RESEARCHARTICLE Effects of annealing temperature and duration on the morphological and optical evolution of self-assembled Pt nanostructures on c-plane sapphire MaoSui1,Ming-YuLi1,SundarKunwar1,PuranPandey1,QuanzhenZhang1, JihoonLee1,2* a1111111111 1 CollegeofElectronicsandInformation,KwangwoonUniversity,Nowon-guSeoul,SouthKorea,2 Institute a1111111111 ofNanoscaleScienceandEngineering,UniversityofArkansas,Fayetteville,AR,UnitedStatesofAmerica a1111111111 a1111111111 *[email protected] a1111111111 Abstract Metallicnanostructures(NSs)havebeenwidelyadaptedinvariousapplicationsandtheir OPENACCESS physical,chemical,opticalandcatalyticpropertiesarestronglydependentontheirsurface Citation:SuiM,LiM-Y,KunwarS,PandeyP, morphologies.Inthiswork,themorphologicalandopticalevolutionofself-assembledPt ZhangQ,LeeJ(2017)Effectsofannealing nanostructuresonc-planesapphire(0001)isdemonstratedbythecontrolofannealingtem- temperatureanddurationonthemorphological peratureanddwellingdurationwiththedistinctthicknessofPtfilms.TheformationofPt andopticalevolutionofself-assembledPt nanostructuresonc-planesapphire.PLoSONE12 NSsisledbythesurfacediffusion,agglomerationandsurfaceandinterfaceenergyminimi- (5):e0177048.https://doi.org/10.1371/journal. zationofPtthinfilms,whichreliesonthegrowthparameterssuchassystemtemperature, pone.0177048 filmthicknessandannealingduration.ThePtlayerof10nmshowstheformationofoverlay- Editor:YogendraKumarMishra,Instituteof ingNPsbelow650˚CandisolatedPtnanoparticlesabove700˚Cbasedontheenhanced MaterialsScience,GERMANY surfacediffusionandVolmer-Webergrowthmodelwhereaslargerwigglynanostructures Received:February24,2017 areformedwith20nmthickPtlayersbasedonthecoalescencegrowthmodel.Themor- Accepted:April23,2017 phologiesofPtnanostructuresdemonstrateasharpdistinctiondependingonthegrowth parametersapplied.Bythecontrolofdwellingduration,thegradualtransitionfromdensePt Published:May4,2017 nanoparticlestonetworks-likeandlargeclustersisobservedascorrelatedtotheRayleigh Copyright:©2017Suietal.Thisisanopenaccess instabilityandOstwaldripening.ThevariousPtNSsshowasignificantdistinctioninthe articledistributedunderthetermsoftheCreative CommonsAttributionLicense,whichpermits reflectancespectradependingonthemorphologyevolution:i.e.theenhancementinUV-vis- unrestricteduse,distribution,andreproductionin ibleandNIRregionsandtherelatedopticalpropertiesarediscussedinconjunctionwiththe anymedium,providedtheoriginalauthorand PtNSsmorphologyandthesurfacecoverage. sourcearecredited. DataAvailabilityStatement:Allrelevantdataare withinthepaperanditsSupportingInformation files. Funding:FinancialsupportfromtheNational Introduction ResearchFoundationofKorea(no.2011-0030079 Inlastdecade,thePtnanostructures(NSs)havebeenadaptedinwidespreadapplicationssuch and2016R1A1A1A05005009),andinpartbythe researchgrantofKwangwoonUniversityin2017is aselectro-catalyticsystems[1–3],hydrogenstorages[4,5],lightemittingdiodes(LEDs)[6], gratefullyacknowledged. solarcells[7]andphotocatalyticapplications[8,9].Forexample,asacatalystofhighactivity andselectivity,thePtNSsutilizedintheelectro-chemicalapplicationssuchasfuelcellscan Competinginterests:Theauthorshavedeclared thatnocompetinginterestsexist. significantlyimprovethereactionefficiencyfortheoxidationandoxygenreductionbenefitted PLOSONE|https://doi.org/10.1371/journal.pone.0177048 May4,2017 1/18 Morphologicalandopticalevolutionofself-assembledPtnanostructures