Efficient fourth order symplectic integrators for near-harmonic separable Hamiltonian systems KristianMadsEgerisNielsen∗ Abstract Efficientfourthorder symplecticintegrators are proposedfor numericalintegration ofseparable Hamiltonian systems H(p,q) = T(p)+ V(q). Symmetricsplitting coefficients with five to nine stages are obtained by higher order decomposition of the simple harmonic oscillator. TheperformanceofthemethodsisevaluatedforvariousHamiltoniansystems: Integrationerrorsarecomparedtothoseofacclaimedintegrators composedbyS.Blanesetal.(2013),W.Kahanetal.(1999)andH.Yoshida(1990).Numericaltestsindicatethattheintegratorsobtainedinthis 5 paperperformsignificantlybetterthanpreviousintegratorsforcommonHamiltoniansystems. 1 0 Keywords: Hamiltoniansystem,symplecticintegration,simpleharmonicoscillator,optimizedfourthorder 2 b ntroduction undamental theorems I. I II. F e F Explicitsymplecticintegrators(SIs,singularSI)arenumer- Consider the general separable Hamiltonian H(q,p) = 9 ical integration schemes for separable Hamiltonian systems. V(q)+T(p)with p˙ =−∂H/∂qandq˙=∂H/∂pwhereqand p SIsarewidelyusedinfieldsofcelestialmechanics,accelerator arecanonicalcoordinatesconventionallylabeledpositionand ] h physics,moleculardynamics,and quantum chemistrydueto momentum respectively. Bydefining z = (q,p), the timeevo- p their structure-preservingpropertiesand simpleimplementa- lutionofzcanbeexpressedby[2]: - tion. nt z(τ)=eτ(A+B)z(0) (1) a u Numerous SIs with increased accuracy and stability have where A and B are non-commutative operators associated q been published since the first discovery of the fourth order with T and V, and τ is the time step. A set of real numbers [ SI [1]. The perhaps most acclaimed splitting composition is exist(c ,c ,...,c )and (d ,d ,...,d ),referredtoassplittingco- 1 2 k 1 2 k 2 derivedbyH.YoshidawhoprovedthatSIsofarbitrarilyhigh efficients, that satisfy ∑ki=1ci = ∑ki=1di = 1 suchthat the time even order exist and can be constructed using Lie algebra evolutionof zcan beapproximatedbyaproductofexponen- v 5 [2]. Other more recent studies on the topic of high stability tialfunctions[2]: SIs include force gradient schemes [3] and symplectic correc- 4 k 3 tors [4][5]. The integration orderis often associated with the eτ(A+B) =∏eciτAediτB+o τN+1 (2) 4 efficiency of numerical integration schemes. Nth order inte- 0 grators have their integration error reduced by a factor kN i=0 (cid:16) (cid:17) 1. when the time step is reducedby a factor k, making high or- where o(τN+1) denotes an error on the N+1 order term. It 0 derintegratorshighlyfavorableforsmalltimesteps. However, iscommonpracticetoexpandtheexponentialtermsbypower 5 higher order error terms cannot be neglected for large time series with respect to τ. Lie algebra can be applied to de- 1 steps. Symplecticcorrectorshave beenproposedforeliminat- termine the splitting coefficients which satisfy Eq. 2 exactly v: inghighordererrorsofSIs,althoughthesemethodsareonly up to a given order. The time evolution of z(0) → z(τ) or i competitivefor specificsystems. The force-gradientcomposi- (q0,p0)→(qk,pk)isexplicitlycomputableas[2]: X r tgieonnehraalssbeepeanrpabrolepoHseadmailstoanmiaonresyesffitecmiesntbsuptlirtteiqnugisrechseemvaelufoar- qi =qi−1+τci∂∂Tp (pi−1) (3) a tionoftheforcegradient[3]. Theforce-gradientcompositions pi = pi−1−τdi∂∂Vq (qi) benefit from all-positive splitting coefficients meaning that for i = 1,2,...,k. Note that the intermediate steps (q,p ),j = j j onlyforwardstepsaretakeninphasespaceandaretherefore 1,2,...,k−1, referredto assubsteps, donotrepresentthe time referred to as a forward SIs. Non-gradient splitting methods evolution of (q ,p ). SIs are time reversibleif the symplectic 0 0 ofordershigherthantwoalwaysinvolvenegativecoefficients coefficients are symmetric[2]. Time reversibilityimplies that [5]. ToconstructmoreefficienthighorderSIsithasbeenpro- z(0) → z(τ)can be exactlyrevertedby z(0) ← z(−τ). This posedthat the absolute valueof negative coefficients and the property is embraced throughout this paper. The symmetric sumofpositivecoefficientsshouldbeminimized[5]. compositionintheformofEq. 3withd =0isreferredtoas k ABA[5]. Iftherolesof AandBinEq. 2areswitchedthetime This paper presents a series of efficient fourth order SIs evolutionisexplicitlycomputableas: which are ideal for numerical integration of particle systems with quadratic kinetic energy. Additionally, some of the pre- pi = pi−1−τdi∂∂Vq (qi−1) (4) sented integrators exhibit higher order accuracy for systems qi =qi−1+τci∂∂Tp (pi) thatresembletheharmonicoscillator. Thepresentedsplitting coefficientsgenerallyhavesmallabsolutevaluesandarethere- fori=1,2,...,k. ThesymmetriccompositionintheformofEq. forereferredtoasnear-forwardSIs. 4 with c = 0 is referred to as BAB. Table 1 summarizes the k ∗[email protected] 1 symmetricstructuresoftheABA-andBAB-composition.Note by the entries Q in Table 2where h denotes the intermedi- h,λ thatthecanddcoefficientsareconsistentlyusedinconnection atestepnumber. ThisdecompositionfollowsdirectlyfromEq. with the ∂T/∂p and ∂V/∂q term respectively. The computa- 6. A similar decomposition can be constructed for the ABA tionalcostofSIsisapproximatelyproportionaltothenumber composition. Thepositioncontributionζλ foreachorderλis ofderivativeevaluations(stages). Thenumber ofstagesisde- introducedas: fined as s = k−1 for symmetric coefficients due to the first same as last property, which implies that the first derivative ζλτλ ≡Qs,λτλ,λ=0,1,...,λmax (7) evaluationisthe sameas the lastderivativeevaluationofthe wheresisthenumberofstages. Thenewpositioncanthenbe previousiteration. calculatedasthesumofallpositioncontributions: Table1:ABAandBABcompositionforsymmetriccoefficients qb =λ∑maxτλζλ+o τλmax+1 (8) λ=0 (cid:16) (cid:17) ABA BAB Supposethataknownfunctionq(t)existssuchthatq(t0)=qa d1 =dk−1 c1 =ck d1 =dk c1 =ck−1 and q(t0+τ) = qb+o(τλmax+1) then qb is expressed by the d2 =dk−2 c2 =ck−1 d2 =dk−1 c2 =ck−2 powerseries: . . . . . . . . . . . . q(t +τ) 0 ddkk−−21 ck−1 dk−1 cckk−−21 =qa+ q′(1t!0)τ1+ q′′2(!t0)τ2+...+ q(λλmmaxa)x(!t0)τλmax+o τλmax+1 dk =0 ck dk ck =0 =ζ0+ζ1τ1+ζ2τ2+...+ζλmaxτλmax+o τλmax+1 (cid:16) (cid:17) (cid:16) (cid:17) (9) IftheSIisof Nthorderthen ethods III. M q(λ)(t ) Thissectionfirstdescribesadecompositionmethodwhich λ! 0 τλ =ζλτλ,λ=0,1,...,N (10) followsdirectlyfromthecompositionofthesimpleharmonic for any function q(t) that qualifies as a time evolution in oscillator. It is then shown that this decomposition can be H(p,q)=T(p)+V(q). Thesimpleharmonicoscillator(SHO): used to satisfy general fourth order conditions and higher p2 1 orderconditionsforthesimpleharmonicoscillator. H= + kq2 (11) 2m 2 Asingleiterationfrom(qa,pa)to(qb,pb)usingthes-stage isenforcedbyapplyingthecondition Q¯h,λ = ∂V/∂q(Qh,λ)in BAB-composition(Eq. 4)canbeexpandedinto: Table2. TheSHOyieldsthewell-knownanalyticaltimeevolu- tionofq: p1 = pa−τd1∂∂Vq (qa) q1=qa+τc1∂∂Tp (p1) q(t)=acos kt +bsin kt (12) p = p −τd ∂V (q ) rm ! rm ! 2 1 2∂q 1 ... (5) Using Eq. 10 where ζ0,ζ1,...,ζ6 are evaluated in Table 2 the following identities must be true for symmetric fourth order qs =qs−1+τcs∂∂Tp (ps)=qb splittingcoefficients: ps+1= ps−τds+1∂∂Vq (qs)= pb h1 =ζ0 =qa Suppose now that ∂T(p) ∂p = p m which applies to many 1 kb=ζ = pa (2c +c ) 1! m 1 m 1 2 classicalsystemsincludingthesimpleharmonicoscillator. Eq. (cid:14) (cid:14) −q1 ka=ζ =−kqa (d +d )(2c +c ) 5thenyields: 2!m 2 m 1 2 1 2 (13) 3 −1 k 2b=ζ =−2c d kpa (c +c ) qq12==qq1a(+1τ+c1Cpm2a)+−τC22Dqa1m+−τ12∂∂DVq2(mq−a)1∂∂Vq (q1) 41!3!m(cid:16)k m2(cid:17)a=ζ4 =3 c1d2km2q12a (22mc21d11+2c22d1+c2d2) q =q (1+C )−C q +τ2D m−1∂V (q ) (cid:16) (cid:17) 3 2 3 3 1 3 ∂q 2 Eliminationoftheconstantsaandbyieldstheidentities: . (6) . . 1=2(d +d )(2c +c ) 1 2 1 2 qs =qs−1(1+Cs)−Csqs−2+τ2Dsm−1∂∂Vq (qs−1) 1=12c1d2(c1+c2)/(2c1+c2) (14) ps+1=mqs−τcqss−1 −τds+1∂∂Vq (qs) 1=24c1d2(2c1d1+2c2d1+c2d2) ItisreadilyfoundthattheonlyrealsolutionsatisfyingEq. 