Dual Tableaux: Foundations, Methodology, Case Studies TRENDS IN LOGIC StudiaLogicaLibrary VOLUME 33 ManagingEditor RyszardWo´jcicki,InstituteofPhilosophyandSociology, PolishAcademyofSciences,Warsaw,Poland Editors VincentF.Hendricks,DepartmentofPhilosophyandScienceStudies, RoskildeUniversity,Denmark DanieleMundici,DepartmentofMathematics“UlisseDini”, UniversityofFlorence,Italy EwaOrłowska,NationalInstituteofTelecommunications, Warsaw,Poland KristerSegerberg,DepartmentofPhilosophy,UppsalaUniversity, Sweden HeinrichWansing,InstituteofPhilosophy,DresdenUniversityofTechnology, Germany SCOPEOFTHESERIES Trends in Logic is a bookseriescoveringessentially the same area as the jour- nalStudiaLogica–thatis,contemporaryformallogicandits applicationsand relations to other disciplines. These include artificial intelligence, informatics, cognitivescience,philosophyofscience,andthephilosophyoflanguage.How- ever,thislistisnotexhaustive,moreover,therangeofapplications,comparisons andsourcesofinspirationisopenandevolvesovertime. VolumeEditor RyszardWo´jcicki Forfurthervolumes: http://www.springer.com/series/6645 Ewa Orłowska Joanna Golin´ska-Pilarek (cid:2) Dual Tableaux: Foundations, Methodology, Case Studies 123 Prof.EwaOrłowska JoannaGolin´ska-Pilarek NationalInstituteof UniversityofWarsaw Telecommunications andNationalInstitute Szachowa1 ofTelecommunications 04-894,Warszawa,Poland KrakowskiePrzedmies´cie3 [email protected] 00-927,Warszawa,Poland [email protected] ISBN978-94-007-0004-8 e-ISBN978-94-007-0005-5 DOI10.1007/978-94-007-0005-5 SpringerDordrechtHeidelbergLondonNewYork (cid:3)c SpringerScience+BusinessMediaB.V.2011 Nopartofthisworkmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorby anymeans,electronic,mechanical,photocopying,microfilming,recordingorotherwise,withoutwritten permissionfromthePublisher,withtheexceptionofanymaterialsuppliedspecificallyforthepurpose ofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthework. Coverdesign:eStudioCalamarS.L. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) To theMemoryof HelenaRasiowa Preface TheoriginofdualtableauxgoesbacktothepaperbyHelenaRasiowaandRoman Sikorski‘OntheGentzentheorem’publishedinFundamentaMathematicaein1960. Theauthorspresentedacutfreedeductionsystemfortheclassicalfirst-orderlogic without identity. Since then the deduction systems in the Rasiowa–Sikorski style havebeenconstructedforagreatvarietyoftheories,rangingfromwellestablished non-classicallogicssuchasintuitionistic,modal,relevant,andmultiple-valuedlog- ics, to important applied theories such as, among others, temporal, in particular intervaltemporallogics, variouslogics of programs,fuzzy logics, logics of rough sets,theoriesofspatialreasoningincludingregionconnectioncalculus,theoriesof orderofmagnitudereasoning,andformalconceptanalysis. Specificmethodologicalprinciplesofconstructionofdualtableauxwhichmake possiblesuchabroadapplicabilityofthesesystemsare: (cid:2) First,givenatheory,atruthpreservingtranslationisdefinedofthelanguageof thetheoryintoanappropriatelanguageofrelations(mostoftenbinary); (cid:2) Second,a dualtableauis constructedforthisrelationallanguageso thatitpro- videsadeductionsystemfortheoriginaltheory. Thismethodology,reflectingtheparadigm‘FormulasareRelations’,enablesusto represent within a uniform formalism the three basic components of formal sys- tems:syntax,semantics,anddeductionapparatus.Theessentialobservation,leading toa relationalformalizationoftheories,isthatastandardrelationalstructure(i.e., a Boolean algebra together with a monoid) constitutes a common core of a great variety of theories. Exhibiting this commoncore on all the three levels of syntax, semanticsanddeduction,enablesusto createa generalframeworkforrepresenta- tion,investigationandimplementationoftheories. Therelationalapproachenablesustobuilddualtableauxinasystematic,mod- ular way. First, deduction rules are defined for the common relational core of the theories.These rulesconstitutea basis ofall the relationaldualtableau proofsys- tems.Next,foranyparticulartheoryspecificrulesareaddedtothebasicsetofrules. Theyreflectthesemanticconstraintsassumedinthemodelsofthetheory.Asacon- sequence,we neednotimplementeach deductionsystem fromscratch,we should onlyextendthebasicsystemwithamodulecorrespondingtothespecificpartofa theoryunderconsideration. vii viii Preface Relationaldualtableauxarepowerfultoolswhichperformnotonlyverification ofvalidity(i.e.,verificationoftruthofthestatementsinallthemodelsofatheory) butoftentheycanalsobeusedforprovingentailment(i.e.,verificationthattruthofa finitenumberofstatementsimpliestruthofsomeotherstatement),modelchecking (i.e.,verificationoftruthofastatementinaparticularfixedmodel),andsatisfaction (i.e.,verificationthatastatementissatisfiedbysomefixedobjectsofamodel). PartIofthebookisconcernedwiththetwosystemswhichprovideafoundation forallofthedualtableausystemspresentedin thisbook.InChap.1we recallthe originalRasiowa–Sikorskisystemandweextendittothesystemforfirst-orderlogic with identity. We discuss relationshipsof dual tableaux with other deduction sys- tems, namely, tableau systems, Hilbert-style systems, Gentzen-style systems, and resolution. In Chaps.2 and 3 classical theories of binary relations and their dual tableauxarepresented.Itisshownhowdualtableauxofthesetheoriesperformthe abovementionedtasksofverificationof validity,entailment,modelchecking,and verification of satisfaction. Some decidable classes of relational formulasare pre- sentedinthisparttogetherwithdualtableaudecisionprocedures. Part II is concerned with some non-classical theories of relations. In Chap.4 we present a theory of Peirce algebras and its dual tableau. Peirce algebras pro- vide a means for representation of interactions between binary relations and sets. In Chap.5 a theory of fork algebras and its dual tableau are presented. Fork al- gebras are the algebras of binary relations which, together with all the classical relationaloperations,haveaspecialoperation,referredtoasforkofrelations.While therelationaltheoriesofChap.2serveasmeansofrepresentationforpropositional languages,theforkoperationenablesusatranslationoffirst-orderlanguagesintoa languageofbinaryrelations.InChap.6wepresentatheoryoftypedrelationsand itsdualtableau.Thetheoryenablesustorepresentrelationsastheyareunderstood inrelationaldatabases.Thetheorydealswithrelationsofvariousfinitearitiesand, moreover,eachrelationhasitstypewhichismeanttobearepresentationofasubset ofattributesonwhichtherelationisdefined. In Parts III–V relational formalizations of various theories are presented. In Part III relational dual tableaux are constructed for modal (Chap.7), intuitionistic (Chap.8),relevant(Chap.9),andfinitelymany-valued(Chap.10)logics. PartIVisconcernedwiththemajortheoriesofreasoningwithincompleteinfor- mation.In Chaps.11and 12we dealwith logicsof roughsets and their relational dualtableaux.Chapter13presentsa relationaltreatmentof formalconceptanaly- sis. In Chap.14a monoidalt-normfuzzylogic is consideredand a relationaldual tableauforthislogicisconstructed.Inthissystemternaryrelationsareneededfor representationofthemonoidproductoperation.Next,inChap.15theoriesoforder ofmagnitudereasoningareconsideredandtheirdualtableauxarepresented. Part V is concerned with dual tableaux for temporal reasoning, spatial reason- ing,andforlogicsofprograms.Thefirsttwochaptersofthatpartrefertotemporal logics. In Chap.16 some classical temporal logics are dealt with and in Chap.17 relational dual tableaux for a class of interval temporal logics are presented. In Chap.18 dualtableauxfor theoriesof spatialreasoningare constructed,including Preface ix asystemfortheregionconnectioncalculus.Chapter19includesdualtableauxfor variousversionsofpropositionaldynamiclogicandforaneventstructurelogic. In Part VI we consider some theories for which dual tableau systems are con- structed directly within the theory, without translation into any relational theory. InChap.20wepresentaclassofthresholdlogicswherebothweightsofformulas andthresholdsareelementsofacommutativegroup.InChap.21wepresentacon- structionof a signed dualtableau which is a decisionprocedurefor a well known intermediatelogic.Chapter22includesdualtableauxforaclassoffirst-orderPost logics. The reduct of this dual tableau for the propositional part of the logic is a decision procedure.Chapter 23 presentsa propositionallogic endowedwith iden- titytreatedasapropositionaloperationandsometheoriesbasedonthislogic.Dual tableauxforall of these theoriesare presented.In Chap.24logicsandalgebrasof conditionaldecisionsareconsideredtogetherwith theirdualtableaudecisionpro- cedures. The bookconcludeswith PartVII. In the single Chap.25 of this partwe make a synthesis of what we learned in the process of developing dual tableaux in the precedingchapters.Wecollectobservationsonhowthedualtableauxrulesshould bedesignedoncetheconstraintsonthemodelsofthetheoriesordefinitionsofsome specificconstantsaregiven.Wealsodiscusssomeusefulstrategiesforconstruction ofdualtableauxproofs. Allthedualtableausystemsconsideredinthebookareprovedtobesoundand complete. We presenta generalmethod of provingcompletenessof dualtableaux whichisshowntobebroadlyapplicabletomanytheories. Researchersworkinginanyofthetheoriesmentionedinthetitlesofthechapters willreceiveinthebookaformaltoolofspecificationandverificationofthoseprob- lems in their theories which involve checking validity, satisfaction, or entailment. Everytheorywhosedualtableauispresentedinachapterofthebookisbrieflyin- troducedat the beginningof the chapter and a bibliographyis indicated where an interested reader could trace developments, major results, and applications of the theory. Togetanideaofwhatdualtableauxareandhowtheyarerelatedtotheotherma- jortypesofdeductionsystems,readingChap.1isrecommended.Afterreadingthe introductorymaterialfromSects.1.1,...,1.4,andSects.2.1,...,2.8,eachchapter inPartsIII,IV,andVmaybereadindependently.ThematerialofChap.7maybe helpfulin reading Chapters 11, 12, 16, 17, and 19, since they are concernedwith modal-stylelogics. Readers interested in the formal methods of deduction and their application to specificationandverificationwillfindinthebookanexhaustiveexpositionanddis- cussionofdualtableauxandtheirmethodologyillustratedwithseveralcasestudies.