bytheenlargedsurfaceareatovolumeratio[1–3].Inaddition,thePtNSscanbeutilizedto improvethehydrogenstoragecapacityinthecarbon,zeolitesandmetal-organicbasedspill- overhydrogenstoragesbydissociatinghydrogenmoleculesontoreceptors[4,5].Recently, duetothelocalizedsurfaceplasmonresonance(LSPR),metallicNSsarereportedinvarious photochemicalandoptoelectronicapplicationsandtheirsize,densityandconfiguration dependentlightinteractionscanbeutilizedtotailortheopticalproperties,e.g.spectralabsorp- tionandscattering[10–12].UnlikethewidelystudiedAgandAuNSswithwell-definedLSPR absorptionband,thePtNSsexhibitamorebroadenedlightabsorptionintheultraviolent-visi- bleregions.Profitedbythis,theperformanceofPtNSscanpotentiallyexceedtheAgandAu NSsinspecificcases.Forinstance,thePtcatalyzedaerobicoxidationofalcoholshasdemon- stratedaquantumyieldof7.1%undervisiblelightirradiationduetothesignificantlypro- motedphoto-catalysisactivity,whichisnearlytwicethecaseofAuNSphoto-catalysts[8,9]. Also,anover57%outputpowerincreaseisreportedinanLSPR-enhancedultravioletlight- emittingdiodewiththeemploymentofPtNSs,sharplyincreasedascomparedwiththeAgNS caseof20%[6].TheLSPRpropertiescanbeadequatelytunedbythecontrolofNSconfigura- tion,sizeanddensity,therefore,avitalrequirementisraisedforthecontrolledPtNSfabrica- tion[13–17].Asaneffectiveapproachofself-assemblythroughphysicalvapordeposition (PVD),thesolidstatedewetting(SSD)canachieveapreciselymodulatedNSfabrication onthesubstrateandthushasbeenreportedinthecontrollablefabricationofvariousmetal NSs,e.g.Au,AgandRh[16,18–20].Meanwhile,sapphirewiththehighthermaldurability, mechanicalstrengthandchemicalstabilityhaswidelyadaptedinelectronicandoptoelectronic devices[21–25].ThecontrollablefabricationofvariousPtNSsonsapphirecanprovidethe essentialreferenceonthepertinentmodulationofsurfacephysical,chemical,opticalandcata- lyticpropertiesnecessaryforthecorrespondingapplicationsbasedupon.Therefore,inthis work,westudytheself-assembledPtNSsevolutiononc-planesapphire(0001)basedonthe controlofannealingtemperatureandduration,inwhichthecoherenteffectofsurfacediffu- sion,surfaceenergyminimization,RayleighinstabilityandOstwaldripeningleadtothefor- mationofvariousconfiguration,sizeanddensityofPtNSs.Basedonthemorphologicaland elementalcharacterizationsbyAFM,SEMandEDS,theevolutionofvariousPtNSsaredem- onstratedandthegrowthmodelsarediscussedwiththedistinctdepositionamount.Further- more,theopticalpropertiesofvariousPtNSsareinvestigatedbythereflectancespectraand theeffectonlatticevibrationisprobedbyRamanspectra.Thecorrespondingvariationof intensityandpeakpositionsarediscussedalongwiththeNSmorphologyaswellasthesurface coveragechanges. Materialsandmethods PreparationofsubstrateandPtnanostructurefabrication ThePtNSswerefabricatedonc-planesapphire(0001)waferswithathicknessof430μmand off-axis±0.1(iNexusInc.,SouthKorea).Initially,thewafersweredicedinto6×6mm2squares usingamachinesaw.Inordertopreparethesubstrateforthedeposition,eachsamplewas degassedat650˚Cfor900sunderavacuumbelow1×10−4Torr.Duringthedegassing,an Inconelblankwasmountedonthebacksideofsampletoestablishastablethermalconduction fromahalogenlamp.Afterthedegassing,thesapphiresurfaceshowedasmoothmorphology withtheheightdistributionof±0.5nmasshowninS1Fig.Inaddition,theRamanspectraof baresapphireareshowninS1Fig.Rightafterthedegassing,thePtlayersweredepositedina sputterchamberwithagrowthrateof0.05nm/sandionizationcurrentof3mAunder1×10−1 