14 where Cn = cn+1/cn and Dn = −cndn. The first same as last istheoneoriginallyfoundby[1]: propertyallowssubstitutionof pa by ps+1 yieldinganexpres- sionthatisindependentof p. Eq. 6yieldssignificantlylarger d =d = 1 = 1 −d = 1 −d truncation errors than Eq. 5 and is therefore not suitable for c1=c4= 2(21−21/=3) 1(12−c2) 2 3 (15) practicalimplementation. However,Eq. 6allowsseparationof 1 3 2−21/3 2 2 τλtermsforanyorderλ=0,1,...,λmaxwhereλmaxisthemax- A closerexamination of Table 2reveals that m, k and qa only imumnumberoferrortermswhichappearbydecomposition. appear as scalars of ζ0,ζ1,...,ζλmax the τ0, and that τ2 and τ4 Forinstanceconsiderthethreestagedecompositionexpressed separationscanbeexpressedasinTable3. 2 Table2:BABdecompositionforsymmetriccoefficientswhereC¯h=Ch+1,Q¯h,λ=m−1∂V/∂q(Qh,λ)andQh,λdenotesthetablevalueatindices(h,λ) hτλ τ0 τ1 τ2 τ3 τ4 τ5 τ6 0 qa 1 Q0,0 c1pam−1 D1Q¯0,0 2 Q C¯ −C Q Q C¯ Q C¯ +D Q¯ D Q¯ D Q¯ 1,0 2 2 0,0 1,1 2 1,2 2 2 1,0 2 1,1 2 1,2 3 Q C¯ −C Q Q C¯ −C Q Q C¯ −C Q +D Q¯ Q C¯ +D Q¯ Q C¯ +D Q¯ D Q¯ D Q¯ 2,0 3 3 1,0 2,1 3 3 1,1 2,2 3 3 1,2 3 2,0 2,3 3 3 2,1 2,4 3 3 2,2 3 2,3 3 2,4 Table3:Decomposition of even orders expressed in terms of the splitting objectives κ and κ are always 0 if ∑k c = ∑k d = 1. 0 1 i=1 i i=1 i coefficients.mandqaaresetto1 Additionally these identities eliminate one c and d variable from the minimization procedure. The minimization is per- hτλ τ0 τ2 τ4 formed using an adaptive simplex method [7] minimizing 0 1 only one objective κmax = max(κ1,κ2,...,κλ). Solutions are 1 1 provided in the following section with minimization criteria 1 1 − ∑ ci ∑ dj κmax < 1e−128 calculated using software-implemented ar- i=1 j=1 bitrary precision arithmetic (2048bit, 256bit exponent). Four 2 i 1 1 2 1 − ∑ ci ∑ dj − ∑ Qm,2dm+1 ∑ ck unique sets of splitting coefficients are presented in the fol- i=1 j=1 m=1 k=m+1 lowing section. The non-unique solutions are picked among . . . . .. .. .. .. thousands of solutions based on the sum of the absolute val- h i h−1 h−1 uesofthesplittingcoefficientsandhigherorderSHOerrors. h 1 − ∑ ci ∑ dj − ∑ Qm,2dm+1 ∑ ck i=1 j=1 m=1 k=m+1 Symmetriccoefficientsomitoddordererrorterms[2],im- plyingthatthefollowingidentitiesmustbetruetosatisfythe esults IV. R fourthconditionsfortheSHO: ζ = q′′(0) =−1 =− ∑h c ∑i d A. Obtainedsplitting coefficients 2 2! 2! i j i=1 j=1 (16) ζ4= q′′4′′(!0) = 41! =−mh∑−=11Qm,2dm+1k=∑mh+1ck in TSapbllietti4nigncaorerfafiycifeonrtmsawtitfhorficvoentvoenniiennetsitmagpelsemareenptaretisoenntfeodr variousprogramminglanguages. It has previously been shown that Eq. 16 is in fact general second and fourth order criteria [6]. This implies that split- TwodifferentkindsofBABsolutionsareevaluated: tingcoefficients satisfyingEq. 10to atleastfourthorderalso satisfyEq. 2toatleastfourthorder. Compositionswithmore • BAB: Solution to Eq. 10 using BAB decomposition(see stagesandhigherorderSHOcriteriacanbeexploitedforsig- Table2). nificantly reducing higher order error terms. In this sense, the higher order SHO criteria are used only as a constraint • BAB’:SolutiontoEq. 10usingABAdecompositionwith for obtaining efficient splitting coefficients for more general coefficientsc0 =cs+1=0inEq. 3. Hamiltoniansystems. The difference between the BAB and BAB’ solutions is re- Analyticalevaluationofsplittingcoefficientsformorethan vealedbyEq. 5wheretheerrorof ps+1 remainsunaddressed three stages quickly becomes hopeless. Instead a numerical for the BAB solutionas opposedto BAB’ solutionwhere the routine has been developed to satisfy the multi-objective op- error of qs+1 remains unaddressed. Thus the BAB and BAB’ timization problem with variables c and d and minimization solutions possess different constraints which may influence objectiveκ: theirperformanceineitherdirection. κλ ≡ q(λ)(ti)−λ!ζλ(c,d) =0,λ=1,2,...,λH (17) BAB and BAB’ solutions should be implemented accord- (cid:12) (cid:12) where λH(cid:12)(cid:12)is referred to as the(cid:12)(cid:12)SHO order constraint and κλ ingtoEq. 