ebook img

Effect of baseline meteorological data selection on hydrological modelling of climate change ... PDF

12 Pages·2015·3.72 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Effect of baseline meteorological data selection on hydrological modelling of climate change ...

JournalofHydrology528(2015)631–642 ContentslistsavailableatScienceDirect Journal of Hydrology journal homepage: www.elsevier.com/locate/jhydrol Effect of baseline meteorological data selection on hydrological modelling of climate change scenarios ⇑ Renji Remesan, Ian P. Holman CranfieldWaterScienceInstitute,CranfieldUniversity,UnitedKingdom a r t i c l e i n f o s u m m a r y Articlehistory: Thisstudyevaluateshowdifferencesinhydrologicalmodelparameterisationresultingfromthechoiceof Received5December2014 griddedglobalprecipitationdatasetsandreferenceevapotranspiration(ETo)equationsaffectssimulated Receivedinrevisedform27May2015 climatechangeimpacts,usingthenorthwesternHimalayanBeasrivercatchmentasacasestudy.Six Accepted14June2015 combinationsofbaselineprecipitationdata(theTropicalRainfallMeasuringMission(TRMM)andthe Availableonline9July2015 Asian Precipitation – Highly Resolved Observational Data Integration Towards Evaluation of Water Thismanuscriptwashandledby Resources(APHRODITE))andReferenceEvapotranspirationequationsofdifferingcomplexityanddata KonstantineP.Georgakakos,Editor-in-Chief, withtheassistanceofMatthewMcCabe, requirements(Penman–Monteith,Hargreaves–SamaniandPriestley–Taylor)wereusedinthecalibration AssociateEditor oftheHySimmodel.Althoughthesixvalidatedhydrologicalmodelshadsimilarhistoricalmodelperfor- mance(Nash–Sutcliffemodelefficiencycoefficient(NSE)from0.64to0.70),impactresponsesurfaces Keywords: derivedusingascenarioneutralapproachdemonstratedsignificantdeviationsinthemodels’responses Uncertainty to changes in future annual precipitation and temperature. For example, the change in Q10 varies TRMM3B42V7 between(cid:2)6.5%and(cid:2)11.5%inthedriestandcoolestclimatechangesimulationand+79%to+118%in Aphrodite thewettestandhottestclimatechangesimulationamongthesixmodels.Theresultsdemonstratethat Impactresponsesurface thebaselinemeteorologicaldatachoicesmadeinmodelconstructionsignificantlyconditionthemagni- Evapotranspiration tudeofsimulatedhydrologicalimpactsofclimatechange,withimportantimplicationsforimpactstudy Climatechange design. (cid:2)2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/). 1.Introduction However,quantificationofthehydrologicalimpactsofclimate change requires quality baseline data to enable meaningful com- Understandingthecurrentandfuturetemporaldynamicsofthe parisonbetweenpresentandfuture,butthereisapaucityorlack hydrological behaviour of rivers is vital for management of of coverage of land based measurements of meteorological vari- hydro-power generation, irrigation systems, public water supply ablesinmanypartsoftheworld.Datasparsitytendstobeexacer- and flood control structures (Jain et al., 2010). However, there is batedinmountainousregionswhereverysteeptemperatureand a widely recognised cascade of uncertainty in top-down climate precipitationgradientsarepoorlycharacterisedbythelimitedspa- change impact studies (Wilby and Dessai, 2010) that affects the tial and temporal extents of raingauge and weather station net- certainty in future water resource assessments (Refsgaard et al., works (Legates and Willmott, 1990), leading to significant 2007). Many elements of the uncertainty cascade within climate uncertaintyinprecipitationandevapotranspiration. impactsmodellinghavebeenquantitativelyassessed,highlighting Recently,manyglobal/regionaldatasetshavebeendevelopedas the uncertainty associated with climate model (RCMs or GCMs) an alternative or supplement to ground-based data over basins choice(FowlerandKilsby,2007;Woldemeskeletal.,2012),emis- with severe climate data scarcity (Meng et al., 2014) for use in sionsscenario(Maurer,2007),downscalingmethod,modelchoice, hydrological modelling studies (Andermann et al., 2012; Meng etc. (Pappenberger and Beven, 2006; Buytaert et al., 2009; Kay et al., 2014). These data sets include the Asian Precipitation – et al., 2009; Chen et al., 2011; Xu, 1999; Wilby et al., 2004; Highly Resolved Observational Data Integration Towards Woodetal.,2004). Evaluation of Water Resources (APHRODITE) data and satellite-based precipitation products such as the Tropical RainfallMeasuringMission(TRMM).However,thereareconsider- ⇑ abletemporalandspatialdifferencesbetweensuchdataproducts Correspondingauthorat:CranfieldWaterScienceInstitute,CranfieldUniver- in comparisonto weatherstation precipitation(Tian etal., 2007; sity,Cranfield,BedfordMK430AL,UnitedKingdom. Habib et al., 2009; Andermann et al., 2011; Li et al., 2012; Lu E-mailaddress:i.holman@cranfield.ac.uk(I.P.Holman). http://dx.doi.org/10.1016/j.jhydrol.2015.06.026 0022-1694/(cid:2)2015TheAuthors.PublishedbyElsevierB.V. ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/). 