Torratambienttemperature.ThetemperatureeffectonthePtNSfabricationwasinvestigated withthreedistinctdepositionthickness,i.e.3,10and20nm,whichwereseparatelydeposited PLOSONE|https://doi.org/10.1371/journal.pone.0177048 May4,2017 2/18 Morphologicalandopticalevolutionofself-assembledPtnanostructures bythecontrolofsputteringdurations.AfterthePtfilmdeposition,thesamplesshoweduniform surfacemorphologiesandthesurfaceroughnesswasslightlyincreasedalongwiththePtthick- nessasshowninS2Fig.Subsequently,thesamplesweretransferredtoapulsedlaserdeposition (PLD)chamberforannealingatvarioustemperaturebetween500and950˚Cwithaconstant rampingrateof4˚C/sunder1×10−4Torr.Afterreachingthetargettemperature,adwelling durationof450swasequallyappliedtoeachfabricationtoguaranteeasufficientsurfacediffu- sion.Theeffectofannealingdurationwasinvestigatedbetween0and3600sat800˚Cwiththe Ptdepositionthicknessof15and20nm.Meanwhile,therampingratewasacceleratedto10˚C/ sinordertominimizetheripeningeffectduringthetemperature-riseprocess[26,27].After eachgrowth,thesubstratetemperaturewasimmediatelyquencheddowntotheambientto eliminatetheundesiredripening. CharacterizationofPtnanostructures AfterthefabricationofPtNSs,morphological,elementalandopticalcharacterizationswere carriedout.Anatomicforcemicroscope(AFM)(ParkSystems,SouthKorea)non-contact modewasutilizedtoobtainthethreedimensionalsurfacetopographyandascanningelectron microscope(SEM)(CoXEM,SouthKorea)wasemployedforthelargerscale2Dimages.The AFMtips(NSC16/AIBS,μmasch,USA)utilizedwere17–21μminlengthwithacurvature radiuslessthan10nm.Thespringconstantandresonantfrequencyofcantileverswere~40 N/mand~300kHzrespectively.TheoriginaldatafromAFMwasprocessedbytheXEIsoft- ware(ParkSystems)toobtainthetop-andside-views,cross-sectionalline-profiles,RMSsur- qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi P faceroughness(R )andsurfacearearatio(SAR).TheR andSARaregivenby 1 n y2and q q n i¼1 i ðAGA(cid:0)GASÞ(cid:2)100½%(cid:138)where,theyiisheightateachpixel,ASissurfacearea(2D)andAGisgeomet- ricarea(3D).Theelementalanalysiswasperformedbyanenergy-dispersiveX-rayspectro- scope(EDS)system(ThermoFisherNoranSystem7,USA).ThereflectanceandRaman spectrawereacquiredbytheUNIRAMIIsystem(UniNanoTechCo.Ltd.,SouthKorea).The lightsourceforreflectancemeasurementwasthecombinationofdeuterium(250(cid:20)λ(cid:20)450 nm)andhalogen(450(cid:20)λ(cid:20)1100nm)lampsandtheRamansignalwasexcitedbya532nm laseratambienttemperature. Resultsanddiscussion Fig1showsthemorphologicalevolutionofself-assembledPtnanostructures(NSs)onc-plane sapphirebythevariationofannealingtemperature(AT)between550and950˚CwiththePt thicknessof10nm.Thedetailedmorphologicalandopticalcharacterizationsarepresentedin Figs2–4andthecorrespondingAFMside-viewsof3×3μm2areprovidedinS3Fig.Gener- ally,throughthegraduallyenhancedsurfacediffusionbythethermalenergy,theformationof PtnanoclustersfirstappearsontopofthePtlayersandthentheisolatedPtnanoparticles (NPs)aregraduallyformedfromthecontinuousPtlayeralongwiththeincreasedAT.De- pendingontheAT,thePtadatomsurfacediffusioncanmainlyoccurthroughtwotypical paths:(i)onthePtsurfaceatlowerATand(ii)onthesapphiresurfaceathigherAT.Thesur- facediffusionofadatomscanbedescribedbytherelation[23]: (cid:18) (cid:19) E D ¼D exp (cid:0) ; ð1Þ S 0 kT wheretheD isthepre-exponentialfactor,kisBoltzmannconstant,Tisthesystemtempera- 0 tureandEistheactivationenergyofPtatoms[28].FromtheEq(1),itcanbeinfferedthatthe D isdirecltydependentontheT.Thus,forasinglePtadatom,ithasahighpossibilitytobe S PLOSONE|https://doi.org/10.1371/journal.pone.0177048 May4,2017 3/18 Morphologicalandopticalevolutionofself-assembledPtnanostructures Fig1.Annealingtemperatureeffectontheevolutionofself-assembledPtnanoparticles(NPs)on sapphire(0001).Eachsamplewasdepositedwith10nmthickPtlayerandannealedbetween550and950˚C fortheidenticaldurationof450s.