ebook img

Effects of annealing temperature and duration on the morphological and optical evolution of self PDF

18 Pages·2017·9.57 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Effects of annealing temperature and duration on the morphological and optical evolution of self

RESEARCHARTICLE Effects of annealing temperature and duration on the morphological and optical evolution of self-assembled Pt nanostructures on c-plane sapphire MaoSui1,Ming-YuLi1,SundarKunwar1,PuranPandey1,QuanzhenZhang1, JihoonLee1,2* a1111111111 1 CollegeofElectronicsandInformation,KwangwoonUniversity,Nowon-guSeoul,SouthKorea,2 Institute a1111111111 ofNanoscaleScienceandEngineering,UniversityofArkansas,Fayetteville,AR,UnitedStatesofAmerica a1111111111 a1111111111 *[email protected] a1111111111 Abstract Metallicnanostructures(NSs)havebeenwidelyadaptedinvariousapplicationsandtheir OPENACCESS physical,chemical,opticalandcatalyticpropertiesarestronglydependentontheirsurface Citation:SuiM,LiM-Y,KunwarS,PandeyP, morphologies.Inthiswork,themorphologicalandopticalevolutionofself-assembledPt ZhangQ,LeeJ(2017)Effectsofannealing nanostructuresonc-planesapphire(0001)isdemonstratedbythecontrolofannealingtem- temperatureanddurationonthemorphological peratureanddwellingdurationwiththedistinctthicknessofPtfilms.TheformationofPt andopticalevolutionofself-assembledPt nanostructuresonc-planesapphire.PLoSONE12 NSsisledbythesurfacediffusion,agglomerationandsurfaceandinterfaceenergyminimi- (5):e0177048.https://doi.org/10.1371/journal. zationofPtthinfilms,whichreliesonthegrowthparameterssuchassystemtemperature, pone.0177048 filmthicknessandannealingduration.ThePtlayerof10nmshowstheformationofoverlay- Editor:YogendraKumarMishra,Instituteof ingNPsbelow650˚CandisolatedPtnanoparticlesabove700˚Cbasedontheenhanced MaterialsScience,GERMANY surfacediffusionandVolmer-Webergrowthmodelwhereaslargerwigglynanostructures Received:February24,2017 areformedwith20nmthickPtlayersbasedonthecoalescencegrowthmodel.Themor- Accepted:April23,2017 phologiesofPtnanostructuresdemonstrateasharpdistinctiondependingonthegrowth parametersapplied.Bythecontrolofdwellingduration,thegradualtransitionfromdensePt Published:May4,2017 nanoparticlestonetworks-likeandlargeclustersisobservedascorrelatedtotheRayleigh Copyright:©2017Suietal.Thisisanopenaccess instabilityandOstwaldripening.ThevariousPtNSsshowasignificantdistinctioninthe articledistributedunderthetermsoftheCreative CommonsAttributionLicense,whichpermits reflectancespectradependingonthemorphologyevolution:i.e.theenhancementinUV-vis- unrestricteduse,distribution,andreproductionin ibleandNIRregionsandtherelatedopticalpropertiesarediscussedinconjunctionwiththe anymedium,providedtheoriginalauthorand PtNSsmorphologyandthesurfacecoverage. sourcearecredited. DataAvailabilityStatement:Allrelevantdataare withinthepaperanditsSupportingInformation files. Funding:FinancialsupportfromtheNational Introduction ResearchFoundationofKorea(no.2011-0030079 Inlastdecade,thePtnanostructures(NSs)havebeenadaptedinwidespreadapplicationssuch and2016R1A1A1A05005009),andinpartbythe researchgrantofKwangwoonUniversityin2017is aselectro-catalyticsystems[1–3],hydrogenstorages[4,5],lightemittingdiodes(LEDs)[6], gratefullyacknowledged. solarcells[7]andphotocatalyticapplications[8,9].Forexample,asacatalystofhighactivity andselectivity,thePtNSsutilizedintheelectro-chemicalapplicationssuchasfuelcellscan Competinginterests:Theauthorshavedeclared thatnocompetinginterestsexist. significantlyimprovethereactionefficiencyfortheoxidationandoxygenreductionbenefitted PLOSONE|https://doi.org/10.1371/journal.pone.0177048 May4,2017 1/18 Morphologicalandopticalevolutionofself-assembledPtnanostructures bytheenlargedsurfaceareatovolumeratio[1–3].Inaddition,thePtNSscanbeutilizedto improvethehydrogenstoragecapacityinthecarbon,zeolitesandmetal-organicbasedspill- overhydrogenstoragesbydissociatinghydrogenmoleculesontoreceptors[4,5].Recently, duetothelocalizedsurfaceplasmonresonance(LSPR),metallicNSsarereportedinvarious photochemicalandoptoelectronicapplicationsandtheirsize,densityandconfiguration dependentlightinteractionscanbeutilizedtotailortheopticalproperties,e.g.spectralabsorp- tionandscattering[10–12].UnlikethewidelystudiedAgandAuNSswithwell-definedLSPR absorptionband,thePtNSsexhibitamorebroadenedlightabsorptionintheultraviolent-visi- bleregions.Profitedbythis,theperformanceofPtNSscanpotentiallyexceedtheAgandAu NSsinspecificcases.Forinstance,thePtcatalyzedaerobicoxidationofalcoholshasdemon- stratedaquantumyieldof7.1%undervisiblelightirradiationduetothesignificantlypro- motedphoto-catalysisactivity,whichisnearlytwicethecaseofAuNSphoto-catalysts[8,9]. Also,anover57%outputpowerincreaseisreportedinanLSPR-enhancedultravioletlight- emittingdiodewiththeemploymentofPtNSs,sharplyincreasedascomparedwiththeAgNS caseof20%[6].TheLSPRpropertiescanbeadequatelytunedbythecontrolofNSconfigura- tion,sizeanddensity,therefore,avitalrequirementisraisedforthecontrolledPtNSfabrica- tion[13–17].Asaneffectiveapproachofself-assemblythroughphysicalvapordeposition (PVD),thesolidstatedewetting(SSD)canachieveapreciselymodulatedNSfabrication onthesubstrateandthushasbeenreportedinthecontrollablefabricationofvariousmetal NSs,e.g.Au,AgandRh[16,18–20].Meanwhile,sapphirewiththehighthermaldurability, mechanicalstrengthandchemicalstabilityhaswidelyadaptedinelectronicandoptoelectronic devices[21–25].ThecontrollablefabricationofvariousPtNSsonsapphirecanprovidethe essentialreferenceonthepertinentmodulationofsurfacephysical,chemical,opticalandcata- lyticpropertiesnecessaryforthecorrespondingapplicationsbasedupon.Therefore,inthis work,westudytheself-assembledPtNSsevolutiononc-planesapphire(0001)basedonthe controlofannealingtemperatureandduration,inwhichthecoherenteffectofsurfacediffu- sion,surfaceenergyminimization,RayleighinstabilityandOstwaldripeningleadtothefor- mationofvariousconfiguration,sizeanddensityofPtNSs.Basedonthemorphologicaland elementalcharacterizationsbyAFM,SEMandEDS,theevolutionofvariousPtNSsaredem- onstratedandthegrowthmodelsarediscussedwiththedistinctdepositionamount.Further- more,theopticalpropertiesofvariousPtNSsareinvestigatedbythereflectancespectraand theeffectonlatticevibrationisprobedbyRamanspectra.Thecorrespondingvariationof intensityandpeakpositionsarediscussedalongwiththeNSmorphologyaswellasthesurface coveragechanges. Materialsandmethods PreparationofsubstrateandPtnanostructurefabrication ThePtNSswerefabricatedonc-planesapphire(0001)waferswithathicknessof430μmand off-axis±0.1(iNexusInc.,SouthKorea).Initially,thewafersweredicedinto6×6mm2squares usingamachinesaw.Inordertopreparethesubstrateforthedeposition,eachsamplewas degassedat650˚Cfor900sunderavacuumbelow1×10−4Torr.Duringthedegassing,an Inconelblankwasmountedonthebacksideofsampletoestablishastablethermalconduction fromahalogenlamp.Afterthedegassing,thesapphiresurfaceshowedasmoothmorphology withtheheightdistributionof±0.5nmasshowninS1Fig.Inaddition,theRamanspectraof baresapphireareshowninS1Fig.Rightafterthedegassing,thePtlayersweredepositedina sputterchamberwithagrowthrateof0.05nm/sandionizationcurrentof3mAunder1×10−1 Torratambienttemperature.ThetemperatureeffectonthePtNSfabricationwasinvestigated withthreedistinctdepositionthickness,i.e.3,10and20nm,whichwereseparatelydeposited PLOSONE|https://doi.org/10.1371/journal.pone.0177048 May4,2017 2/18 Morphologicalandopticalevolutionofself-assembledPtnanostructures bythecontrolofsputteringdurations.AfterthePtfilmdeposition,thesamplesshoweduniform surfacemorphologiesandthesurfaceroughnesswasslightlyincreasedalongwiththePtthick- nessasshowninS2Fig.Subsequently,thesamplesweretransferredtoapulsedlaserdeposition (PLD)chamberforannealingatvarioustemperaturebetween500and950˚Cwithaconstant rampingrateof4˚C/sunder1×10−4Torr.Afterreachingthetargettemperature,adwelling durationof450swasequallyappliedtoeachfabricationtoguaranteeasufficientsurfacediffu- sion.Theeffectofannealingdurationwasinvestigatedbetween0and3600sat800˚Cwiththe Ptdepositionthicknessof15and20nm.Meanwhile,therampingratewasacceleratedto10˚C/ sinordertominimizetheripeningeffectduringthetemperature-riseprocess[26,27].After eachgrowth,thesubstratetemperaturewasimmediatelyquencheddowntotheambientto eliminatetheundesiredripening. CharacterizationofPtnanostructures AfterthefabricationofPtNSs,morphological,elementalandopticalcharacterizationswere carriedout.Anatomicforcemicroscope(AFM)(ParkSystems,SouthKorea)non-contact modewasutilizedtoobtainthethreedimensionalsurfacetopographyandascanningelectron microscope(SEM)(CoXEM,SouthKorea)wasemployedforthelargerscale2Dimages.The AFMtips(NSC16/AIBS,μmasch,USA)utilizedwere17–21μminlengthwithacurvature radiuslessthan10nm.Thespringconstantandresonantfrequencyofcantileverswere~40 N/mand~300kHzrespectively.TheoriginaldatafromAFMwasprocessedbytheXEIsoft- ware(ParkSystems)toobtainthetop-andside-views,cross-sectionalline-profiles,RMSsur- qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi P faceroughness(R )andsurfacearearatio(SAR).TheR andSARaregivenby 1 n y2and q q n i¼1 i ðAGA(cid:0)GASÞ(cid:2)100½%(cid:138)where,theyiisheightateachpixel,ASissurfacearea(2D)andAGisgeomet- ricarea(3D).Theelementalanalysiswasperformedbyanenergy-dispersiveX-rayspectro- scope(EDS)system(ThermoFisherNoranSystem7,USA).ThereflectanceandRaman