632 R.Remesan,I.P.Holman/JournalofHydrology528(2015)631–642 et al., 2013; Jamandre and Narisma, 2013), although these may demonstrated that the choice of ETo method affected the simu- partlybeduetothedifficultiesingauge-radarassimilationorcom- latedhydrologyoftheMekongandAndermannetal.(2011)high- parison (Vasiloff et al., 2009). A number of studies have used lightedthesignificantinconsistenciesthatexistbetweendifferent TRMM and APHRODITE for hydrological simulation in large river precipitation data products, including APHRODITE with catchmentswhilstalsodetailingtheiruncertainties–forexample, TRMM-3B42(and 3B43 data), no studies have assessed the com- Collischonn et al. (2007, 2008) used TRMM rainfall data in mod- binedeffectsofthesetwouncertaintiesforfutureclimatechange ellingtheTapajósriverbasininBrazil;andAPHRODITEprecipita- simulations.Thereisthereforealackofunderstandingconcerning tion data were used in hydrological modelling of the Aksu River theeffectthatthemodeller’ssubjectivechoiceofhistoricalmete- basin,North-WesternChina(Zhaoetal.,2013)andHimalayanriv- orological data, as determinedby their selectionofboth baseline ers in Nepal (Andermann et al., 2012). Meng et al. (2014) high- weatherdataproductsandthemethodstoderivemeteorological lighted that TRMM (3B42V6) daily data sets were more variablessuchasETo,haveontheuncertaintyinfuturehydrolog- appropriate for monthly hydrological modelling in hilly regions icalimpacts. of the Tibetan Plateau within the Yellow river basin, but studies Thisstudyevaluateshowthechoiceofgriddedglobalprecipita- byXueetal.(2013)haveshownaclearimprovementof3B42V7 tiondatasetsandreferenceevapotranspiration(ETo)methodaffects data sets over 3B42V6 in hydrological applications in the baseline hydrological model parameterisation and thereby the Wangchu Basin in Bhutan. Their study demonstrated that uncertainty in simulated future climate change impacts using 3B42V7 provided better basin-scale agreement with observed scenario-neutralimpactresponsesurfaces.Sixcombinationsofbase- (2001–2010) monthly and daily rain gauge data and improved linedaily precipitationdatasets (TRMMand APHRODITE)and ETo rainfall intensity distribution than 3B42V6. Andermann et al. methods (Penman–Monteith, Hargreaves–Samani and Priestley– (2011) compared APHRODITE with TRMM-3B42 (and 3B43 data) Taylor)wereusedinthecalibration/validationoftheHySimmodel alongwithotherremotesensingbasedprecipitationdatasetsalong (ManleyandWaterResourceAssociatesLtd.,2006),usingthenorth theHimalayanfrontandsuggestthatestimationofprecipitationin westernHimalayanBeasrivercatchmentasacasestudy. high elevations regions such as the Himalaya is challenging and that significant inconsistencies exist between different remote sensingdataproducts. 2.Studyareaandmethods ThequantificationofReferenceEvapotranspiration(ETo)isalso associatedwithsignificantuncertaintiesthatcanaffectwaterand TheBeasRiverisoneofthefivemajorriversoftheIndusbasin energy budgeting. Recent PET based studies including FLUXNET inIndiaandoriginatesintheHimalayas,flowingforapproximately (Baldocchi et al., 2001) and LandFlux-EVAL (Mueller et al., 2011, 470km before joining the Sutlej River. The catchment area, 2013) have addressed evapotranspiration uncertainty quantifica- upstreamofthePong reservoir, isaround12,560km2, and varies tion and evaluation. These studies principally aimed to compare in elevation from 245 to 6617 metres above sea level (m asl). satellite-based estimates, IPCC AR4 simulations, land surface The catchment is bounded by Latitude 31(cid:3)280–32(cid:3)260N and model(LSM)simulationsandreanalysisdataproductstoproduce Longitude75(cid:3)560–77(cid:3)480E(Fig.1).Soilsinthecatchmentareyoung an ensemble of global benchmark PET datasets. Kay and Davies and relatively thin, with their thickness increasing in the valleys (2008) found importantdifferences between ETo estimates using andareaswithgentleslopes(Pandey,2002).Themajorlandcover Penman–Monteith,asimplertemperature-basedpotentialevapo- classesincludeforest,snowandbarerock,withabout65%ofthe transpiration (PET) method and the UK Meteorological Office area covered with snow during winter (Singh and Bengtsson, Rainfall and Evapotranspiration Calculation System (MORECS) 2003).TheBeascatchmentisundertheinfluenceofwesterndis- when applied to data from five global and eight regional climate turbancesthatbringsnowfalltotheuppersub-catchmentduring models. However, whilst Thompson et al. (2014) have winter (December–April), whilst the monsoon provides around Fig.1. ThestudyareaoftheBeasriverbasininnorthernIndia. R.Remesan,I.P.Holman/JournalofHydrology528(2015)631–642 633 70%oftheannualrainfallduringJune–September.Thecatchment (cid:3) Asian Precipitation – Highly Resolved Observational Data ischaracterisedbymoderate–lowtemperatureswithmeanmin- Integration Towards Evaluation of Water Resources imum and mean maximum winter temperatures of (cid:2)1.6(cid:3)C and (APHRODITE)– the APHRODITE Water Resources project 7.7(cid:3)C, respectively (Singh and Ganju, 2008). The Pong reservoir (http://www.chikyu.ac.jp/precip/) has created long-term daily providesanactivestoragecapacityof7051Mm3tosupportflood gridded precipitation datasets over Asia from the year 1951. protection,hydropowergenerationandalmost9000Mm3/yearof Inthisstudywehaveused0.25(cid:3)(cid:4)0.25(cid:3)griddeddailydatasets irrigationwaterdemands(Jainetal.,2007).Dailygaugedreservoir over Monsoon Asia (APHRO_MA_V1101), available between inflowsfromJanuary1998toDecember2008(11years)wereused 60(cid:3)E–150(cid:3)Eand15(cid:3)S–55(cid:3)N,whicharecalculatedbyinterpola- inthisstudy. tion of rain-gauge data from meteorological stations in the The methodology adopted in this study for analysis of uncer- region(Yatagaietal.,2012). taintypropagationisshowninFig.2.SixHySimmodelsemploying (cid:3) NCEPClimateForecastSystemReanalysis(CFSR)data–meteoro- differentcombinationsoftwogriddedprecipitationdatasetsand logicalvariables(e.g.:dailymaximumtemperature,dailymini- three evapotranspiration equations (Sections 2.1 and 2.2) have mum temperature, daily wind velocity, daily average relative been calibrated and validated against observed daily river dis- humidity,dailyaveragesolarradiation,etc.)ataspatialresolu- charge data (Section 2.4). Then a scenario-neutral approach has tion of 0.5(cid:3)(cid:4)0.5(cid:3) are available from the National Centres for been adopted to study the propagation of uncertainties in the Environmental Protection (NCEP) Climate Forecast System HySim models. The methodology departs from conventional Reanalysis (CFSR) for the 31-yr period from 1979 to 2009 for GCM/RCM based scenario-led impact studies because it is based thecalculationofETo. onsensitivityanalysesofcatchmentresponsestoaplausiblerange of climate changes, avoiding the application of time varying 2.2.Potentialevapotranspirationequations GCM/RCM scenario outcomes simulated under certain assump- tions of social/economic/environmental policies, thus making it There are numerous methods available for the calculation of scenario-neutral (Prudhomme et al., 2010). Within the evapotranspiration, which differ in their data requirements and Scenario-neutralapproach,arangeofannualtemperaturechanges accuracy (see the reviews by Kumar et al. (2011) and Kumar and annual precipitation changes (Section 2.5) are applied to the et al. (2012)). In this study we have used three reference evapo- baseline(2000–2008)weather.EachofthesixHySimmodelwere transpirationequationsofdifferingcomplexityininputdatausage thenrunwitheachofthemodifiedweathertimeseries,andtheir and process representation for the calculation of ETo viz. FAO changesinhydrologicalindicatorsplottedasimpactresponsesur- Penman–Monteith (Allen et al., 1998), Hargreaves–Samani faces [a surface plot showing the variation of a certain quantity (Hargreaves and Samani, 1985a,b) and Priestley–Taylor (Priestley (e.g.: surface runoff) across the ranges of plausible changes in andTaylor,1972). futuretemperatureandprecipitation]. 2.2.1.TheFAOPenman–Monteithmethod 2.1.Rainfallandmeteorologicaldata TheFAOPenman–Monteithmethodisconsideredasoneofthe bestmethodsforETocalculation(Ngongondoetal.,inpress),but Thisstudyhasusedthreedatasets–twogriddedprecipitation alsohasthegreatestdatademands.Itconsidersbothaerodynamic datasetsandagriddedmeteorologicaldataset: phenomena and surface resistance factors (resistance of vapour flowthroughthetranspiringvegetationandevaporatingsoilsur- (cid:3) Tropical Rainfall Measuring Mission (TRMM) Data product 3B42 face)(Allenetal.,1998).Theequationisgivenas V7 of daily precipitation data has been used in this study. TRMM is a joint space programme between NASA and the 0:408DðR (cid:2)GÞþc 900 u ðe (cid:2)e Japanese space agency to monitor precipitation in the tropics ET0¼ Dnþcð1þ0T:þ3247u3 Þ2 s aÞ ð1Þ and subtropics and its associated latent heat (launched on 2 November27,1997)whichprovidesanimportantprecipitation whereET isreferenceevapotranspiration(mmday(cid:2)1),R netradi- 0 n database for environmental and hydrological research around ation at the crop surface (MJm(cid:2)2day(cid:2)1), G soil heat flux density the globe. The gridded TRMM data at a spatial resolution of (MJm(cid:2)2day(cid:2)1), T mean daily air temperature at 2m height ((cid:3)C), 0.25(cid:3)(cid:4)0.25(cid:3)overthelatitudinalbandof50(cid:3)N–Sareavailable u windspeedat2mheight(ms(cid:2)1),e saturationvapourpressure 2 s from1998. (kPa), e actual vapour pressure (kPa), (e (cid:2)e ) saturation vapour a s a Fig.2. Methodologyadoptedforanalysisofuncertaintypropagationinthisstudy. 634 R.Remesan,I.P.Holman/JournalofHydrology528(2015)631–642 pressuredeficit(kPa),Dslopevapourpressurecurve(kPa(cid:3)C(cid:2)1),(cid:2) Lower (no snow) sub-catchment areas of 5720, 3440 and psychrometricconstant(kPa(cid:3)C(cid:2)1)(Mallikarjunaetal.,2014). 