4. UniquesolutionssatisfyboththeABAandBAB forλ=1,2,...,λ aretheminimizationobjectives. Numerical decompositions and can therefore be implemented as either, H experiments suggest that for λ > 5 every additional stage althoughtheperformanceofthepresentedsolutionsdepends H yields two increments of λmax and a single increment of λH ontheappliedscheme. forwhichatleastonerealsolutionexists. The naming convention of the obtained methods is TheBABdecompositionisnumericallyevaluatedwiththe [scheme]s[stages]o[order]H, for instance BAB’s9o7H for a BAB- choice of constants in Eq. 12: a = −b = 1 and m = k = 1 optimizedschemewith nine stagesand seventh harmonicor- corresponding to the initial conditions qa = −pa = 1. The der. 3 B. Numericaltests −2 Ruth [ABA] s5odr4 [ABA] Common methods used to benchmark SIs for integration −4 ABA104 [ABA] ofautonomousHamiltoniansystemsinclude[4][5][8]: ABA864 [ABA] r ro −6 ABA1064 [ABA] r • ThemaximumHamiltonianerror: max(|∆H(t)/H0|) n e Yosh s7o6 A [ABA] a −8 • ThemeanHamiltonianerror: mean(|∆H(t)/H |) ni 0 o • Theaccumulatederrorofintegrals milt−10 a H m −12 where H istheinitialHamiltonian. Eachofthesebenchmark u 0 m methodsareappliedthroughoutthissection. xi−14 a m ABAs5o6H A [ABA] The following 10 symmetric SIs are benchmarked for three −16 BABs7o7H [BAB] autonomous Hamiltonian systems: The simple harmonic os- BAB’s8o7H [BAB] cillator,theHénonHeilessystemandtheKeplerproblem: −18 BAB’s9o7H [BAB] −3 −2.5 −2 −1.5 −1 −0.5 • Ruth[ABA]3-stage,4thorder[1] time per evaluation • s5odr4[ABA]5-stage,4thorder[9] • ABA104[ABA]7-stage,10-4generalizedorder[5] • ABA864[ABA]7-stage,8-6-4generalizedorder[5] −2 • ABA1064[ABA]8-stage,10-6-4generalizedorder[5] • Yoshs7o6A[ABA]7-stage,6thorder[2] −4 • ABAs5o6H[ABA]5-stage,4thorder • BABs7o7H[BAB]7-stage,4thorder −6 • BAB’s8o7H[BAB]7-stage,4thorder or r • BAB’s9o7H[BAB]9-stage,4thorder n er −8 a ni o−10 where [ABA] and [BAB] denote suggested ABA- and BAB- milt implementation respectively. It should be noted that the a generalizedorderschemesaredesignedforperturbedHamil- H−12 n tonian systems H = HA+ǫHB with ǫ ≪ 1. It should also a e−14 be noted Yosh s7o6 A yields the smallest errors of the three m stage-optimized sixthorder integrators presentedby [2], and −16 thatthisintegratorishereevaluatedtoreferencehigherorder accuracyandstability. −18 Numerical tests are performed using double precision −3 −2.5 −2 −1.5 −1 −0.5 floating point format with compensated summation. Com- time per evaluation pensated summation drastically reduces truncation errors for long-term symplectic integration (see [9] and references Figure1:Integrator benchmark using the SHO in the time interval t ∈ therein). AllnumericalintegrationsareperformedusingZym- [0,500]. Top: Maximum Hamiltonian error. Bottom: Average plectic (v.1.01.00) from Zymplectic.com, which is a numerical relativeHamiltonianerror.Thedashedlinesshowbenchmarkpro- frameworkdesignedfornumericalintegrationandbenchmark files for integrators of corresponding color using extended preci- ofseparableHamiltoniansystems. sion. Thehorizontalaxescorrespondtoτ/s. Allaxesareinbase 10logarithmicunits.Legendappliestobothgraphs Thesimpleharmonicoscillator Consider the Hamiltonian of the one-dimensional SHO (Eq. The ABA- and BAB-decompositionfrom the previoussec- 11) with k = m = 1 and initial conditions (p,q) = (0,1). tioncanbeutilizedtodetermineerrorcontributionsofdiffer- Figure 1 shows a benchmark profile of the 10 integrators for ent orders. More precisely, κλ can be evaluated for all λ to theSHO.Everypointoneachlinecorrespondstoacomplete resolvethemagnitudeofhigherordererrorsfortheSHO.This integration in a given time interval. The slopes of the lines canbeusedtocharacterizehigherordererrortermswhichof- read the integrator order. It is noticable that the integrators tendivergerapidlyforhighorderstage-optimizedintegrators. ABAs5o6H A, BABs7o7H, BAB’s8o7H and BAB’s9o7H be- While these error terms strictly apply to the SHO, they still haveassixthorderintegrators. covergeneralequationspresentintheexpansionofEq. 2. 