlyusefulin fieldsofmoleculardynam- othersplittingcoefficientsobtainedinthispapergenerallyper- ics where symplectic correctors may not be suitable. Opti- formsmallnear-forwardsteps.Notethatsomeofthemethods mized fourth order schemes appear to be useful for achiev- presentedinTable4onlyhavesmallcoefficientsforeitherdor ing high numerical stability allowing large time steps with c. Forthisreasontheintegratorperformancemaychangedras- minimal integration error. High stability is particularly im- ticallyiftherolesofTandVareswitched. Theperformanceof portant for systems where the complexity of H varies with theobtainedintegratorsgenerallydeclinesforsystemswhere time: CloseencountersinthegravitationalN-bodysystemin- T(p)deviatessignificantlyfromasquaredkineticenergy. 7 onclusion VI. C It has been found that harmonic order conditions higher Efficient fourth order splitting coefficients have been ob- thansevenoftenintroducemorenegativesplittingcoefficients. tained by satisfying higher order conditions for the simple A largernumber of stages presentsmoredegreesof freedom harmonicoscillator. Numericaltestsindicatethattheobtained resulting in more inappropriate solutions. Additional con- integratorsoutperformthethreestagefourthorderintegrator straints should be pursued to obtain efficient splitting coef- by R. Ruth as well as the more optimized integrators by W. ficientswithmorethanninestages. Kahan and S. Blanes. The obtained integrators also compare The presented decomposition can be used to satisfy gen- favorably with higher order integrators by H. Yoshida for eral fourth order criteria and higher order conditions specif- moderatetimesteps. Theintegratorsareparticularlysuitable ically for the simple harmonic oscillator. This work suggests for particle systemsthat requirehighnumerical stability and thatgeneralpurposehighaccuracy,highstabilityexplicitsym- accuracy at large time steps. The best performance is gen- plectic integrators can be pursued by approaching multiple erally achieved by the methods BAB’s9o7H, BAB’s8o7H and higherorderconditions. Thishasbeenachievedherebysatis- ABAs5o6HA. fyingindividualhighorderentries. eferences R [6] Optimized fifth ordersymplecticintegrators for orbital problems. Tselios, Kostas and Simos, T.E. 1, 2013, Re- [1] Fourth-ordersymplecticintegration.Forest,Etienneand vistaMexicanadeAstronomíayAstrofísica,Vol.49,pp. Ruth,RonaldD.1,1990,PhysicsD,Vol.43,pp.105-117. 11-24. [2] Construction of higher order symplectic integrators. [7] ImplementingtheNelder-Meadsimplexalgorithmwith Yoshida, Haruo. 5-7, 1990, Physics Letters A, Vol. 150, adaptive parameters. Gao, Fuchang and Han, Lixing. pp.262-268. 1, 2012, Computational Optimization and Applications, [3] Forward Symplectic Integrators for Solving Gravita- Vol.51,pp.259-277. tional Few-Body Problems. Chin, Siu A. and Chen, C. R.3-4,2005,CelestialMechanicsandDynamicalAstron- [8] Highprecisionsymplecticintegrators forthe Solar Sys- omy,Vol.91,pp.301-322. tem. Farrés,Ariadna, etal.2, 2013, CelestialMechanics andDynamicalAstronomy,Vol.116,pp.141-174. [4] Wisdom, J., Holman, M. and Touma, J. Symplectic Correctors. [book auth.] Jerrold E. Marsden, George [9] Composition constants for raising the orders of uncon- W. Patrick and William F. Shadwick. Integration Algo- ventional schemes for ordinary differential equations. rithms and Classical Mechanics. s.l. : Providence, RI, Kahan,WilliamandLi,Ren-Cang.219,1997,Mathemat- 1996,Vol.10,pp.217-244. icsofComputation,Vol.66,pp.1089-1099. [5] Newfamiliesofsymplecticsplittingmethodsfornumer- icalintegrationindynamicalastronomy.Blanes,Sergio, [10] Physics of symplectic integrators: Perihelion advances et al. June 2013, Applied Numerical Mathematics, Vol. and symplectic corrector algorithms. Chin, Siu A. 3, 68,pp.58-72. 2007,PhysicsreviewE,Vol.75. 8 Table4:Obtainedsplittingcoefficientswith77digits.Themethodsareorganizedaccordingtotheirstagecount. UniqueABAs5o6H,A,BandC d(1) = 0.1558593591762168313166117535752091422239663993391011462498104831549442591694 d(2) =-0.0070254990919573173514483364758218294773716640092220571342056284758867609611 c(1) =-0.6859195549562166768601873150414759494319985863677163820719179393682014399373 c(2) = 0.9966295909529363159571451429325843698583459772292551181721475637244006507927 d(1) = 0.4020196038964999834667409950496227775945673320979099323902806525851620445492 d(2) = 0.5329396856308538150258772262086702929451721575835842834460326556965220312130 c(1) = 0.9110842375676615218574607388486783304139753525628699898390474132061253024968 c(2) = 0.1740059542332660799009374186088931171982348451547482386207462271424421679090 d(1) = 