3350km2, respectively. Areal averaging was used to change the precipitationandevapotranspirationdatafromthedifferentreso- 2.2.2.TheHargreaves–Samanimethod lutiongrids.HySimsoilhydraulicparameterswereestimatedfrom The Hargreaves–Samani method (Hargreaves and Samani, thelandusesandsoiltypesoftheregionandfromtheliterature 1985a,b) is a well-established approach that has been shown to (Jainetal.,2010;FAO/IIASA/ISRIC/ISSCAS/JRC,2012).Initialvalues give similar performance to Penman–Monteith (Heydari and oftheHySimsoilparameterswerebasedonthespatially-weighted Heydari, 2014), but without the need for solar radiation, relative physical attributes given in the Harmonized World Soil Database humidityandwindspeeddata: (HWSD) (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012) [resolution of about 1km(30arcsecondsby30arcseconds)]althoughmodeldefault ET0¼0:0135KRsRkapffiðffiTffiffiffimffiffiffiaffiffixffiffi(cid:2)ffiffiffiffiffiTffiffiffimffiffiffiiffinffiffiÞðTþ17:8Þ ð2Þ values for the soil hydraulic parameters were calibrated (Schwarz, 2013). Initial rooting depths were in the range of whereRaistheextra-terrestrialradiation(MJm(cid:2)2day(cid:2)1),andkis 800mm (grassland)–5000mm (forest) (Manley and Water thelatentheatofvaporisation(MJkg(cid:2)1)forthemeanairtempera- Resource Associates Ltd., 2006). Table 1 shows the minimum to ture T ((cid:3)C), which is equal to 2.45MJkg(cid:2)1, KRs is the radiation maximum parameter ranges across the three sub-catchments adjustment coefficient (the numerical value is 0.17) (De Sousa andsixHySimmodels,whichindicatescalibratedparametervari- Lima et al., 2013; Samani, 2004). Pandey et al. (2014) considers ability.TocharacterisepermanentHimalayansnowandicecover Hargreaves–Samani method as one of the promising approaches within the simulations, the upper sub-catchment in the model for estimation of reference evapotranspiration under data-scarce was initialised with an arbitrary ice/snow depth of around 25m mountainous conditions based on experiments in East Sikkim, informed by past research (Kulkarni et al., 2005; Kulkarni and India. Karyakarte,2014;Linsbaueretal.,2014). 2.2.3.ThePriestley–Taylorequation 2.4.Modelcalibrationandvalidation ThePriestley–Taylorequationreplacestheaerodynamictermin the Penman–Monteith equation with a dimensionless constant HySim was independently calibrated and validated for each (Priestley–Taylorcoefficient) combination of the two global gridded data sets and the three ET ¼a(cid:5) D (cid:5)Rn(cid:2)G ð3Þ potentialevapotranspirationequations(Fig.2),producingsixvali- 0 Dþc HE dated models. After two years of model warm-up (1998–1999), each model build was calibrated using flow data for 2000–2004, where HE is specific heat of evaporation (MJm(cid:2)2mm(cid:2)1), a and validated for 2005–2008. Seven parameters relating to land Priestley–Taylorparameter(a=1.26)andspecificheatofevapora- cover(rootingdepth,mm(RD));snowmelt(snowmeltthreshold, tion can be calculated using HE=0.0864 (28.9(cid:2)0.028T) (cid:3)C(ST); snowmelt rate, mm(cid:3)C(cid:2)1day(cid:2)1 (SM))and soil hydrology (EidgenössischeTechnischeHochschule(ETH),2014). (Permeabilityofhorizonboundary,mm/hour(PHB);Permeability ofbaselowerhorizon,mm/hour(PBLH);Interflowinupperlayer, 2.3.TheHySimhydrologicalmodel mm/hour (IU); and Interflow in lower layer, mm/hour (IL)) were calibrated using the commonly used Nash–Sutcliffe Efficiency HySim is a continuous, daily conceptual rainfall–runoff model Criterion (NSE – Eq. (4)) and the Percent Bias (PBIAS – Eq. (5)) (ManleyandWaterResourceAssociatesLtd.,2006)withseparate goodness-of-fit measures (as recommended by Moriasi et al. sub-routines to simulate catchment hydrology and channel 2007): hydraulics.Thecatchmenthydrologyissimulatedbysevensurface andsubsurfacestores(snowstorage,upperandlowersoilhorizon, PNðM (cid:2)OÞ2 transitionalgroundwater,groundwaterstorageandminorchannel NSE¼1(cid:2) 1 i i ð4Þ storage)whilstthehydraulicsub-routineuseskinematicroutingof PN1(cid:3)Oi(cid:2)O(cid:3)(cid:3)(cid:4)2 theriverflowstotheoutlet.HySimhasbeenextensivelyusedin "PNðO (cid:2)MÞ(cid:4)100# uplandandmountainouscatchmentsundercurrentandfuturecli- PBIAS¼ 1 i i ð5Þ mateconditions(e.g.Wilby,2005;Murphyetal.,2006). PN1Oi TheHySimmodelusesinputsofprecipitation,potentialevapo- transpirationandtemperature-basedsnowmelttosimulatestream whereOiandMiaretheobservedandsimulatedvaluesfortheith flow– see Pillingand Jones (1999)for details ofthe main model streamflowvalue,respectively,O(cid:3)(cid:3) isthemeanobservedvalue,and parameters.Theselectionofthenumberofsub-catchmentsissub- Nisthenumberofdays. jective,buttheriverbasinhasbeensub-dividedonaltitude,given NSEisselectedasthebestobjectivefunctionforreflectingthe the importance of the snow dynamics to hydrological behaviour, overallfitofahydrograph(Moriasietal.,2007)whilstPBIASmea- into Upper (permanent snow/ice), Middle (seasonal snow) and sures the average tendency of the simulated data to be larger or Table1 UncertaintyrangesintheHySimparameterboundswithdifferentinputspaceacrossthreesub-catchments. Parameters TRMMPriestley– TRMMPenman– TRMM Aphrodite AphroditePenman– Aphrodite Taylor Monteith Hargreaves Priestley–Taylor Monteith Hargreaves Rootingdepth(mm)(RD) 1218–2746 1121–2752 166–4285 811–1146 864–3211 2195–2766. Permeability–horizonboundary 764–7663 3.8–26 221–658 346–686 101–550 96–524 (mm/h)(PHB) Permeability–baselowerhorizon 526–529 17–163 482–711 646–777 305–569 202–377 (mm/hour)(PBLH) Interflow–upper(mm/h))IU) 3.7–600 