ebook img

Dynamics of the chemostat : a bifurcation theory approach PDF

366 Pages·2011·9.789 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Dynamics of the chemostat : a bifurcation theory approach

Mathematics/Mathematical Biology/Chemical Engineering D y Based on the authors’ extensive work in this field, Dynamics of the n Chemostat: A Bifurcation Theory Approach explores the use of a bifurcation theory to analyze the static and dynamic behavior of the m chemostat. i c The authors first survey the major work that has been carried out on the stability of continuous bioreactors. They next present the s Dynamics of the modeling approaches used for bioreactive systems, the different o kinetic expressions for growth rates, and tools, such as multiplicity, f bifurcation, and singularity theory, for analyzing nonlinear systems. t Chemostat h The text moves on to the static and dynamic behavior of the basic e unstructured model of the chemostat for constant and variable C A Bifurcation Theory yield coefficients as well as in the presence of wall attachment. It h then covers the dynamics of interacting species, including pure and Approach e simple microbial competition, biodegradation of mixed substrates, m dynamics of plasmid-bearing and plasmid-free recombinant cultures, and dynamics of predator–prey interactions. The authors o also examine dynamics of the chemostat with product formation s for various growth models, provide examples of bifurcation theory t a for studying the operability and dynamics of continuous bioreactor t models, and apply elementary concepts of bifurcation theory to analyze the dynamics of a periodically forced bioreactor. Using singularity theory and bifurcation techniques, this book Abdelhamid Ajbar A presents a cohesive mathematical framework for analyzing and j b a Khalid Alhumaizi modeling the macro- and microscopic interactions occurring in r chemostats. The text includes models that describe the intracellular • A and operating elements of the bioreactive system. It also explains l h u the mathematical theory behind the models. m a i z i K13016 K13016_Cover.indd 1 6/29/11 12:33 PM Dynamics of the Chemostat A Bifurcation Theory Approach K13016_FM.indd 1 6/29/11 3:35 PM TThhiiss ppaaggee iinntteennttiioonnaallllyy lleefftt bbllaannkk Dynamics of the Chemostat A Bifurcation Theory Approach Abdelhamid Ajbar Khalid Alhumaizi K13016_FM.indd 3 6/29/11 3:35 PM CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2012 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20110613 International Standard Book Number-13: 978-1-4398-6716-7 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information stor- age or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copy- right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro- vides licenses and registration for a variety of users. For organizations that have been granted a pho- tocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com We thank God Almighty for the blessings bestowed during the writing of this book. Our thanks also go to our parents and familiesfortheir endless support. For Dr. Ajbar: to mother Khadija, wife Saida and kids, Ayman, Sami, and Ziyad. For Dr. Alhumaizi: to mother Sara, wife Muneera and kids, Shatha, Alaa, and Ibrahem. TThhiiss ppaaggee iinntteennttiioonnaallllyy lleefftt bbllaannkk Contents Preface xiii 1 INTRODUCTION TO STABILITY OF BIOREACTORS 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 StabilityStudies of Continuous Bioreactors . . . . . . . . . . 3 1.3 Methodologies for StabilityAnalysis . . . . . . . . . . . . . . 6 2 INTRODUCTION TO BIOREACTORS MODELS 9 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Continuous Bioreactors . . . . . . . . . . . . . . . . . . . . . 9 2.3 Modeling Bioreactors . . . . . . . . . . . . . . . . . . . . . . 11 2.3.1 Theoretical, Empirical, and Semiempirical Models . . 11 2.3.2 Unstructured vs. Structured Models . . . . . . . . . . 12 2.3.3 Nonsegregated vs. Segregated Models . . . . . . . . . 13 2.4 Kinetic Models for Cell Growth . . . . . . . . . . . . . . . . 14 2.4.1 Substrate-Limited Growth . . . . . . . . . . . . . . . 14 2.4.2 Growth Models with Inhibition . . . . . . . . . . . . . 15 2.4.2.1 Substrate Inhibition . . . . . . . . . . . . . . 15 2.4.2.2 Product Inhibition . . . . . . . . . . . . . . 16 2.4.2.3 Inhibitionby Toxic Compounds . . . . . . . 16 2.4.2.4 Multiple Substrates . . . . . . . . . . . . . . 16 2.5 Product Formation . . . . . . . . . . . . . . . . . . . . . . . 17 3 INTRODUCTION TO STABILITY AND BIFURCATION THEORY 19 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 Local Stability of Steady States . . . . . . . . . . . . . . . . 20 3.3 Steady-State Multiplicity . . . . . . . . . . . . . . . . . . . . 23 3.4 Dynamic Bifurcation . . . . . . . . . . . . . . . . . . . . . . 25 3.5 Numerical Techniques . . . . . . . . . . . . . . . . . . . . . . 