(a)—(i)Atomicforcemicroscope(AFM)top-viewsof3×3μm2. https://doi.org/10.1371/journal.pone.0177048.g001 activatedanddiffuseonthesurfaceatincreasedATandtheamountofactivatedPtatomscan besignificantlyincreasedathigherATfromamacropespective.AsdescribedinFig2(B),with anincreasedthermalenergy,thetopmostadatomsonthePtlayercanbefirstactivatedand diffuseonthedevelopingoverlayingPtlayer.Subsequently,thecollisionsamongthediffusing atomscantakeplaceandresultinthenucleationoftinynanoclustersatincreasedAT.Asindi- catedinFig2(C),asthediffusionlengthl canbeenhancedatanincreasedtemperature[29, D 30],thediffusingPtadatomscanhavehighpossibilitytotravelafurtherdistanceandbe adsorbedbythenanoclustersdrivenbythesurfaceenergyminimizationmechanism[31,32]. Finally,atasufficienthighAT,thePtadatomdiffusionandnucleationwoulddirectlyoccur onthesapphiresubstrateasseeninFig2(D),resultingintheformationofPtislands(NPs) accordingtotheVolmer–Webergrowthmodel[33,34].Withthestrongerbindingenergy betweenPtadatoms(γ )ascomparedtothatbetweenPtandsubstrateatoms(γ),namelyγ Pt I Pt >γ,thePtadatomstendtobindwitheachotherandgrowin3-dimensionalislandsand I therefore,thecontinousPtlayercangradaullydevelopintotheindividualPtNSsalongwith PLOSONE|https://doi.org/10.1371/journal.pone.0177048 May4,2017 4/18 Morphologicalandopticalevolutionofself-assembledPtnanostructures Fig2.PtNPsnucleationandgrowthatlowerannealingtemperaturerangebetween550and750˚C withthe10nminitialfilmthicknessand450sannealingduration.(a)–(d)Schematicsofdiffusion processdependingontemperature.(e)–(g)AFMside-viewsof1×1μm2andtop-viewsof200×200nm2in (e-1)–(g-1).(e-2)–(g-2)Cross-sectionalline-profilesacquiredfromthelocationsindicatedbythebluelinesin (e-1)–(g-1). https://doi.org/10.1371/journal.pone.0177048.g002 theincreasedAT.AsshownbytheAFMside-andtop-viewsinFig2(E)and2(E-1),theforma- tionoftinynanoclustersadoptingirregularconfigurationwasobservedwithhighdensitydue tothelimitedsurfacediffusionandtheheightoftypicalnanoclusterswas~2nm.Then,when theATwasincreasedto650˚C,thedimensionofNSswasobviouslyincreasedwiththe enhancedsurfacediffusion,i.e.NSsheightreachedover15nm.Thenat750˚C,thePtlayer wassignificantlydewettedbytheincreasedthermalenergy,resultingintheformationofiso- latedNSsonsapphiresurfaceasseeninFig2(G).AsevidencedbythelineprofilesinFig2(F- 2)and2(G-2),thePtNSsformedat750˚Cshowedapreferentiallateralgrowthwiththeslight decreaseinheight.Theconfigurationalvariationcanbecausedbythesurfaceenergydiffer- encebetweenPtandsapphire.AsthePtNSsformeddirectlyonthesapphiresubstrate,the dewettingangleθcanbecorrespondinglyvariedaccordingtotheYoung’sequationanddeter- minedbythevariedinterfacialenergies[35].Between750and850˚C,thenanoclusterswere graduallydevelopedintomoreregularshapethroughtheseparationinducedbytheRayleigh instability[36,37].Atthesametime,withtheenhancedsurfacediffusion,thesurfacemor- phologyevolvedintermsofheightanddimensionbetween850and950˚Candshowedmore preferentialverticalgrowth.Asexhibitedbythediameter(measuredalongshorterdirections) distributionhistograminFig3(D),themedianofdiameterwasfirstincreasedfrom850to 900˚C,whichcanbeattributedtothefurthershapedevelopment,andthenanoparticlecounts oflargediameterswereclearlyincreasedat900˚C,i.e.above125nm.However,at950˚Cslight PLOSONE|https://doi.org/10.1371/journal.pone.0177048 May4,2017 5/18 Morphologicalandopticalevolutionofself-assembledPtnanostructures Fig3.EvolutionofPtNPsonc-planesapphirebetween850and950˚Cwiththe10nmthickness. (a)–(c)AFMside-viewsof1×1μm2.