5.7–7.6 282–500 70–307 10–606 15–814 Interflow–lower(mm/h)(IL) 3015–774 82–330 78–224 103–612 18–466 24–639 SnowThreshold((cid:3)C)(ST) 0.3–2.0 0.5–0.6 1.1–1.2 2.3–2.4 1.4–2.0 1.8–2.5 Snowmeltrate(mm/(cid:3)C/day)(SM) 2.5–2.5 0.8–1.2 1.7–1.8 2.0–2.5 1.8–2.3 2.2–2.5 R.Remesan,I.P.Holman/JournalofHydrology528(2015)631–642 635 Table2 StatisticalsummaryofdailyTRMMandAPHORDITEprecipitationdata(1998–2007). Indices(mm/day) TRMMprecipitationdata APHRODITEdata Uppersub-catchment Middlesub-catchment Lowersub-catchment Uppersub-catchment Middlesub-catchment Lowersub-catchment Mean 2.77 3.76 4.12 2.00 3.10 4.47 Maximum 96.44 119.44 136.83 53.74 74.07 121.18 Minimum 0.00 0.00 0.00 0.00 0.00 0.00 SD 6.69 9.00 10.04 4.50 6.85 10.66 5thpercentile 0.38 0.22 0.20 0.06 0.01 0.02 95thpercentile 13.83 19.28 23.19 10.02 16.14 24.38 N.B:theindiceswereappliedongriddedaveragecorrespondingtoeachsub-catchment. smallerthantheobserveddataandhencequantifiesoverallwater balanceerrors(Guptaetal.,1999).Wehavebasedtheevaluation of model performance using these metric on the NSE and PBIAS limits specified by Moriasi et al. (2007) and Henriksen et al. (2003).Forexample,Moriasietal.(2007)recommendsthat‘satis- factory’performanceformonthlytimestepstreamflowisgivenby 0.50<NSE60.65and±156PBIAS(%)6±25. 2.5.‘Scenarioneutralmethod’ofclimatechangeimpactassessment Plausible ranges of future changes in annual temperature and annual precipitation were informed by the regional summary results from 25 to 39 GCMs given in Christensen et al. (2013). This study used the projections for the Tibetan Plateau area (bounded by lat. 30(cid:3)–75(cid:3)N and long. 50(cid:3)–100(cid:3)E) and the Central Asiaarea(lat.30(cid:3)–50(cid:3)Nandlong.40(cid:3)–75(cid:3)E),astheBeascatchment islocatedclosetotheboundaryofthetwomodelledregions.Six temperature change factors between DT=0(cid:3)C and DT=5(cid:3)C (in steps of 1(cid:3)C) and seven precipitation change factors from DP=(cid:2)10% to DP=+20% (in steps of 5%) were used, which span the range of GCM projections for the Representative Concentration Profiles (RCP) across the two areas for 2065, and capture the median temperature increase under RCP8.5 (Riahi Fig.3. Comparisonofannual(a)APHRODITEand(b)TRMMprecipitationdataat et al., 2011) and the 25th to 75th range in precipitation change thesub-catchmentscale. acrosstheRCPsto2100.Theabovementionedchangefactorswere appliedtothedailyvaluesofthewholebaselinetimeseries(2000– 2008)toconstructthefuturescenario-neutralclimatevariables.In Fig.4. Cumulativeandprobabilitydensityfunctionsshowingtheuncertaintyinthegriddedprecipitationdatasets[TRMMandAPHRODITE]inthethreesub-catchmentsfor 1998–2007data. 636 R.Remesan,I.P.Holman/JournalofHydrology528(2015)631–642 the results section, all modelresults are comparedto those from 3.Resultsanddiscussions 2000to2008(i.e.withzerotemperature/precipitationchange). Each temperature change factor was added to the historical The presentation of results is laid out as follows. Sections NCEP data to provide modified temperature and subsequently 3.1 and 3.2 discuss, compare and contrast the different gridded ETo time series. All other weather variables were assumed precipitation data and ETo series in three sub-catchments of unchangedinthederivationofthemodifiedETotimeseries.The the river Beas. Section 3.3 presents the HySim based model cal- relative changes in precipitation were applied to each of the ibration and validation under the six data input combination; TRMM and APHRODITE historical time series (Prudhomme et al., whilst Section 3.4 examines how the resultant model parameter 2010). Each of the six calibrated/validated HySim models was uncertainty affects impact response surfaces of future Q10 run for the thirty combinations of changed temperature (5) and and Q90 daily discharge to changes in temperature and precipitation(6).Allcalibratedmodelparameterswereunchanged. precipitation. Table3 StatisticalsummaryofdailycalculatedETo(1998–2007). Indices Uppersubcatchment Middlesubcatchment Lowersubcatchment (mm/day) PenmanETo Hargreaves Priestley– PenmanETo Hargreaves Priestley– PenmanETo Hargreaves Priestley– (mm) ETo(mm) TaylorETo (mm) ETo(mm) TaylorETo (mm) ETo(mm) TaylorETo Mean 1.97 1.58 2.49 4.62 3.22 3.36 6.58 4.43 3.51 Maximum 6.31 4.47 6.43 9.70 6.79 6.75 15.92 8.84 7.21 Minimum 0.27 0.00 0.48 0.53 0.50 0.61 0.73 0.67 0.50 Standard 1.03 0.96 1.38 1.80 1.44 1.85 2.65 1.91 1.99 deviation 5th 1.79 1.55 2.26 4.40 3.22 3.30 6.23 4.39 3.41 percentile 95th 3.87 3.19 5.05 7.94 5.50 6.16 11.36 7.50 6.42 percentile Fig.5. CumulativeandProbabilityDensityFunctionsshowingtheuncertaintyinthedifferentdailyreferenceevapotranspirationtimeseries[Penman–Monteith,Priestley– Taylor,Hargreaves–Samani]inthethreesub-catchmentsfor1998–2007data. R.Remesan,I.P.Holman/JournalofHydrology528(2015)631–642 637 3.1.Comparisonofprecipitationdatasets value (cid:6)50%). In the Middle sub-catchment, the differences were intherangeof(cid:6)6%(October)to(cid:6)29%(April)withthelowerand Giventhepaucityoflandbasedmeasurementsofprecipitation higher values just