4 Q : Ruth ABA Ruth [ABA] −2 QBAB: Ruth s5odr4 [ABA] Q : ABAs5o6H A ABA104 [ABA] ABA Q : ABAs5o6H A −4 ABA864 [ABA] BAB r 106QABA: BAB’s8o7H erro AYBosAh1 0s76o46 [ AAB [AA]BA] Q : BAB’s8o7H n −6 BAB a Q : ABA1064 ni ABA o 104QBAB: ABA1064 milt −8 Q : Yosh s7o6 A a ABA H Q : Yosh s7o6 A m −10 BAB u m 102 xi a−12 λ m κ ABAs5o6H A [ABA] BABs7o7H [BAB] −14 BAB’s8o7H [BAB] 0 10 BAB’s9o7H [BAB] −3.5 −3 −2.5 −2 −1.5 −1 −0.5 time per evaluation −2 10 −2 −4 10 −4 4 6 8 10 12 14 16 18 λ r o r −6 r e Figure2:SHOdecompositionofselectedintegratorsforboththeABA-(cir- n clemarker)andBAB-composition(solidline). Linesandmarkers a ni −8 ofthesamecolorintersectexactlyatevenorders o milt Figure2showspositionerrortermsofselectedintegratorsfor a−10 H the SHO. Notice that the obtained BAB methods have more n a error terms when implemented as ABA methods. Further- e m−12 more the seventh harmonic order of BAB’s8o7H eliminates theseventhordererrortermofthepositioncoordinateforthe BAB implementation as opposed to the sixthharmonic order −14 integrator ABAs5o6H A. The largest integer value of λ with no integration error reads the SHO integration order. Stage- −16 optimizedintegratorsofhigherordersgenerallyhaverapidly −3.5 −3 −2.5 −2 −1.5 −1 −0.5 diverginghigher ordererror contributions. This implies that time per evaluation theseintegratorsarenotsuitableforintegratingtheSHOwith largetimesteps. Figure3:IntegratorbenchmarkusingtheHénonHeilessysteminthetime interval t ∈ [0,500]. Top: Maximum Hamiltonian error. Bot- TheHénonHeilessystem tom:AveragerelativeHamiltonianerror. Thehorizontalaxescor- TheHénon-HeilessystemisoneofthemoststudiedHamilto- respondtoτ/s.Allaxesareinbase10logarithmicunits.Legend niansystemsduetoitsapplicationsincelestialmechanics,its appliestobothgraphs non-integrable properties,chaoticdynamics and fractal struc- tures. Considerthe Hamiltonian of the Hénon-Heiles system TheKeplerproblem withinitialconditions[qx,qy,px,py]=[0.3,0.0,0.0,0.4]: Symplectic integration has been widely used for high accu- H= p2x+2p2y + qx2+2qy2 +qx2qy− 31qy3 (18) racy simulations of the Solar System (see [8] and references therein). IthasbeenproposedthatMercuryduetoitsfastor- where in this case H = 1/8, inside the chaotic domain. Fig- bital periodand higheccentricityislimitingthe performance ure3shows abenchmark profileof the 10 integratorsforthe of SIs when integrating the Solar System [8]. Consider the HénonHeilessystem.TheHénonHeilessystemcanbeconsid- HamiltonianoftheplanarSun-Mercurysystem: eredasaperturbedSHOforsmallvaluesofqxandqy. Forthis reasonitappears that especiallyBAB’s8o7Hand BAB’s9o7H exhibitasixthorderdescentoferrorforlargeτ. H= kpk2 −GmSmM ≈ kpk2 −GmSmM (19) 2M kqk 2mM kqk 5 where M isthereducedmass, G isthe gravitational constant, Ruth [ABA] and m and m are the masses of the Sun and Mercury re- S M s5odr4 [ABA] spectively. The planar Sun-Mercurysystemis hereevaluated −4.5 ABA104 [ABA] usingdata fromnssdc.gsfc.nasa.gov wherethe aphelionischo- ABA864 [ABA] senastheinitialSun-Mercurydistanceyieldingtheminimum or −5 ABA1064 [ABA] orbitalvelocity. rr e Yosh s7o6 A [ABA] n a−5.5 Figure 5 shows a benchmark profile of the 10 integrators ni o for the Sun-Mercury system. It is noticable that ABA104 milt −6 shows the best performance in regardto the maximum error a and BAB’s9o7Hshows the bestperformanceinregardto the H m averageerror. −6.5 u m xi The accumulated error in a two body system (Sun-Mercury) ma −7 ABAs5o6H A [ABA] manifestsasasecularadvanceoftheorbitalellipsesimilarto BABs7o7H [BAB] the precession of perihelion induced by general relativity or −7.5 BAB’s8o7H [BAB] the gravitational pull of other planets. The mathematical na- BAB’s9o7H [BAB] ture of the secular SI error is described by [10]. The secular advance of the orbital ellipse can be evaluated through the −8 0.4 0.6 0.8 1 1.2 1.4 rotationoftheLaplace-Runge-LenzvectorA: time per evaluation A=p×L−rˆ (20) −5.5 whererˆ =r/r, L= r×p,pisthemomentumvectorandris −6 thepositionvectorwithlengthr. r o r r e n −6.5 a ABAs5o6H A [ABA] ni o 104 BABs7o7H [BAB] milt −7 BAB’s8o7H [BAB] a H ry) BAB’s9o7H [BAB] an −7.5 u 3 e nt10 m e −8 c n a uli102 −8.5 J c/ e s −9 c ar101 0.4 0.6 0.8 1 1.2 1.4 dt| ( Rs5uothd r[4A B[AAB]A] time per evaluation θ/ d ABA104 [ABA] Figure5:Integrator benchmark using the planar Sun-Mercury system in |100 ABA864 [ABA] thetimeintervalt ∈ [0,10yr]. Top: MaximumHamiltonian er- ror. Bottom: AveragerelativeHamiltonianerror. Thehorizontal ABA1064 [ABA] axescorrespondtoτ/sinunitsofhours. Allaxesareinbase10 Yosh s7o6 A [ABA] logarithmicunits.Legendappliestobothgraphs 