(a-1)–(c-1)Correspondingline-profiles.(d)Diameterand(e)height distributionhistograms.Summaryplotsof(f)diameterandheight,(g)rootmeansquaredroughness(Rq) and(h)surfacearearatio(SAR)alongwiththeannealingtemperature.Errorrange:±5%in(f).(i)Energy dispersivex-rayspectroscope(EDS)elementalcharacterizationof550and950˚Csamplesinthe10nmset, showingwellmatchedspectra.(Inset)Enlargedrangebetween1.4and2.6keVdepictsPtMα1peak. https://doi.org/10.1371/journal.pone.0177048.g003 decreaseonthenanoparticlediameterwasobservedastheNSsadoptedmorepackedconfigu- rationasseeninFig3(C),preferentialverticalgrowth.Meanwhile,intermsoftheheight,a continuouslyincreasingtrendwasobservedasdisplayedinFig3(E)thatdepictstheheight evolutionofNPs.Ontheotherhand,thenumberofshortNPsweresignificantlydecayed alongwiththeincreasedtemperaturewhichcanbelikelyduetotheabsorptionbythelarge NPsinordertolowerthesurfacefreeenergy.AsshownbythesummaryplotsinFig3(F),the diameterwas99.9nmat850˚C,thenincreasedby1.16timesto116.3nmat900˚Candfinally PLOSONE|https://doi.org/10.1371/journal.pone.0177048 May4,2017 6/18 Morphologicalandopticalevolutionofself-assembledPtnanostructures Fig4.ReflectanceandRamanspectraofthePtNPsonsapphire(0001)fabricatedbetween500and 950˚Cwiththe10nmfilmthickness.(a)–(b)UV-VIS-NIRreflectancespectraofcorrespondingsamples.(c) Reflectancespectrumofbaresapphire.(d)Averagereflectanceplottedwithrespecttotheannealing temperature.(e)CorrespondingRamanspectraoftheA peaks.Summaryplotsof(f)peakintensity,(g) 1g peakpositionand(h)FWHM. https://doi.org/10.1371/journal.pone.0177048.g004 decreasedby1.07timesto105nmat950˚C.Meanwhile,theheightwaskeptincreasingfrom 7.4to10.2nmby1.37timesbetween850and950˚C.Inaddition,theR andSARaresumma- q rizedinFig3(G)and3(H)andspecificvaluesareprovidedinS2Table.TheR andSARare qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi q P givenby n1 ni¼1yi2andðAGA(cid:0)GASÞ(cid:2)100½%(cid:138)where,theyiisheightateachpixel,ASissurface area(2D)andA isgeometricarea(3D).Between500and650˚C,theR andSARweregradu- G q allyincreasedduetothenucleationandgrowthofPtnanoclusters.Between650and750˚C, boththeR andSARgraduallydecreasedduetothepreferentiallateralgrowthasmentioned q above.Finally,alongwiththeseparationandgrowthofisolatedNSs,theR andSARwere q graduallyincreasedagainbetween750and950˚C.Theenergy-dispersiveX-rayspectroscopy (EDS)spectraof950and550˚CsamplesareshowninFig3(I)andthespectraofothersamples areprovidedinS4Fig.Asseeninthespectra,KαpeaksforC,OandAlwereobservedat0.28, 0.53and1.49keVrespectively.Meanwhile,thePtMα1peakwasobservedat2.05keV.Asevi- dencedbytheinset,similarcountswereobservedforallsamplesbetween950and550˚C,indi- catingtheequalPtcontentswithoutsublimationatrelativelyhightemperature. Fig4showsthereflectanceandRamanspectraofthePtNSsonsapphire(0001)fabricated bythevariationofATwiththe10nmPtthickness.Thereflectancespectrawereanalyzedover UV,visibleandNIRregionsandgenerally,thefabricationofPtNSsshowedanenhancement