after and before the South west summer intheHimalayanregionandthechallengesofassessingtherela- Monsoon. The lowest monthly differences between the datasets tive performance of raingauge and radar datasets (Vasiloff et al., inallthreesub-catchmentsof2–6%occurredinthesummersea- 2009), the differences between TRMM and APHRODITE are com- son. The differences between the Probability Density Function pared (Fig. 3), but assessing their accuracy and reliability is not (PDF) and Cumulative Density Function (CDF) plots for the withinthescopeofthispaper. TRMM and APHRODITE gridded precipitation data sets in Fig. 4 Therearesignificantdifferencesinthespatialandtemporaldis- show the uncertainty in daily precipitation in the upper, middle tribution of precipitation between the two datasets (Table 2 and andlowersub-catchments. Fig. 3). Differences in averageprecipitationbetweenTRMM3B42 V7andAPHRODITEincreasewithincreasingsub-catchmenteleva- 3.2.Comparisonofreferenceevapotranspirationmethods tion.Althoughthereisan11%differenceinannualaverageprecip- itationforthewholecatchment,thereisan(cid:6)39%differenceinthe As would be expected, all three ETo methods give decreasing Uppersub-catchmentand(cid:6)13%intheLowersub-catchment.The ETowithincreasingsub-catchmentelevation (Table3). However, datasets have greatest monthly differences in winter (maximum there are distinct differences between the methods with differenceof(cid:6)46%)andspring(maximumof(cid:6)47%)intheUpper Penman–Monteithgivingannualaveragevaluesthatare47%and sub-catchment; whereas the highest differences in the Lower 30% higher than the methods giving the lowest values in the sub-catchment are in the low flow autumn season (maximum Lower (Priestley Taylor) and Middle (Hargreaves–Samani) sub-catchments. In contrast, the Priestley–Taylor method gave thehighestannualaveragevaluein theUpperglacierdominated sub-catchment, which was 36% higher than the lowest method (Hargreaves).ThePDFsandCDFsofdailyreferenceevapotranspira- tionfor2000–2008usedtodrivethesixhydrologicalmodels,given inFig.5,demonstratethesignificantuncertaintyintroducedbythe choice of ETo method (Priestly–Taylor, Penman–Monteith, and Hargreaves–Samani). 3.3.Hydrologicalmodelling–calibrationandvalidation Fig.6showsthenarrowuncertaintyboundsinsimulateddaily flowacrossthesixmodelsforboththecalibrationandvalidation periods.Thestrongseasonalityinobservedriverresponseassoci- atedwiththemonsoonandsnowmeltisreproduced.Thereisgen- erallygoodagreementacrosstheflowdurationcurve(Fig.1ofthe Supplementary material), with the six models spanning the observedflowsthroughtheflowrange,withtheexceptionofabout theupper5%exceedanceprobabilitywhichmaypartlyreflectthe difficultyofaccuratelymeasuringsuchhighdischarges. Similarlevelsofmodelperformancewereachievedacrossthe6 model combinations in the calibration period, with NSE varying between 0.64 and 0.70. The three TRMM models having slightly Fig. 6. The uncertainty bounds in simulated daily discharge during (upper) higher NSEs and lower PBIAS (Table 4). The performance metrics calibrationand(lower)validationperiodsduetothevariabilityininputparameter forthethreeTRMMmodelsareverysimilarinthevalidationphase spaceacrossthesixHySimmodels. (0.66–0.71),althoughthereisanincreaseinthePBIAS.Incontrast, Table4 StatisticalindicesofHySimmodelperformancefordifferentprecipitationandevapotranspirationcombinations. Calibration(2000–2004) Validation(2005–2008) Year Penman–Monteith Priestley–Taylor Hargreaves Year Penman–Monteith Priestley–Taylor Hargreaves PBIAS(%) NSE PBIAS(%) NSE PBIAS(%) NSE PBIAS(%) NSE PBIAS(%) NSE PBIAS(%) NSE(%) TRMMprecipitationdatawithdifferentETocombinations 2000 16.8 0.75 4.3 0.75 10.9 0.74 2005 39.9 0.50 31.7 0.57 31.8 0.66 2001 20.9 0.69 17.3 0.73 16.5 0.70 2006 31.2 0.70 21.5 0.75 26.9 0.70 2002 11.9 0.59 4.6 0.55 (cid:2)3.3 0.53 2007 14.6 0.72 2.3 0.69 7.2 0.71 2003 1.5 0.77 (cid:2)9.9 0.75 (cid:2)10.4 0.71 2008 (cid:2)2.4 0.74 (cid:2)14.9 0.71 (cid:2)7.1 0.77 2004 0.5 0.69 (cid:2)11.8 0.68 (cid:2)13.3 0.65 Average 20.8 0.66 10.2 0.68 14.7 0.71 Average 7.54 0.70 4.1 0.69 3.5 0.67 APHRODITEprecipitationdatawithdifferentETocombinations 2000 28.2 0.60 34.4 0.54 36.8 0.57 2005 25.1 0.56 24.8 0.51 30.8 0.54 2001 18.1 0.69 26.4 0.67 21.6 0.68 2006 (cid:2)0.6 0.44 (cid:2)1.5 0.46 7.1 0.39 2002 0.5 0.69 14.9 0.74 5.3 0.66 2007 0.4 0.44 1.5 0.45 8.5 0.46 2003 (cid:2)19.7 0.69 (cid:2)14.0 0.75 (cid:2)15.5 0.64 2008 (cid:2)14.6 0.72 (cid:2)14.0 0.77 (cid:2)17.5 0.73 2004 (cid:2)36.7 0.62 (cid:2)29.1 0.70 (cid:2)27.1 0.62 Average 2.58 0.54 2.69 0.55 7.24 0.53 Average 6.80 0.66 6.51 0.68 12.02 0.64 638 R.Remesan,I.P.Holman/JournalofHydrology528(2015)631–642 Fig. 7. Q–Q plot evaluation of the modelled daily discharge in the six models againstobserveddischargedatafor2000–2008. the NSE for the APHOPRITE runs within the validation period reduce (0.53–0.55), albeit still within the satisfactory range as defined by Moriasi et al. (2007) and Henriksen et al. (2003), but isaccompaniedbyanimprovementinthePBIASto2.6–7.2%.The reliability of the predictive output distribution in the different models is demonstrated using the quantile–quantile (Q–Q) plots inFig.8.Althoughtheoverallperformancesofthemodels(asgiven by the NSE and PBIAS metrics for the calibration and validation periods) are similar, it is apparent from Fig. 7 that there are parameter-related uncertainties in simulated discharge. Fig. 8(a Fig.8. (a–b)Modeluncertainty(asgivenbythepercentagedifferencebetween simulated and observed discharge) along the flow exceedance curves showing andb)expressthisuncertaintybyshowingthemodeluncertainty associateduncertaintiesinsixhydrologicalmodellingsetupsunderthecalibration (as given by the percentage difference between simulated and (2000–2004)andvalidation(2005–2008)phases. observed discharge) associated with flow exceedance probability foreachofthemodelsduringthecalibration(2000–2004)andval- performance metrics and calibrated parameter values across the idation (2005–2008) periods. The discharge uncertainty arising sixmodelssolelyreflecttheeffectsofthedifferencesintheinput fromthemodelparameterisationsarefrom+8%to(cid:2)13%forQ10 precipitation and ETo data, given that all other input data and and+15%to(cid:2)45%forQ90inthevalidationperiod. theobserveddischargedataareconsistentacrossthesixmodels. Table 1 shows that the variability in the observational input This demonstrates how the calibration process can effectively data space has led to quite different optimal parameter vectors modify hydrological parameters to compensate for uncertainties with similar model performance The differences in the ininputdata. Fig.9. Impactresponsesurfacesofsimulatedchanges(%)in(upper)Q10and(lower)Q90tochangesinannualprecipitationandtemperatureforthesixHySimmodels. R.Remesan,I.P.Holman/JournalofHydrology528(2015)631–642 639 Fig.10. Comparisonofthemodelvalidationuncertainty(greyshadedarea)withthefutureimpactuncertainty(asgivenbythespreadofthepercentagechangeinfuture dailydischargerelativetothebaselineforthe6HySimmodels)acrosstheflowexceedanceprobabilityforfourchangefactorscenariosshowinghowthespreadoffuture hydrologicaluncertaintyexpandsfromtheuncertaintyduetotheinputdataselectionsubjectivityimpactsvalidationperiodasthechangeinclimateincreases. 640 R.Remesan,I.P.Holman/JournalofHydrology528(2015)631–642 3.4.Effectofparameteruncertaintyonclimatechangeimpact catchment,streamflowuncertaintyissmallerwithchangesinprecip- responsesurfaces itation than that of temperature. For the [Aphrodite+Penman– Monteith]model,ahydrologicaluncertaintyrangeof(cid:2)6.4%to16% The dailyflowthat isequalledor exceeded10and 90% ofthe wasassociatedwithchangesinprecipitationfrom(cid:2)10%to+20%at time(annualhighflow(Q10)andannuallowflow(Q90)),respec- DT=0,comparedtoanuncertaintyrangeof0to+84%fortempera- tively,arecommonlyusedindesigninghydropowerprojects(IITR, tureschangeof0to+5(cid:3)CatDP=0%. 2011).Fig.9showstheimpactresponsesurfacesforeachofthe6 validated models for Q10 and Q90, expressed as a percentage of thatmodel’sbaseline(2000–2008)value,acrosstherangeofplau- 4.Discussionandconclusion siblechangesinfutureannualtemperatureandprecipitation.The uncertaintyrangeinQ10andQ90acrossthesixdifferentmodels The need to understand uncertainty within water resource isgiveninFig.2oftheSupplementarymaterial.Bothflowindices assessments is widely recognised (Refsgaard et al., 2007), and generallychangeinproportiontothechangesinbothprecipitation manyelementsoftheuncertaintycascadewithinclimateimpacts andtemperature,indicatingthattheincreasesintemperaturepro- modellinghavebeenquantitativelyassessed,highlightingtherel- duce greater modelled increases in snowmelt than actual evapo- ativeimportanceofGCMchoice,emissionsscenario,downscaling transpiration. The simulated median (Q50), annual high flow method, model choice, etc. (Pappenberger and Beven, 2006; index (Q10) and annual low flow index (Q90) characterising the Buytaert et al., 2009; Kay et al., 2009; Chen et al., 2011). hydrologicalimpactsofplausibleclimatechangeassimulatedby However, the role of modeller subjectivity is generally ignored, the six HySim models are given in Table 1 of the Supplementary despiteitsrecognitioninothermodellingfields,suchaspesticide material.Thisindicatesthatthedifferencesinhydrologicalparam- fate (Dubus et al., 2003; Beulke et al., 2006) and hydraulic mod- eters arising from input uncertainty have greater impact on the elling(Garcia-SalasandChocat,2006). uncertaintiesinlowflows(Q90)thanonhighflows(Q10). Inthispaper,wehaveinvestigatedthecombinedconsequence The Q90 is more sensitive to precipitation and temperature of modeller choice on two key elements of a hydrological model changesthantheQ10inrelativeterms,asagivenabsolutechange build in data-sparse areas which, to-date, have received little inflowrepresentsalargerproportionforlowflowsthanhighflows. consideration in the context of their overall contribution to the The greatest decrease in both metrics occurs under the (DT= uncertaintyinclimateimpactassessment–thechoiceofbaseline 0(cid:3)C(cid:2)DP=(cid:2)10%)scenario,rangingfrom(cid:2)25%(TRMM-Priestley– precipitationdatasetandthechoiceofmethodforderivingrefer- Taylor) to (cid:2)2% (TRMM+Penman–Monteith) for Q90; and from enceevapo-transpiration. (cid:2)11%(TRMM+Penman–Monteith)to(cid:2)6%,(APHRODITE+Penman– The consequence of the differing model parameterisations Monteith)forQ10. resultingfromthedataset/methodchoiceinthisstudy,throughcal- Similarly, the greatest increases occurred under the ibrating the hydrological model with different precipitation and (DT=+5(cid:3)C(cid:2)DP=+20%) scenario due to the increased precipita- ETo time series, do not manifest themselves in significant differ- tionandsnowmeltoutweighingtheeffectsofincreasedevaporation/ ences in model behaviour and performance during the historical evapotranspiration – they ranged from +133% (TRMM+Penman– baseline period as given by conventional performance metrics. Monteith)to238%(APHRODITE–Hargreaves)forQ90,representing The HySim model was demonstrated to have similar NSE and an absolute increase in the Q90 flow of between 37–51m3/s; and PBIASvaluesandflowdurationcurvestotheobservedriverflows from +79% (TRMM+Penman–Monteith) to +118% (APHRODITE – across the 6 model builds, despite the significant uncertainty in Priestley–Taylor)forQ10equivalenttoamodelledincreaseof470– dailyprecipitationbetweenAPHRODITEandTRMMandnotwith- 771m3/s.Itisapparentthat,whilstthegeneraltrendsintheresponse standingissuesaroundtheuseofsuchdataproductsindailyhydro- surfacesforthe6differentmodelsrespondsimilarlyacrosstempera- logicalmodelling(Zhaoetal.,2013;Mengetal.,2014).Thesimilar tureandprecipitationchanges,thechoiceofprecipitationdatasetand modelperformancereflectsthe‘success’ofeachofthecalibrations ETo method differentially affects the magnitude of changes in Q90 in modifying the parameter values which control the rates and andQ10.Fig.10showshowtheparameterdifferencesassociatedwith thresholdsofhydrologicalprocessestocompensatefordifferences the choice of baseline data impact on the flow duration curves for in precipitation and ETo amount (through changing snow melt selectedfutureclimatescenarios,superimposedwiththeuncertainty characteristicsandtheactualETviatherootingdepth)andtiming rangeforthe6modelsforthevalidationperiod(fromFig.8b).The (throughchangingtheratesofverticalandhorizontalflowthrough selected scenarios are [DP=(cid:2)10%, DT=0(cid:3)C] (highest reduction in thesub-catchments)toenablethesimulatedriverflowstosatisfac- precipitationandnochangeintemperature),[DP=(cid:2)10%,DT=5(cid:3)C] torily match the observed. The results demonstrate that uncer- (highest reduction in precipitationand highest change intempera- tainty in any set of hydrologic inputs (here precipitation and ture), [DP=+20%, DT=0(cid:3)C] (highest increase in precipitation and evapotranspiration)canbeconserved,withthetranslationofthis nochangeintemperature),[DP=+20%,DT=5(cid:3)C](highestincrease uncertainty into simulated stream flow and performance metrics inprecipitationandtemperaturefrombaselineclimate).Theseshow concealedorreducedthroughthecalibrationofmodelparameters that large precipitation changes in the absence of temperature (SinghandBárdossy,2012,Andreassianetal.,2004andOudinetal. increasestendtoleadtothelargestpercentagechangesinthemedian 2006). However, parameter-related uncertainties do exist in the to low flow end of the flow duration curve; whereas temperature baselinesimulateddischarge,asshownbytherangeofdischarge increasescausethelargestincreasearoundthe25thto50thexcee- errorwithinthe6modelsalongtheflowexceedancecurves(Fig.8). dance probability reflecting large increases in pre- and Itisusualformodellerstoassumethattherangeofuncertainty post-monsoonsnowmelt.However,whenthefuturedischargeuncer- andmodelperformancestatisticsassessedduringcalibrationand taintyforthe6modelsacrosstherangeofflowexceedanceiscom- validationremainlargelyinvariant,regardlessofthetypeorsource pared with the model uncertainty from the validation period, it is of input data sets used for modelling (McMillan et al., 2011). apparentthatthefuturechangesindischargetendtoexceedtheval- However, our analysis has shown that the baseline uncertainty idationuncertaintyacrosstheflowexceedancerange,withtheexcep- duetoparameterbias(Fig.8)isgenerallyexceededbytheuncer- tionofsmallclimatechanges(e.g.[DP=(cid:2)10%,DT=0(cid:3)C]).Decreasing taintyassociatedwithapplyingthosemodelswithalteredclimate precipitation decreases the uncertainty range but temperature (indicating that model uncertainty is not invariant) and that the increaseshaveamuchgreaterimpactontheuncertainty.Itisappar- impactuncertainty(arisingfrommodelparameterisation)magni- ent that, in the case of such a highly responsive snow-dominated fiesasthedifferencefromthecurrentclimateincreases(Fig.10).

Description:
Aphrodite. Impact response surface. Evapotranspiration. Climate change. s u m m a r y. This study evaluates how differences in hydrological model parameterisation resulting from the choice of gridded global precipitation data sets and reference evapotranspiration (ETo) equations affects simulated.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.