0.1868565631155112597511173758337610451623768791420295598869906080256347098408 d(2) = 0.5520581660514781484261043096825685955052553493857487316732455515112095793516 c(1) = 0.5642486163110637621453746447826190031465518453448216443978248524452914255263 c(2) =-0.2393627021773294286793711975145735718917010075899623225091609656425715483488 d(3)=0.5-d(1)-d(2);d(4)=d(3);d(5)=d(2);d(6)=d(1); c(3)=1-2*(c(1)+c(2));c(4)=c(2);c(5)=c(1); UniqueBABs6o7H(moreexist),BABs6o5HandBAB’s6o5H d(1) = 0.0832701092493097690276300822599156817795619881080575430174826369500044839553 d(2) = 0.3997273690963360211284395920007795550575060531634793748020207288976344439468 d(3) =-0.0541842778124726964199287659702152862181671805554302053695494244408226729818 c(1) = 0.2475471587650765967910125296669232190787926795528258860075742877866898482465 c(2) = 0.5446579217808193419580029125986805136192611468678745304306198457355253495088 d(1) = 0.0658831533161155021794371297629949214211270641450367882108652454225238292357 d(2) =-0.6711629060948253965117521242801468651670183829736696004743743104248379033034 d(3) = 0.9736703100725350498414312651550857191131218932308788320806762063004096320895 c(1) = 0.2265023974336291596186923088995152371194987043433278784212774210853229477086 c(2) =-0.0047799986678794678665602622568725658855054645768977416258774175978957628102 d(1) = 0.0650508268637574949487516678539036744380576078003520231297474895927182047842 d(2) =-0.3948051939117155639582651907195511796839512131373933326629623631591978696178 d(3) = 0.6918498547904058960782554213200966000604457266088855079657967408955821538731 c(1) = 0.2328962665845291347812910553597276545034489573682700034501734659308763580659 c(2) =-0.0111617638003721094728940473306267483522869816097800738075975236192041340802 d(4)=1-2*(d(1)+d(2)+d(3));d(5)=d(3);d(6)=d(2);d(7)=d(1); c(3)=0.5-c(1)-c(2);c(4)=c(3);c(5)=c(2);c(6)=c(1); BABs7o7HandBAB’s7o6H d(1) = 0.0638745574250616045658401356462756092272737349204789877616691621039130680037 d(2) =-0.0650239777505938311516598494765811300128929849501107531440553736739769298894 d(3) = 0.2509446105745547370613575645855473357282136355718617210088090794709222342775 c(1) = 0.2752781729059777393394978710448690782125215018949186085075325605348526197756 c(2) =-0.0843138705589167473554015820986490036832890668438279781819362930106920807542 c(3) = 0.1674497222006475614401177016323447087805836086414469568091358611098423440220 d(1) = 0.0522155297747848201407012160969040693245471580104797248381281194964273517726 d(2) =-0.0824972558529561412131911937717420514162728339681056503508469680313691406287 d(3) = 0.3285541797987193353601113204079269672646845923663727576986276602617960257026 c(1) = 0.2487563308365098625528031803769571289196558939258433219240690943143969198069 c(2) =-0.0651011247076581799932061212576878177123945470202647856511921757791017775052 c(3) = 0.2480624780675545152650672751613106579864581926645260137078906816928505888862 d(4)=0.5-d(1)-d(2)-d(3);d(5)=d(4);d(6)=d(3);d(7)=d(2);d(8)=d(1); c(4)=1-2*(c(1)+c(2)+c(3));c(5)=c(3);c(6)=c(2);c(7)=c(1); BAB’s8o7H d(1) = 0.0538184115480034769403763798524605188562842390760879592632218376015166638395 d(2) = 0.1648743326910472361014809085317059425299121141031052090901977952513984878990 d(3) = 0.3895399407808198068744134256203146340834631254960864069726823667050364522355 d(4) =-0.2288957415563594299572505173565338312542463595622272333825061768110435645417 c(1) = 0.1486140577445185629163082471176700173109512976367237631150576219945233462284 c(2) = 0.1071986675806227950500566279939336794589433458464489776124879870581484936262 c(3) =-0.0149646736494517061945681450558142918831874360003431672632178480031079700216 d(5)=1-2*(d(1)+d(2)+d(3)+d(4));d(6)=d(4);d(7)=d(3);d(8)=d(2);d(9)=d(1); c(4)=0.5-c(1)-c(2)-c(3);c(5)=c(4);c(6)=c(3);c(7)=c(2);c(8)=c(1); BAB’s9o7H d(1) = 0.0464929004396589154281717058427105561306160230440930588914036807441235817244 d(2) = 0.1549010127028879927850680477816652638346460615901974901213193690401204696252 d(3) = 0.3197054828735917137611074311771339117602994884245091220333340037841616085048 d(4) =-0.1929200088157132136865513532391282410293753210475133631464188500663304857888 c(1) = 0.1289555065927298176557065467802633438775379080212831185779306825670371511433 c(2) = 0.1090764298548827040268039227200943338187149719339317536310302288046641781422 c(3) =-0.0138860356804715144111581981849964201100030653749527555344377031679795959892 c(4) = 0.1837549745641803566768357217228586277331494085368674804908537743649129597425 d(5)=0.5-d(1)-d(2)-d(3)-d(4);d(6)=d(5);d(7)=d(4);d(8)=d(3);d(9)=d(2);d(10)=d(1); c(5)=1-2*(c(1)+c(2)+c(3)+c(4));c(6)=c(4);c(7)=c(3);c(8)=c(2);c(9)=c(1); 9

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.