PLOSONE|https://doi.org/10.1371/journal.pone.0177048 May4,2017 7/18 Morphologicalandopticalevolutionofself-assembledPtnanostructures onthereflectanceintensityascomparedtothebaresapphireasshowninFig4(A),4(B)and4 (C).Inthemeantime,thespectralshapeevolutionbytheformationofshouldersanddips wereobservedalongwiththevariationofsurfacemorphology.Theshouldersanddipscanbe relatedtothelocalizedsurfaceplasmonresonance(LSPR)inducedbythePtNSs.Thereso- nancecanbegeneratedbyvariousmodes,e.g.dipoleandquandrupole[38,39].AsseeninFig 4(A)and4(B),asmallshoulderwasobservedintheUVregionwithacenterpositionat~380 nm,whichcanberelatedtothequandrupolarresonance.Meanwhile,thedipolarresonance canbealsogenerated,however,asthelightabsorptionofPtisweakerandbroadascompared withAgandAu[18,19,40],nocleardipolarpeaksweredirectlyobservedinthereflectance evolution.AsseeninFig4(A)and4(B),thereflectancewasgraduallyincreasedbetween500 and700˚Cwhereasitwasgraduallyattenuatedabove750˚C.Also,cleardistinctionswere observedbetweenUV-VISregionandnearIRregions.Inspecific,theintensityincrease between350and800wasgraduallyenhanced,however,intheNIRregion,thereflectancewas graduallydecreasedabove750˚C.Toobservethespectralevolutionclearly,theaveragereflec- tancetrendinUV-VISandNIRregionswereseparatelyinvestigatedasshowninFig4(D).As evidencedbyFig4(D),thereflectanceinUV-VISandNIRregionwasconsistentlyincreased upto750˚CwiththeformationofoverlayingNPsanddenseisolatedNPs.Between750and 850˚C,thereflectanceintensityintheUV-VISregionwerealmostsimilar(~19%),whichcan beinducedbytheenhancementfromPtnanostructureLSPRintheVISregionandat900˚C, thereflectancebetween400and600nmwasfurtherenhanced,showingapeakthatmatches thePtdipolarpositionrecordedbetween500and550nm.Lastly,thedipolarpeakwasstill observedat950˚CasseeninFig4(B).Meanwhile,duetotheslightlyreducedaveragediameter aswellasthenanostructurecoverage,theoverallreflectanceintensitywasdecreased.Fig4(E) displaystheRamanspectralevolutionofA vibrationalmodepeaksofthesamples[41]and 1g thecorrespondingintensity,peakpositionandfullwidthathalfmaximum(FWHM)aresum- marizedinFig4(F),4(G)and4(H)accordingly.ThespecificvaluesofRamanpeakintensity, positionandFWHMaresummarizedinS4Table.TheRamanspectralvariationwasalso observedwiththemorphologicalevolutionofPtNSs.AsseeninFig4(F),thedecreaseofpeak intensitywaswitnessedbetween600and750˚CwiththeformationofisolatedPtNSs.Asdis- cussedabove,owingtothesurfaceplasmoneffect,thelightabsorptioncanbeenhancedwhich canresultintheattenuationofpeakintensity.Consequently,theintensitywasweakened between750and900˚C,whichmatcheswiththeUV-visreflectanceshowninFig4(D).At 950˚C,asthereflectancewasdecreased,theRamanpeakintensitywasrecoveredasseeninFig 4(E)and4(F),whichcanbealsoinducedbytheslightlydecreasednanostructurecoverage. Withrespecttothepeakposition,theA peaksappearedat~417.6cm-1withtheminorshift 1g within0.1cm-1,suggestingthesapphirelatticestraininducedbythePtNSsfabricationstayed inalowlevel[42,43].Inaddition,theFWHMsweredistributedstablybetween8and8.5cm-1. Fig5showstheevolutionofself-assembledPtNSswiththeincreasedPtthicknessof20nm bytheATvariationbetween500and950˚C.ThecorrespondingAFMtop-viewsof3×3μm2 andSEMimagesareprovidedinS5andS6FigsandthedetailedanalyseswiththeAFMtop-, side-viewsandcross-sectionallineprofilesarepresentedinS7Fig.Ascomparedtotheprevi- ousset,asimilarevolutiontrendwasobservedatarelativelylowertemperaturerangebetween 