27 3.6 SingularityTheory . . . . . . . . . . . . . . . . . . . . . . . . 28 3.6.1 Codimension-0Singularities . . . . . . . . . . . . . . . 33 3.6.2 Codimension-1Singularities . . . . . . . . . . . . . . . 33 vii viii Contents 3.6.2.1 Hysteresis . . . . . . . . . . . . . . . . . . . . 33 3.6.2.2 Isola and Mushroom . . . . . . . . . . . . . . 33 3.6.3 Codimension-2Singularities . . . . . . . . . . . . . . . 34 3.6.4 Codimension-3Singularities . . . . . . . . . . . . . . . 34 3.6.5 Hopf Degeneracies . . . . . . . . . . . . . . . . . . . . 34 3.6.6 Type I Degeneracies . . . . . . . . . . . . . . . . . . . 35 3.6.6.1 F Degeneracy . . . . . . . . . . . . . . . . . 36 1 3.6.6.2 F Degeneracy . . . . . . . . . . . . . . . . . 36 2 3.6.6.3 G Degeneracy . . . . . . . . . . . . . . . . . 37 1 3.6.7 Type II and III Degeneracies . . . . . . . . . . . . . . 37 3.6.8 Examples of Type II Degeneracies . . . . . . . . . . . 40 3.6.9 Examples of Type III Degeneracies . . . . . . . . . . . 41 4 THE BASIC MODEL OF IDEAL CHEMOSTAT 43 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2 Process Model . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.3 Static Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.3.1 Codimension-1Singularity . . . . . . . . . . . . . . . 46 4.3.2 Codimension-2Singularity . . . . . . . . . . . . . . . 50 4.3.3 Monod Kinetic Model . . . . . . . . . . . . . . . . . . 52 4.4 Dynamic Behavior for Constant Yield Coefficient . . . . . . 53 4.5 Dynamic Behavior for Variable Yield Coefficient . . . . . . . 55 4.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . 61 5 THE CHEMOSTAT WITH WALL ATTACHMENT 63 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.2 Process Model . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.3 Static Analysis for InhibitionKinetics . . . . . . . . . . . . . 67 5.4 Static Analysis for Monod Growth . . . . . . . . . . . . . . . 72 5.5 Quantification of the StabilizingEffect of WallsAttachment 76 5.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . 79 6 PURE AND SIMPLE MICROBIAL COMPETITION 81 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6.2 Process Model . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.3 Static Bifurcation for Substrate Inhibition . . . . . . . . . . 85 6.3.1 Hysteresis Singularity . . . . . . . . . . . . . . . . . . 85 6.3.2 Double Limit Singularity . . . . . . . . . . . . . . . . 88 6.3.3 Isola and Mushroom . . . . . . . . . . . . . . . . . . . 89 6.3.4 Pitchfork Singularity . . . . . . . . . . . . . . . . . . . 90 6.4 Existence of Periodic Solutions . . . . . . . . . . . . . . . . . 91 6.5 Monod Kinetics Model . . . . . . . . . . . . . . . . . . . . . 93 Contents ix 6.5.1 Periodic Solutions for Monod Kinetics . . . . . . . . . 94 6.6 Case of Sterile Feed . . . . . . . . . . . . . . . . . . . . . . . 95 6.6.1 Periodic Solutions for Sterile Feed Conditions . . . . . 96 6.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . 97 7 STABILITY OF CONTINUOUS RECOMBINANT DNA CULTURES 99 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 7.2 Process Model . . . . . . . . . . . . . . . . . . . . . . . . . . 101 7.3 Dynamic Bifurcation . . . . . . . . . . . . . . . . . . . . . . 104 7.3.1 F Degeneracy . . . . . . . . . . . . . . . . . . . . . . 106 1 7.3.2 H Singularity . . . . . . . . . . . . . . . . . . . . . . 108 01 7.4 Applications to Monod/Haldane Substrate-Inhibited Kinetics 109 7.4.1 Monod-Monod Case . . . . . . . . . . . . . . . . . . . 113 7.4.2 Inhibition-MonodCase. . . . . . . . . . . . . . . . . . 116 7.4.3 Monod-InhibitionCase. . . . . . . . . . . . . . . . . . 120 7.4.4 Inhibition-InhibitionCase . . . . . . . . . . . . . . . . 122 7.5 Implicationof Resulting Dynamics . . . . . . . . . . . . . . . 125 7.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . 128 8 BIODEGRADATION OF MIXED SUBSTRATES 131 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 8.2 Bioreactor Model . . . . . . . . . . . . . . . . . . . . . . . . 132 8.3 Static Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 134 8.3.1 Hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . 135 8.3.2 Isola and Mushroom . . . . . . . . . . . . . . . . . . . 138 8.3.3 Pitchfork Singularity . . . . . . . . . . . . . . . . . . . 140 8.3.4 Winged-Cusp Singularity . . . . . . . . . . . . . . . . 143 8.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . 144 9 PREDATOR–PREY INTERACTIONS 145 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 9.2 Bioreactor Model . . . . . . . . . . . . . . . . . . . . . . . . 146 9.3 Existence of Oscillatory Behavior . . . . . . . . . . . . . . . 147 9.4 Construction of Operating Diagrams . . . . . . . . . . . . . . 148 9.5 Application to the Saturation Model . . . . . . . . . . . . . . 149 9.6 Application to the Multiple Saturation Model . . . . . . . . 153 9.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . 157

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.