spectrawereacquiredbytheUNIRAMIIsystem(UniNanoTechCo.Ltd.,SouthKorea).The lightsourceforreflectancemeasurementwasthecombinationofdeuterium(250(cid:20)λ(cid:20)450 nm)andhalogen(450(cid:20)λ(cid:20)1100nm)lampsandtheRamansignalwasexcitedbya532nm laseratambienttemperature. Resultsanddiscussion Fig1showsthemorphologicalevolutionofself-assembledPtnanostructures(NSs)onc-plane sapphirebythevariationofannealingtemperature(AT)between550and950˚CwiththePt thicknessof10nm.Thedetailedmorphologicalandopticalcharacterizationsarepresentedin Figs2–4andthecorrespondingAFMside-viewsof3×3μm2areprovidedinS3Fig.Gener- ally,throughthegraduallyenhancedsurfacediffusionbythethermalenergy,theformationof PtnanoclustersfirstappearsontopofthePtlayersandthentheisolatedPtnanoparticles (NPs)aregraduallyformedfromthecontinuousPtlayeralongwiththeincreasedAT.De- pendingontheAT,thePtadatomsurfacediffusioncanmainlyoccurthroughtwotypical paths:(i)onthePtsurfaceatlowerATand(ii)onthesapphiresurfaceathigherAT.Thesur- facediffusionofadatomscanbedescribedbytherelation[23]: (cid:18) (cid:19) E D ¼D exp (cid:0) ; ð1Þ S 0 kT wheretheD isthepre-exponentialfactor,kisBoltzmannconstant,Tisthesystemtempera- 0 tureandEistheactivationenergyofPtatoms[28].FromtheEq(1),itcanbeinfferedthatthe D isdirecltydependentontheT.Thus,forasinglePtadatom,ithasahighpossibilitytobe S PLOSONE|https://doi.org/10.1371/journal.pone.0177048 May4,2017 3/18 Morphologicalandopticalevolutionofself-assembledPtnanostructures Fig1.Annealingtemperatureeffectontheevolutionofself-assembledPtnanoparticles(NPs)on sapphire(0001).Eachsamplewasdepositedwith10nmthickPtlayerandannealedbetween550and950˚C fortheidenticaldurationof450s.(a)—(i)Atomicforcemicroscope(AFM)top-viewsof3×3μm2. https://doi.org/10.1371/journal.pone.0177048.g001 activatedanddiffuseonthesurfaceatincreasedATandtheamountofactivatedPtatomscan besignificantlyincreasedathigherATfromamacropespective.AsdescribedinFig2(B),with anincreasedthermalenergy,thetopmostadatomsonthePtlayercanbefirstactivatedand diffuseonthedevelopingoverlayingPtlayer.Subsequently,thecollisionsamongthediffusing atomscantakeplaceandresultinthenucleationoftinynanoclustersatincreasedAT.Asindi- catedinFig2(C),asthediffusionlengthl canbeenhancedatanincreasedtemperature[29, D 30],thediffusingPtadatomscanhavehighpossibilitytotravelafurtherdistanceandbe adsorbedbythenanoclustersdrivenbythesurfaceenergyminimizationmechanism[31,32]. Finally,atasufficienthighAT,thePtadatomdiffusionandnucleationwoulddirectlyoccur onthesapphiresubstrateasseeninFig2(D),resultingintheformationofPtislands(NPs) accordingtotheVolmer–Webergrowthmodel[33,34].Withthestrongerbindingenergy betweenPtadatoms(γ )ascomparedtothatbetweenPtandsubstrateatoms(γ),namelyγ Pt I Pt >γ,thePtadatomstendtobindwitheachotherandgrowin3-dimensionalislandsand I therefore,thecontinousPtlayercangradaullydevelopintotheindividualPtNSsalongwith PLOSONE|https://doi.org/10.1371/journal.pone.0177048 May4,2017 4/18 Morphologicalandopticalevolutionofself-assembledPtnanostructures Fig2.PtNPsnucleationandgrowthatlowerannealingtemperaturerangebetween550and750˚C withthe10nminitialfilmthicknessand450sannealingduration.(a)–(d)Schematicsofdiffusion processdependingontemperature.(e)–(g)AFMside-viewsof1×1μm2andtop-viewsof200×200nm2in (e-1)–(g-1).(e-2)–(g-2)Cross-sectionalline-profilesacquiredfromthelocationsindicatedbythebluelinesin (e-1)–(g-1). https://doi.org/10.1371/journal.pone.0177048.g002 theincreasedAT.AsshownbytheAFMside-andtop-viewsinFig2(E)and2(E-1),theforma- tionoftinynanoclustersadoptingirregularconfigurationwasobservedwithhighdensitydue tothelimitedsurfacediffusionandtheheightoftypicalnanoclusterswas~2nm.Then,when theATwasincreasedto650˚C,thedimensionofNSswasobviouslyincreasedwiththe enhancedsurfacediffusion,i.e.NSsheightreachedover15nm.Thenat750˚C,thePtlayer wassignificantlydewettedbytheincreasedthermalenergy,resultingintheformationofiso- latedNSsonsapphiresurfaceasseeninFig2(G).AsevidencedbythelineprofilesinFig2(F- 2)and2(G-2),thePtNSsformedat750˚Cshowedapreferentiallateralgrowthwiththeslight decreaseinheight.Theconfigurationalvariationcanbecausedbythesurfaceenergydiffer- encebetweenPtandsapphire.AsthePtNSsformeddirectlyonthesapphiresubstrate,the dewettingangleθcanbecorrespondinglyvariedaccordingtotheYoung’sequationanddeter- minedbythevariedinterfacialenergies[35].Between750and850˚C,thenanoclusterswere graduallydevelopedintomoreregularshapethroughtheseparationinducedbytheRayleigh instability[36,37].Atthesametime,withtheenhancedsurfacediffusion,thesurfacemor- phologyevolvedintermsofheightanddimensionbetween850and950˚Candshowedmore preferentialverticalgrowth.Asexhibitedbythediameter(measuredalongshorterdirections) distributionhistograminFig3(D),themedianofdiameterwasfirstincreasedfrom850to 900˚C,whichcanbeattributedtothefurthershapedevelopment,andthenanoparticlecounts oflargediameterswereclearlyincreasedat900˚C,i.e.above125nm.However,at950˚Cslight PLOSONE|https://doi.org/10.1371/journal.pone.0177048 May4,2017 5/18 Morphologicalandopticalevolutionofself-assembledPtnanostructures Fig3.EvolutionofPtNPsonc-planesapphirebetween850and950˚Cwiththe10nmthickness. (a)–(c)AFMside-viewsof1×1μm2.(a-1)–(c-1)Correspondingline-profiles.(d)Diameterand(e)height distributionhistograms.Summaryplotsof(f)diameterandheight,(g)rootmeansquaredroughness(Rq) and(h)surfacearearatio(SAR)alongwiththeannealingtemperature.Errorrange:±5%in(f).(i)Energy dispersivex-rayspectroscope(EDS)elementalcharacterizationof550and950˚Csamplesinthe10nmset, showingwellmatchedspectra.(Inset)Enlargedrangebetween1.4and2.6keVdepictsPtMα1peak. https://doi.org/10.1371/journal.pone.0177048.g003 decreaseonthenanoparticlediameterwasobservedastheNSsadoptedmorepackedconfigu- rationasseeninFig3(C),preferentialverticalgrowth.Meanwhile,intermsoftheheight,a continuouslyincreasingtrendwasobservedasdisplayedinFig3(E)thatdepictstheheight evolutionofNPs.Ontheotherhand,thenumberofshortNPsweresignificantlydecayed alongwiththeincreasedtemperaturewhichcanbelikelyduetotheabsorptionbythelarge NPsinordertolowerthesurfacefreeenergy.AsshownbythesummaryplotsinFig3(F),the diameterwas99.9nmat850˚C,thenincreasedby1.16timesto116.3nmat900˚Candfinally PLOSONE|https://doi.org/10.1371/journal.pone.0177048 May4,2017 6/18 Morphologicalandopticalevolutionofself-assembledPtnanostructures Fig4.ReflectanceandRamanspectraofthePtNPsonsapphire(0001)fabricatedbetween500and 950˚Cwiththe10nmfilmthickness.