550and800˚C,however,atincreasedtemperaturebetween850and950˚CtheNSsshoweda distinctevolutionwiththelateralgrowthandcoalescence.Forexample,thenucleationoftiny voidsandgrowthofoverlayingPtnanoclusterswereobservedbetween550and650˚Cas clearlyshowninFig5(A),5(B)and5(C)andtheheightofatypicalnanoclusterwas~7nm. Then,between700and800˚C,alongwiththeenhancedsurfacediffusionandvoidgrowth,the PtlayersgraduallyevolvedintowigglyNSsat800˚CasseeninFig5(F).Finally,between850 and950˚C,thewigglyNSswereevolvedduetothesignificantvoidcoalescencealongwiththe PLOSONE|https://doi.org/10.1371/journal.pone.0177048 May4,2017 8/18 Morphologicalandopticalevolutionofself-assembledPtnanostructures Fig5.AnnealingtemperatureeffectonthesurfacemorphologyevolutionofPtnanostructureswith 20nm-thickPtdepositionannealedforconstant450satdifferenttemperatureaslabelled.(a)–(i)AFM side-viewsof3×3μm2.(j)–(l)EnlargedAFMtop-viewsalongwiththecorrespondingline-profiles. https://doi.org/10.1371/journal.pone.0177048.g005 agglomerationofPtatomsinordertoreducethesurfaceandinterfaceenergy[44].Asevi- dencedbytheline-profilesshowninFig5(J)and5(L),between750and950˚C,thelateral dimensionofNSswasclearlyexpandedwhiletheNSheightwasslightlyincreasedfrom~15to 22nm.Noticeably,aspresentedinFig5(L),theNSswereeventuallyformedwithaflattop, whichmightbe(111)planeduetothecrystalstructureofPtandsapphire.Aswellknown,the single-crystalsapphirespossesstherhombohedralstructureandonthec-plane,eachAl(O) atomcanbesurroundedbysixO(Al)atoms,formingahexagonalarrangement[15].Mean- while,asthecrystalstructureofPtisfacecenteredcube(fcc),thegrowthofPtNSscanfollow [111]direction,alongwhichthearrangementofPtatomscanmatchthehexagonalarrange- mentofsapphiresubstrate.Inaddition,asthe(111)planecontainsthelowestsurfaceenergy amongvariouscrystalorientations[45]andthustheflattopcouldbepreferentiallygrown (111)plane.Inaddition,theR andSARarepresentedinFig6(F)and6(G)andthecorre- q spondingvaluesaresummarizedinS2Table.TheR andSARweregraduallyincreasedalong q PLOSONE|https://doi.org/10.1371/journal.pone.0177048 May4,2017 9/18 Morphologicalandopticalevolutionofself-assembledPtnanostructures Fig6. (a)ReflectancespectraofthePtnanostructuresonsapphirefabricatedwiththevariationofannealing temperatureswiththe20nmPtdeposition.(b)Reflectancespectrumofbaresapphire.(c)Averagereflectance plottedasafunctionofannealingtemperature.(d)CorrespondingRamanspectraoftheA peak.(e)Summary 1g plotofA peakintensities.Summaryplotsof(f)Rqand(g)SAR.(h)EDSelementalcharacterizationofthe 1g samplesat950and500˚C.(Inset)Theenlargedenergyrangebetween1.4and2.6keVshowingPtpeaks. https://doi.org/10.1371/journal.pone.0177048.g006 withtheATfrom500to950˚CsuggestingtheevolutionofenlargedPtNSs.Fig6(H)displays theEDSspectraof950and500˚CsamplesandenlargedPtMα1peaksarepresentedinthe inset.TheintensityofPtMα1peakswassimilarbetween500to950˚C,whichconfirmsthe equalamountofPtineachsampledespiteoftheindifferentmorphologywithoutanysublima- tionlossathightemperature.Furthermore,theNSsfabricatedwith3nmPtdepositionare presentedinS9–S13Figs,likewise,representedwiththeAFMtop-,side-views,Rq,SARand EDSspectra.Theevolutionof3nmsetwasdistinctfrom10and20nmsetsinthattheforma- tionofround-domeshapedPtNPswereobservedthroughoutthewholeATrangebetween 500and950˚C.Duetosufficientdewettingoflowthicknessfilm,themetalNSstendtoreduce PLOSONE|https://doi.org/10.1371/journal.pone.0177048 May4,2017 10/18
Description: