Effective dimension for weighted ANOVA and anchored spaces Chenxi Fan12 [email protected] 1SchoolofMathematicsandStatistics UniversityofNewSouthWales 2SchoolofMathematicalSciences ZhejiangUniversity Annual NSW/ACT ANZIAM Meeting 2015 ChenxiFan (UNSW) NSW/ACTANZIAM2015 November26,2015 1/24 Outline 1 Motivation High Dimensional Integral: Effective dimension Compare ANOVA and Anchored Decompositions and Spaces 2 Main Results Relate Variances to Norms Implications 3 Summary ChenxiFan (UNSW) NSW/ACTANZIAM2015 November26,2015 2/24 Outline 1 Motivation High Dimensional Integral: Effective dimension Compare ANOVA and Anchored Decompositions and Spaces 2 Main Results Relate Variances to Norms Implications 3 Summary ChenxiFan (UNSW) NSW/ACTANZIAM2015 November26,2015 3/24 High Dimensional Integral (cid:90) f(x)dx [0,1]d Applications: e.g., in finance d = 360 = 12×30. Some integration problems are easier than others, e.g., d (cid:88) f(x) = f(x). i i i=1 ChenxiFan (UNSW) NSW/ACTANZIAM2015 November26,2015 4/24 Element I: ANOVA Decomposition Multivariate Decomposition (cid:88) f(x) = f (x), u u⊆[1:d] where u is a subset of {1,2,...,d} := [1 : d], and f (x) depends only u on x for j ∈ u. j ANOVA Decomposition (cid:90) (cid:90) (cid:88) f = f(x)dx and f (x) = f(x)dx − f , (1) A,∅ A,u uc A,v [0,1]d [0,1]|uc| v⊂u where x = (x) . u j j∈u Integrate out coordinates not in u (hard to evaluate) ChenxiFan (UNSW) NSW/ACTANZIAM2015 November26,2015 5/24 Element I: ANOVA Decomposition Example d (cid:88)(cid:0) 1(cid:1) f(x) = x − i 2 i=1 ANOVA decomposition f = 0, A,∅ 1 f = x − , A,{i} i 2 f = 0 if |u| ≥ 2. A,u ChenxiFan (UNSW) NSW/ACTANZIAM2015 November26,2015 6/24 Element II: Variance of Functions Definition The variance of an integrable function f : [0,1]d → R is defined as (cid:90) (cid:104)(cid:90) (cid:105)2 σ2(f) := [f(x)]2dx− f(x)dx . [0,1]d [0,1]d ChenxiFan (UNSW) NSW/ACTANZIAM2015 November26,2015 7/24 Definition of Effective Dimension Caflischetal. (1997) Truncation dimension The smallest integer k such that (cid:16) (cid:88) (cid:17) σ2 f ≥ (1−ε)σ2(f), (2) A,u u⊆[1:k] where ε is small, e.g., ε = 0.01. Superposition dimension The smallest integer k such that (cid:16) (cid:88) (cid:17) σ2 f ≥ (1−ε)σ2(f). (3) A,u |u|≤k Previous example Why is it important? How to calculate it? ChenxiFan (UNSW) NSW/ACTANZIAM2015 November26,2015 8/24 Outline 1 Motivation High Dimensional Integral: Effective dimension Compare ANOVA and Anchored Decompositions and Spaces 2 Main Results Relate Variances to Norms Implications 3 Summary ChenxiFan (UNSW) NSW/ACTANZIAM2015 November26,2015 9/24 Anchored Decomposition Definition (cid:88) f = f(0) and f (x) = f(x ,0 )− f , (4) a,∅ a,u u uc a,v v⊂u (cid:12) where f(xv,0vc) = f(x)(cid:12)x=0, j∈vc. j Fix some coordinates at 0 (the anchor). Cf. the ANOVA case which integrates out other components. Cf. ANOVA Decomposition (cid:90) (cid:90) (cid:88) f = f(x)dx and f (x) = f(x)dx − f . A,∅ A,u uc A,v [0,1]d [0,1]|uc| v⊂u ChenxiFan (UNSW) NSW/ACTANZIAM2015 November26,2015 10/24
Description: