ebook img

DTIC ADA523295: Six-Degree-of-Freedom Model of a Controlled Circular Parachute PDF

13 Pages·0.58 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview DTIC ADA523295: Six-Degree-of-Freedom Model of a Controlled Circular Parachute

JOURNALOFAIRCRAFT Vol.40,No.3,May–June2003 Six-Degree-of-Freedom Model of a Controlled Circular Parachute VladimirN.Dobrokhodov, OlegA.Yakimenko,†andChristopherJ.Junge‡ ¤ U.S.NavalPostgraduateSchool,Monterey,California93943-5106 Thepapercontinuesaseriesofpublicationsdevotedtomodernadvancesinaerodynamicdeceleratorsystem technologystarted recently (JournalofAircraft, Vol.38,No.5,2001)andaddressesthedevelopmentof a six- degree-of-freedommodelofaguidedcircularparachute.Thepaperreviewsexistingcircularparachutemodels anddiscussesseveralmodelingissuesunresolvedwithintheframeofexistingapproachesorcompletelyignoredso far.Theseissuesincludeusingdataobtainedintheaerodynamicexperimentsandcomputational-(cid:143)uid-dynamics modelingforbothundistorted(uncontrolled)anddistorted(controlled)canopyshapes,introducingandcomputing controlderivatives,andprovidingcomparisonwiththereal(cid:143)ightdata.Thepaperprovidesstep-by-stepdevelop- mentofthemathematicalmodelofcircularparachutethatincludesthebasicequationsofmotion,analysisand computationoftheaerodynamicforcesandmoments,andinvestigationwithmodelingofspecialmodesobserved in(cid:143)ight.Itthenintroducesanewapplicationofatwo-stepaerodynamicparametersidenti(cid:142)cationalgorithmthat isbasedoncomparisonwithtwotypesoftheair-dropdata(uncontrolledsetandcontrolledone).Thepaperends withsummaryoftheobtainedresultsandproposesavitaldirectionforthefurtherelaborationofthedeveloped model. Nomenclature l = lengthofactuatedpneumatic max muscleactuators A = apparentmasstensor 6 6 apl£ = dimensionofacubicpayloadcontainer lPMADlmin = nominallengthofpneumatic b = body-(cid:142)xedcoordinateframe muscleactuators fCDg = aerodynamicdragcoef(cid:142)cient lSL = lengthofsuspensionlines ofundisturbedcanopy M = vectorofexternalmoment Cm = aerodynamicmomentcoef(cid:142)cient Mcanopy = aerodynamicmomentvector ofundisturbedcanopy ofundisturbedcanopy Cn = yawmomentcausedbyyawacceleration MiG = momentscausedbytheweightoftheith CCnlrN == cdoanmtproinlgmmomomenetnctoceofe(cid:142)fc(cid:142)iceinetnt ccoenmteproonfengtrawvhiteynobfetihnegwtrhaonlselastyesdtetomthe Fn = vectorofexternalforce Mrisers = vectorofthemomentcaused Fa=d = totalaerodynamicforcevector bythechangeinriserlength F = aerodynamicforcevector Ma=d = totalaerodynamicmomentvector canopy ofundisturbedcanopy m = totalmassofthesystem Frisers = forcevectorcausedbythechange ma = massofairtrappedbythecanopy inriserlength mi = massoftheithcomponent G = gravitationvectorcausedbyEarth’s n = numberofactuatorsactivated(n 1;2 / 2f g gravityg PCP = locationofthecenterofpressureinfbg IIIjijijj === mmacbeoonommturtaeealnnxmttsseosoomffoiifennnfeebtrrsgttiioaafaoinbfeothrutetiaaitxohefscthooemfifptbhognent PPqPOuuPMDA[xu;yu;zu]T ==== pppdrooyessnsiiasttmiiuoorinnecooipnffrettphhsneeseurmuremeaoldasetiylcsimnteufmuscginlefaucgtuators Qjj componentinitscentroid-(cid:142)xedaxes Rp = radiusofin(cid:143)atedparachute kkCD0;kCD®;kCm == oemptpimiriiczaalticoonepf(cid:142)arcaiemnetstefrosrsymmetrical R0 = noofmuninina(cid:143)laotredrecfearneonpcyeradius mn (undisturbed)canopyusedtocompute ubR = rotationmatrixfromfbgtofug apparentmasstensor’scomponents S0 = canopy’sreferencearea l = distancebetweentheoriginof b T = totalenergy B andthetopofpayload f g TADS = kineticenergyoftheparachute l = relativelengthofkthactuator(l [0 1]/ Tair = kineticenergyofsurroundingair Nk N2 I t = (cid:143)ight(descent)time f u = localtangentplanecoordinateframe Received7July2002;presentedas Paper2002-4613attheAIAAAt- fVg [u;v;w]T = inertialvelocityvector mrTehvoiissspimhoenartrieecrciFaelliivgieshddt6eMcJleaacnrheuadanrayicw2s0oC0rok3n;ofaefcrtcehenepctUee,d.MSf.ooGrnoptevureberlyni,cmCateAino,tn6a1–n49dJAiasnunugoautrsystu22b00j00e23ct;. VVauDDD[[uVax;;vVay;;wVaz]]TT == ainiresrptieaeldvveleocctoitryvectormeasuredinfug tocopyrightprotectionintheUnitedStates. Copiesofthispapermaybe W = windvectormeasuredin u u f g madeforpersonalorinternaluse,onconditionthatthecopierpaythe$10.00 z = zcoordinateofthesystem’scenter G per-copyfeetotheCopyrightClearanceCenter,Inc.,222RosewoodDrive, ofgravityin b Danvers,MA01923;includethecode0021-8669/03$10.00incorrespon- z = zcoordinatefofgtheithcomponent’s dencewiththeCCC. i centroidin b ¤NationalResearch CouncilResearch Associate,DepartmentofAero- ®;® = angleofattafckg,spatialangleofattack nauticsandAstronautics.MemberAIAA. sp †ResearchAssociateProfessor,DepartmentofAeronauticsandAstronau- ®mn = apparentmasstensor’scomponents tics.AssociateFellowAIAA. ¯ = side-slipangle ‡LieutenantCommanderoftheU.S.Navy,DepartmentofAeronautics " = canopyshaperatio andAstronautics.MemberAIAA. ½ = airdensity 482 Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 3. DATES COVERED 06 JAN 2003 2. REPORT TYPE 00-00-2003 to 00-00-2003 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Six-Degree-of-Freedom Model of a Controlled Circular Parachute 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Naval Postgraduate School,Monterey,CA,93943-5106 REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF ABSTRACT OF PAGES RESPONSIBLE PERSON a. REPORT b. ABSTRACT c. THIS PAGE Same as 12 unclassified unclassified unclassified Report (SAR) Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 DOBROKHODOV,YAKIMENKO,ANDJUNGE 483 ¿ = actuator’stransitiontime Withregardtoaerodynamicsofthefullydeployedcanopieswith ’;#;à = Eulerangles a symmetric shape, variousauthorshave shown that the nonlin- › [p;q;r]T = vectorofangularvelocity ear natureof basicaerodynamicterms is a functionof the angle D ofattack.Forinstance,inRef.16authorsdiscussparameteriden- Subscripts ti(cid:142)cation using (cid:143)ight-testdata,where they point out that the de- pendenceof aerodynamicterms on the angle of attack is highly i = componentofanaerialdelivery nonlinearunlikethoseofanaircraft.Many ofpapers12;14;15;17 in- system(i 1;2;3;4 / 2f g cludesuf(cid:142)cientdatafor fullydeployedcanopiesanda varietyof j = axesof b (j x;y;z / f g 2f g (cid:143)ightconditions.(Similartotheaircraftaerodynamicsthemajor- k = actuatornumber(k 1;2;3;4 / 2f g ityofavailabledatahasbeenobtainedonthebaseofwind-tunnel m,n = rowandcolumnof6 6tensorvector £ experiments.)However,theresultsreportedemploypredetermined symmetriccanopyshapes.Theaerodynamicsofadistortedcanopy Introduction hasnotbeenconsidered. PARACHUTES have been the simplest and cheapestdevices Insummary,overthe past40yearsa consensusonthe lackof accuratedynamicmodelingofapparent-masseffectsandnonlinear used for the deliveryof materials,people,and vehiclesever aerodynamicsofdistortedcanopieshasemerged. since their (cid:142)rst recorded use by Jacques Garnering who jumped Thecomplexityofparachutemotionhasalsobeencon(cid:142)rmedby froma balloonoverParisin 1797.However,thisverysimplicity theextensiveamountofrealair-dropexperiments.21 24First,ithas makestheiraerodynamicsverydif(cid:142)culttomodel.Speci(cid:142)cally,the ¡ beenveri(cid:142)edthatstronglynon-linearnatureoftheparachuteaero- parachutenotonlyde(cid:143)ectssurroundingair,butalsoadoptsitsshape, dynamicsis determinedbythreemajor factors:(cid:143)ightconditions, whichisdictatedbytheair(cid:143)owgeneratedbythecanopy.Further- canopyshape,andgeometryof“parachute-payload”system[there- more,lackofstreamliningduringcontrolactivationmakesturbulent afterreferredtoasanaerialdeliverysystem(ADS)].Thus,assuming ratherthanlaminar(cid:143)owdominatetheparachute’saerodynamics. thatthematerialgeometrydoesnotchangeduring(cid:143)ightleadstothe Signi(cid:142)cantresearchon(cid:143)atcircularparachutemodelinghasbeen conclusionthataerodynamicforcesandmomentsdependoncanopy done over the past 60 years by researchersin the U.S., Europe, shape,spatialangleofattack,anddynamicpressure. andRussia.However,nocompletemodelofa controlledcircular Second,thedistortionoftheaxisymmetriccanopyshaperulesout parachutehasbeendevelopedsofar(whereasanumberofef(cid:142)cient employingthewell-establishedanalyticalresultsusedtodetermine techniquesaddressingthecontrolofmaneuverableparachuteslike theapparentmasstensorforaxisymmetriccanopy.Thisproblemhas parafoilexists).Moreover,existinghigh-degree-of-freedommodels notbeenresolved.Therefore,basedonpreliminaryresultsprovided ofcircularnoncontrolledparachuteslackveri(cid:142)ednonlinearaerody- by CFD techniques25 and our own analysis,severalassumptions namicsandusemostlyempiricalvaluesfortheapparentmassterms havebeenmadetomodelcanopydistortioncausedbycontrolinputs. (seeRefs.1–22). In particular,it was assumed that the number of canopy shapes The main contributionof the work reportedhereis the devel- causedbycontrolinputsare(cid:142)niteandknown. opment of a controlledmodel of a six-degree-of-freedom (DoF) At the same time there is an essentialyaw rotationcausedby circularparachute.Thiswasdonebyapplyinganonlinearsystem canopyshapedistortionwhenevenasmalldifferencebetweenthe identi(cid:142)cationalgorithmtore(cid:142)nethecomputational-(cid:143)uid-dynamics lengthoftwo adjacentcontrolinputsispresented.Therefore,the (CFD)valuesoftheaerodynamiccoef(cid:142)cients.Thecriticalideawas controlinputperformancestronglyaffectsthe whole system dy- to(cid:142)rstidentifytheuncontrolledmodelaerodynamicsandusethe namics. Hence, the controlled parachute model should properly resultingestimatestoidentifythecontrolledmodelaerodynamics. considerit. Anotherimportantstepwas to subtractthein(cid:143)uenceofthe wind Finally,thedescentratedependsnotonlyonairdensitybutalsoon whendeterminingthecontrolledmodel.Thisapproachwasmade controlinputsthroughthecanopyshapedistortionthatwasalsoob- possiblebytherichnessofthe(cid:143)ightdataset,23;24 thatis,datafor servedduringtherealdrops.Therefore,themodelofthecontrolled