10−1 2 10 Theorbitalprecessionadvanceslinearlywithtimet[10]. The orbital periods/(τ/s) rotation θ is introduced as the angle of A implying that θ(t) is a linear function and is chosen such that θ(0) = 0. Fig- Figure4:Advanceofperihelion(absoluterotationvelocity)asafunctionof ure 5 shows the perihelion precession dθ/dt which has been thenumberofevaluationsperorbit. Linearfit95%confidencein- obtained numerically through linear regression of θ(t) over tervalsoftheperihelionadvancearesignificantlysmallerthanthe dotsize. TheintegratorsABAs5o6H,ABA104andBAB’s8o7H numerousorbitalperiods. ComparisonofFigure4and5sug- achieve approximately the same performance, obfuscating their gests that the accumulated error is in better agreement with plots theaverageerrorthanthemaximumerror. 6 0.2 0.4 0.6 0.8 1 1.2 1.4 0.05 0.1 0.15 0.2 0.25 0.3 (A) (C) 1 0.4 0.3 0.8 0.2 0.1 0.6 0 p p 0.4 −0.1 −0.2 0.2 −0.3 0 −0.4 −0.5 −0.2 (B) (D) 1 0.4 0.3 0.8 0.2 0.1 0.6 0 p p 0.4 −0.1 −0.2 0.2 −0.3 0 −0.4 −0.5 −0.2 −0.2 0 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 q q Figure6:PhasespaceillustrationofthesubstepsperformedovertwoiterationsbyYoshs7o6A(A)(C)andBABs7o7H(B)(D).Theintegratorsareappliedto theSHO(A)(B)withinitialconditions(q,p)=(0,1)andtimestepτ=π/4,andtheHénon-Heilessystem(C)(D)inthey-plane(qx= px =0) withinitialconditions (q,p) =(qy,py) = (0.4,0.4)andtimestepτ =2. BluecirclesandXsindicatetheinitialandfinalpositionsrespectively foreachiteration. Bluedotsindicatesubstepswithpositivec andd coefficientforcalculatingthenextsubstep. Reddotsandgreendotsindicate i i substepswithnegative c andd coefficientsrespectivelyforcalculatingthenextsubstep. Agreendotwithinareddotindicatesthatbothc and i i i d arenegative. ThecontourcolorsdisplaytheHamiltonianwithvaluesgivenbythecolorbars. (C)showsanunstableintegrationwhereHisnot i conserved.(A)(B)and(D)showstableintegrationswhichpreserveHindefinitely iscussion V. D evitablycausehigherrorsultimatelywaivingsymplecticprop- ertiesofSIs. Higherorderintegratorsaregenerallymorecon- Athoroughbenchmarkanalysisof10differentintegrators strained and usually involve several negative splitting coeffi- has been performed for the SHO, the Hénon Heiles system cientswithlargeabsolutevalues. Theperformancebreakpoint and the Keplerproblem. All numerical tests suggestthat the of higher order integrators can be visualized by considering obtainedintegratorsinspiteofanincreasednumberofstages the executed substeps. Figure 6 illustrates the substeps per- greatlyandconsistentlyimprovetheintegrationaccuracyand formedbytwo sevenstageSIs (Yoshs7o6Aand BABs7o7H) stability. Infact, thenewschemesoutperformstheacclaimed for the SHO and Hénon-Heiles system. Figure6 reveals that stage-optimized integrator Ruth by several orders of magni- Yosh s7o6 A (A) (C) performs large forward and backward tude. The higher order behavior for SHO-perturbed systems stepscomparedtoBABs7o7H(B)(D).Thestepsaretoolarge is an additional perk of the obtained integrators. This prop- in (C) for the Hamiltonian to be preserved. BABs7o7H and ertymay be particularlyusefulin fieldsofmoleculardynam- othersplittingcoefficientsobtainedinthispapergenerallyper- ics where symplectic correctors may not be suitable. Opti- formsmallnear-forwardsteps.Notethatsomeofthemethods mized fourth order schemes appear to be useful for achiev- presentedinTable4onlyhavesmallcoefficientsforeitherdor ing high numerical stability allowing large time steps with c. Forthisreasontheintegratorperformancemaychangedras- minimal integration error. High stability is particularly im- ticallyiftherolesofTandVareswitched. Theperformanceof portant for systems where the complexity of H varies with theobtainedintegratorsgenerallydeclinesforsystemswhere time: CloseencountersinthegravitationalN-bodysystemin- T(p)deviatessignificantlyfromasquaredkineticenergy. 