(a)–(b)UV-VIS-NIRreflectancespectraofcorrespondingsamples.(c) Reflectancespectrumofbaresapphire.(d)Averagereflectanceplottedwithrespecttotheannealing temperature.(e)CorrespondingRamanspectraoftheA peaks.Summaryplotsof(f)peakintensity,(g) 1g peakpositionand(h)FWHM. https://doi.org/10.1371/journal.pone.0177048.g004 decreasedby1.07timesto105nmat950˚C.Meanwhile,theheightwaskeptincreasingfrom 7.4to10.2nmby1.37timesbetween850and950˚C.Inaddition,theR andSARaresumma- q rizedinFig3(G)and3(H)andspecificvaluesareprovidedinS2Table.TheR andSARare qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi q P givenby n1 ni¼1yi2andðAGA(cid:0)GASÞ(cid:2)100½%(cid:138)where,theyiisheightateachpixel,ASissurface area(2D)andA isgeometricarea(3D).Between500and650˚C,theR andSARweregradu- G q allyincreasedduetothenucleationandgrowthofPtnanoclusters.Between650and750˚C, boththeR andSARgraduallydecreasedduetothepreferentiallateralgrowthasmentioned q above.Finally,alongwiththeseparationandgrowthofisolatedNSs,theR andSARwere q graduallyincreasedagainbetween750and950˚C.Theenergy-dispersiveX-rayspectroscopy (EDS)spectraof950and550˚CsamplesareshowninFig3(I)andthespectraofothersamples areprovidedinS4Fig.Asseeninthespectra,KαpeaksforC,OandAlwereobservedat0.28, 0.53and1.49keVrespectively.Meanwhile,thePtMα1peakwasobservedat2.05keV.Asevi- dencedbytheinset,similarcountswereobservedforallsamplesbetween950and550˚C,indi- catingtheequalPtcontentswithoutsublimationatrelativelyhightemperature. Fig4showsthereflectanceandRamanspectraofthePtNSsonsapphire(0001)fabricated bythevariationofATwiththe10nmPtthickness.Thereflectancespectrawereanalyzedover UV,visibleandNIRregionsandgenerally,thefabricationofPtNSsshowedanenhancement PLOSONE|https://doi.org/10.1371/journal.pone.0177048 May4,2017 7/18 Morphologicalandopticalevolutionofself-assembledPtnanostructures onthereflectanceintensityascomparedtothebaresapphireasshowninFig4(A),4(B)and4 (C).Inthemeantime,thespectralshapeevolutionbytheformationofshouldersanddips wereobservedalongwiththevariationofsurfacemorphology.Theshouldersanddipscanbe relatedtothelocalizedsurfaceplasmonresonance(LSPR)inducedbythePtNSs.Thereso- nancecanbegeneratedbyvariousmodes,e.g.dipoleandquandrupole[38,39].AsseeninFig 4(A)and4(B),asmallshoulderwasobservedintheUVregionwithacenterpositionat~380 nm,whichcanberelatedtothequandrupolarresonance.Meanwhile,thedipolarresonance canbealsogenerated,however,asthelightabsorptionofPtisweakerandbroadascompared withAgandAu[18,19,40],nocleardipolarpeaksweredirectlyobservedinthereflectance evolution.AsseeninFig4(A)and4(B),thereflectancewasgraduallyincreasedbetween500 and700˚Cwhereasitwasgraduallyattenuatedabove750˚C.Also,cleardistinctionswere observedbetweenUV-VISregionandnearIRregions.Inspecific,theintensityincrease between350and800wasgraduallyenhanced,however,intheNIRregion,thereflectancewas graduallydecreasedabove750˚C.Toobservethespectralevolutionclearly,theaveragereflec- tancetrendinUV-VISandNIRregionswereseparatelyinvestigatedasshowninFig4(D).As evidencedbyFig4(D),thereflectanceinUV-VISandNIRregionwasconsistentlyincreased upto750˚CwiththeformationofoverlayingNPsanddenseisolatedNPs.Between750and 850˚C,thereflectanceintensityintheUV-VISregionwerealmostsimilar(~19%),whichcan beinducedbytheenhancementfromPtnanostructureLSPRintheVISregionandat900˚C, thereflectancebetween400and600nmwasfurtherenhanced,showingapeakthatmatches thePtdipolarpositionrecordedbetween500and550nm.Lastly,thedipolarpeakwasstill observedat950˚CasseeninFig4(B).Meanwhile,duetotheslightlyreducedaveragediameter aswellasthenanostructurecoverage,theoverallreflectanceintensitywasdecreased.Fig4(E) displaystheRamanspectralevolutionofA vibrationalmodepeaksofthesamples[41]and 1g thecorrespondingintensity,peakpositionandfullwidthathalfmaximum(FWHM)aresum- marizedinFig4(F),4(G)and4(H)accordingly.ThespecificvaluesofRamanpeakintensity, positionandFWHMaresummarizedinS4Table.TheRamanspectralvariationwasalso observedwiththemorphologicalevolutionofPtNSs.AsseeninFig4(F),thedecreaseofpeak intensitywaswitnessedbetween600and750˚CwiththeformationofisolatedPtNSs.Asdis- cussedabove,owingtothesurfaceplasmoneffect,thelightabsorptioncanbeenhancedwhich canresultintheattenuationofpeakintensity.Consequently,theintensitywasweakened between750and900˚C,whichmatcheswiththeUV-visreflectanceshowninFig4(D).At 950˚C,asthereflectancewasdecreased,theRamanpeakintensitywasrecoveredasseeninFig 4(E)and4(F),whichcanbealsoinducedbytheslightlydecreasednanostructurecoverage. Withrespecttothepeakposition,theA peaksappearedat~417.6cm-1withtheminorshift 1g within0.1cm-1,suggestingthesapphirelatticestraininducedbythePtNSsfabricationstayed inalowlevel[42,43].Inaddition,theFWHMsweredistributedstablybetween8and8.5cm-1. Fig5showstheevolutionofself-assembledPtNSswiththeincreasedPtthicknessof20nm bytheATvariationbetween500and950˚C.ThecorrespondingAFMtop-viewsof3×3μm2 andSEMimagesareprovidedinS5andS6FigsandthedetailedanalyseswiththeAFMtop-, side-viewsandcross-sectionallineprofilesarepresentedinS7Fig.Ascomparedtotheprevi- ousset,asimilarevolutiontrendwasobservedatarelativelylowertemperaturerangebetween 550and800˚C,however,atincreasedtemperaturebetween850and950˚CtheNSsshoweda distinctevolutionwiththelateralgrowthandcoalescence.Forexample,thenucleationoftiny voidsandgrowthofoverlayingPtnanoclusterswereobservedbetween550and650˚Cas clearlyshowninFig5(A),5(B)and5(C)andtheheightofatypicalnanoclusterwas~7nm. Then,between700and800˚C,alongwiththeenhancedsurfacediffusionandvoidgrowth,the PtlayersgraduallyevolvedintowigglyNSsat800˚CasseeninFig5(F).Finally,between850 and950˚C,thewigglyNSswereevolvedduetothesignificantvoidcoalescencealongwiththe PLOSONE|https://doi.org/10.1371/journal.pone.0177048 May4,2017 8/18 Morphologicalandopticalevolutionofself-assembledPtnanostructures Fig5.AnnealingtemperatureeffectonthesurfacemorphologyevolutionofPtnanostructureswith 20nm-thickPtdepositionannealedforconstant450satdifferenttemperatureaslabelled.(a)–(i)AFM side-viewsof3×3μm2.(j)–(l)EnlargedAFMtop-viewsalongwiththecorrespondingline-profiles. https://doi.org/10.1371/journal.pone.0177048.g005 agglomerationofPtatomsinordertoreducethesurfaceandinterfaceenergy[44].Asevi- dencedbytheline-profilesshowninFig5(J)and5(L),between750and950˚C,thelateral dimensionofNSswasclearlyexpandedwhiletheNSheightwasslightlyincreasedfrom~15to 22nm.Noticeably,aspresentedinFig5(L),theNSswereeventuallyformedwithaflattop, whichmightbe(111)planeduetothecrystalstructureofPtandsapphire.Aswellknown,the single-crystalsapphirespossesstherhombohedralstructureandonthec-plane,eachAl(O) atomcanbesurroundedbysixO(Al)atoms,formingahexagonalarrangement[15].Mean- while,asthecrystalstructureofPtisfacecenteredcube(fcc),thegrowthofPtNSscanfollow [111]direction,alongwhichthearrangementofPtatomscanmatchthehexagonalarrange- mentofsapphiresubstrate.Inaddition,asthe(111)planecontainsthelowestsurfaceenergy amongvariouscrystalorientations[45]andthustheflattopcouldbepreferentiallygrown (111)plane.Inaddition,theR andSARarepresentedinFig6(F)and6(G)andthecorre- q spondingvaluesaresummarizedinS2Table.TheR andSARweregraduallyincreasedalong q PLOSONE|https://doi.org/10.1371/journal.pone.0177048 May4,2017 9/18 Morphologicalandopticalevolutionofself-assembledPtnanostructures Fig6. (a)ReflectancespectraofthePtnanostructuresonsapphirefabricatedwiththevariationofannealing temperatureswiththe20nmPtdeposition.(b)Reflectancespectrumofbaresapphire.(c)Averagereflectance plottedasafunctionofannealingtemperature.(d)CorrespondingRamanspectraoftheA peak.(e)Summary 1g plotofA peakintensities.Summaryplotsof(f)Rqand(g)SAR.(h)EDSelementalcharacterizationofthe 1g samplesat950and500˚C.(Inset)Theenlargedenergyrangebetween1.4and2.6keVshowingPtpeaks. https://doi.org/10.1371/journal.pone.0177048.g006 withtheATfrom500to950˚CsuggestingtheevolutionofenlargedPtNSs.Fig6(H)displays theEDSspectraof950and500˚CsamplesandenlargedPtMα1peaksarepresentedinthe inset.TheintensityofPtMα1peakswassimilarbetween500to950˚C,whichconfirmsthe equalamountofPtineachsampledespiteoftheindifferentmorphologywithoutanysublima- tionlossathightemperature.Furthermore,theNSsfabricatedwith3nmPtdepositionare presentedinS9–S13Figs,likewise,representedwiththeAFMtop-,side-views,Rq,SARand EDSspectra.Theevolutionof3nmsetwasdistinctfrom10and20nmsetsinthattheforma- tionofround-domeshapedPtNPswereobservedthroughoutthewholeATrangebetween 500and950˚C.Duetosufficientdewettingoflowthicknessfilm,themetalNSstendtoreduce PLOSONE|https://doi.org/10.1371/journal.pone.0177048 May4,2017 10/18

Description:
Mao Sui1, Ming-Yu Li1, Sundar Kunwar1, Puran Pandey1, Quanzhen Zhang1,. Jihoon Lee1,2* .. Pt NPs nucleation and growth at lower annealing temperature range between 550 and 750˚C with the 10 . gradually decreased above 750˚C. To observe the spectral evolution clearly, the average reflec-.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.