7 onclusion VI. C It has been found that harmonic order conditions higher Efficient fourth order splitting coefficients have been ob- thansevenoftenintroducemorenegativesplittingcoefficients. tained by satisfying higher order conditions for the simple A largernumber of stages presentsmoredegreesof freedom harmonicoscillator. Numericaltestsindicatethattheobtained resulting in more inappropriate solutions. Additional con- integratorsoutperformthethreestagefourthorderintegrator straints should be pursued to obtain efficient splitting coef- by R. Ruth as well as the more optimized integrators by W. ficientswithmorethanninestages. Kahan and S. Blanes. The obtained integrators also compare The presented decomposition can be used to satisfy gen- favorably with higher order integrators by H. Yoshida for eral fourth order criteria and higher order conditions specif- moderatetimesteps. Theintegratorsareparticularlysuitable ically for the simple harmonic oscillator. This work suggests for particle systemsthat requirehighnumerical stability and thatgeneralpurposehighaccuracy,highstabilityexplicitsym- accuracy at large time steps. The best performance is gen- plectic integrators can be pursued by approaching multiple erally achieved by the methods BAB’s9o7H, BAB’s8o7H and higherorderconditions. Thishasbeenachievedherebysatis- ABAs5o6HA. fyingindividualhighorderentries. eferences R [6] Optimized fifth ordersymplecticintegrators for orbital problems. Tselios, Kostas and Simos, T.E. 1, 2013, Re- [1] Fourth-ordersymplecticintegration.Forest,Etienneand vistaMexicanadeAstronomíayAstrofísica,Vol.49,pp. Ruth,RonaldD.1,1990,PhysicsD,Vol.43,pp.105-117. 11-24. [2] Construction of higher order symplectic integrators. [7] ImplementingtheNelder-Meadsimplexalgorithmwith Yoshida, Haruo. 5-7, 1990, Physics Letters A, Vol. 150, adaptive parameters. Gao, Fuchang and Han, Lixing. pp.262-268. 1, 2012, Computational Optimization and Applications, [3] Forward Symplectic Integrators for Solving Gravita- Vol.51,pp.259-277. tional Few-Body Problems. Chin, Siu A. and Chen, C. R.3-4,2005,CelestialMechanicsandDynamicalAstron- [8] Highprecisionsymplecticintegrators forthe Solar Sys- omy,Vol.91,pp.301-322. tem. Farrés,Ariadna, etal.2, 2013, CelestialMechanics andDynamicalAstronomy,Vol.116,pp.141-174. [4] Wisdom, J., Holman, M. and Touma, J. Symplectic Correctors. [book auth.] Jerrold E. Marsden, George [9] Composition constants for raising the orders of uncon- W. Patrick and William F. Shadwick. Integration Algo- ventional schemes for ordinary differential equations. rithms and Classical Mechanics. s.l. : Providence, RI, Kahan,WilliamandLi,Ren-Cang.219,1997,Mathemat- 1996,Vol.10,pp.217-244. icsofComputation,Vol.66,pp.1089-1099. [5] Newfamiliesofsymplecticsplittingmethodsfornumer- icalintegrationindynamicalastronomy.Blanes,Sergio, [10] Physics of symplectic integrators: Perihelion advances et al. June 2013, Applied Numerical Mathematics, Vol. and symplectic corrector algorithms. Chin, Siu A. 3, 68,pp.58-72. 2007,PhysicsreviewE,Vol.75. 8 Table4:Obtainedsplittingcoefficientswith77digits.Themethodsareorganizedaccordingtotheirstagecount. UniqueABAs5o6H,A,BandC d(1) = 0.1558593591762168313166117535752091422239663993391011462498104831549442591694 d(2) =-0.0070254990919573173514483364758218294773716640092220571342056284758867609611 c(1) =-0.6859195549562166768601873150414759494319985863677163820719179393682014399373 c(2) = 0.9966295909529363159571451429325843698583459772292551181721475637244006507927 d(1) = 0.4020196038964999834667409950496227775945673320979099323902806525851620445492 d(2) = 0.5329396856308538150258772262086702929451721575835842834460326556965220312130 c(1) = 0.9110842375676615218574607388486783304139753525628699898390474132061253024968 c(2) = 0.1740059542332660799009374186088931171982348451547482386207462271424421679090 d(1) = 0.1868565631155112597511173758337610451623768791420295598869906080256347098408 d(2) = 0.5520581660514781484261043096825685955052553493857487316732455515112095793516 c(1) = 0.5642486163110637621453746447826190031465518453448216443978248524452914255263 c(2) =-0.2393627021773294286793711975145735718917010075899623225091609656425715483488 d(3)=0.5-d(1)-d(2);d(4)=d(3);d(5)=d(2);d(6)=d(1); c(3)=1-2*(c(1)+c(2));c(4)=c(2);c(5)=c(1); UniqueBABs6o7H(moreexist),BABs6o5HandBAB’s6o5H d(1) = 0.0832701092493097690276300822599156817795619881080575430174826369500044839553 d(2) = 0.3997273690963360211284395920007795550575060531634793748020207288976344439468 d(3) =-0.0541842778124726964199287659702152862181671805554302053695494244408226729818 c(1) = 0.2475471587650765967910125296669232190787926795528258860075742877866898482465 c(2) = 0.5446579217808193419580029125986805136192611468678745304306198457355253495088 d(1) = 0.0658831533161155021794371297629949214211270641450367882108652454225238292357 d(2) =-0.6711629060948253965117521242801468651670183829736696004743743104248379033034 d(3) = 0.9736703100725350498414312651550857191131218932308788320806762063004096320895 c(1) = 0.2265023974336291596186923088995152371194987043433278784212774210853229477086 c(2) =-0.0047799986678794678665602622568725658855054645768977416258774175978957628102 d(1) = 0.0650508268637574949487516678539036744380576078003520231297474895927182047842 d(2) =-0.3948051939117155639582651907195511796839512131373933326629623631591978696178 d(3) = 0.6918498547904058960782554213200966000604457266088855079657967408955821538731 c(1) = 0.2328962665845291347812910553597276545034489573682700034501734659308763580659 c(2) =-0.0111617638003721094728940473306267483522869816097800738075975236192041340802 d(4)=1-2*(d(1)+d(2)+d(3));d(5)=d(3);d(6)=d(2);d(7)=d(1); c(3)=0.5-c(1)-c(2);c(4)=c(3);c(5)=c(2);c(6)=c(1); BABs7o7HandBAB’s7o6H d(1) = 0.0638745574250616045658401356462756092272737349204789877616691621039130680037 d(2) =-0.0650239777505938311516598494765811300128929849501107531440553736739769298894 d(3) = 0.2509446105745547370613575645855473357282136355718617210088090794709222342775 c(1) = 0.2752781729059777393394978710448690782125215018949186085075325605348526197756 c(2) =-0.0843138705589167473554015820986490036832890668438279781819362930106920807542 c(3) = 0.1674497222006475614401177016323447087805836086414469568091358611098423440220 d(1) = 0.0522155297747848201407012160969040693245471580104797248381281194964273517726 d(2) =-0.0824972558529561412131911937717420514162728339681056503508469680313691406287 d(3) = 0.3285541797987193353601113204079269672646845923663727576986276602617960257026 c(1) = 0.2487563308365098625528031803769571289196558939258433219240690943143969198069 c(2) =-0.0651011247076581799932061212576878177123945470202647856511921757791017775052 c(3) = 0.2480624780675545152650672751613106579864581926645260137078906816928505888862 d(4)=0.5-d(1)-d(2)-d(3);d(5)=d(4);d(6)=d(3);d(7)=d(2);d(8)=d(1); c(4)=1-2*(c(1)+c(2)+c(3));c(5)=c(3);c(6)=c(2);c(7)=c(1); BAB’s8o7H d(1) = 0.0538184115480034769403763798524605188562842390760879592632218376015166638395 d(2) = 0.1648743326910472361014809085317059425299121141031052090901977952513984878990 d(3) = 0.3895399407808198068744134256203146340834631254960864069726823667050364522355 d(4) =-0.2288957415563594299572505173565338312542463595622272333825061768110435645417 c(1) = 0.1486140577445185629163082471176700173109512976367237631150576219945233462284 c(2) = 0.1071986675806227950500566279939336794589433458464489776124879870581484936262 c(3) =-0.0149646736494517061945681450558142918831874360003431672632178480031079700216 d(5)=1-2*(d(1)+d(2)+d(3)+d(4));d(6)=d(4);d(7)=d(3);d(8)=d(2);d(9)=d(1); c(4)=0.5-c(1)-c(2)-c(3);c(5)=c(4);c(6)=c(3);c(7)=c(2);c(8)=c(1); BAB’s9o7H d(1) = 0.0464929004396589154281717058427105561306160230440930588914036807441235817244 d(2) = 0.1549010127028879927850680477816652638346460615901974901213193690401204696252 d(3) = 0.3197054828735917137611074311771339117602994884245091220333340037841616085048 d(4) =-0.1929200088157132136865513532391282410293753210475133631464188500663304857888 c(1) = 0.1289555065927298176557065467802633438775379080212831185779306825670371511433 c(2) = 0.1090764298548827040268039227200943338187149719339317536310302288046641781422 c(3) =-0.0138860356804715144111581981849964201100030653749527555344377031679795959892 c(4) = 0.1837549745641803566768357217228586277331494085368674804908537743649129597425 d(5)=0.5-d(1)-d(2)-d(3)-d(4);d(6)=d(5);d(7)=d(4);d(8)=d(3);d(9)=d(2);d(10)=d(1); c(5)=1-2*(c(1)+c(2)+c(3)+c(4));c(6)=c(4);c(7)=c(3);c(8)=c(2);c(9)=c(1); 9