bothuncontrolledandcontrolleddropswereavailable. (cid:143)atcircularparachuteshouldincludesixdegreesoffreedomwith Adetailedanalysisofthecircularparachutemodelingproblem anappropriatedescriptionofapparentmasstensor,aerodynamics, discussedintheliteraturehasidenti(cid:142)edtwoshortcomingsinherent andcontrolsystemdynamics. inexistingmethods:1)estimationofapparentmasstermsisdone Thispaperisorganizedasfollows.Thenextsectionaddressesthe empiricallyforaxisymmetricshapes;2)theonlyaerodynamicscon- developmentofasix-DoFparachutemodel.Itcontainsthedetailed sideredarethoseofafullydeployedandsymmetriccanopy. discussionofthemathematicalissuesinvolved,beginningwithanal- BasedonHenn’s1 work introducingapparentmasscoef(cid:142)cients ysisofthebasicequationsofmotion,followedbycomputationof (1944),severalauthorsdevelopedmathematicalmodelsof a dif- aerodynamicforcesandmoments,andendingwiththemodelingof ferentdegreeofcomplexitytoinvestigatethedynamicbehaviorof somespecialmodesobservedinthe(cid:143)ighttest.Thefollowingsec- parachutes(e.g.,seeRef.2).Differentempiricalvaluesfortwoap- tiondiscussesveri(cid:142)cationoftheparachutemodelusingatwo-step parentmasseswereusedinthesestudies.In1962Lester3rederived parameteridenti(cid:142)cationtechnique.Thepaperendswiththeconclu- basicequationsofmotionshowingthatHenn’sequationswereer- sions.TheAppendixcontainsmass–geometrydatumforageneric roneous.At the same time Ibrahim4;5 has conductedthe (cid:142)rstex- ADSconsistingofaG-12parachuteandanA-22container,which haustiveanalysisoftheapparentmassandmomentofinertiaterms wasusedformodeling. ofcup-shapedbodiesinunsteadyincompressible(cid:143)ow.Hewasalso the(cid:142)rstonewhoshowedthatresultingparachutedynamicperfor- ModelDevelopment manceissensitivetothevaluesoftheseterms.Thisstudyinitiated thescienti(cid:142)cdebateontheextentofin(cid:143)uenceoftheapparentmass De(cid:142)nitionsandAssumptions termsonthestabilityofa descendingsystem.Manyauthors13 17 Inthissectionwediscussthedevelopmentofacircularparachute ¡ concludedthatneglectingnonlineartermsandthestochasticnature model.The speci(cid:142)c parametersandgeometryofdescendingsys- ofparachutedynamicswouldleadtocompletelyinaccuratemodel- tem usedwerethoseofa G-12 parachute.TheG-12isa 150-m2 ingandalsostressedtheneedforexperimentaldeterminationofthe nyloncargoparachutewith64suspensionlines(SL)26(Fig.1).The apparentmassterms.Anattempttousetheoreticalapparentmass A-22deliverycontainerwasselectedasaprototypecargobox.This andmoments-of-inertiacoef(cid:142)cientsbasedonthoserelatedtotheair 1.82-m3 almostcubiccontainerhasapayloadcapacityofnearlya displacedbyellipsoidsofrevolutionmovinginapotential(cid:143)uidwas tonandiscommonlyusedwiththeG-12bytheU.S.Army. madealso.12Oneofthelatestexperimentalstudies14;15suggeststhat The following controlled ADS architectureis considered.All apparentmassesandmomentsofinertia(hereafterreferredtojointly lines are assembledinto eight link assembles (see Fig. 1). Each astheapparentmasstensorterms)arethefunctionsofaspatialangle pairofassemblesisattachedtooneoffourrisers.Attheotherend ofattackanddependingonaccelerationmightsigni(cid:142)cantlyexceed therisersarecoupledtothepayloadatfourdispersedpoints(see thetheoreticalones. Fig.2).By designtheserisersallowcontrollingtheparachuteby 484 DOBROKHODOV,YAKIMENKO,ANDJUNGE Fig.1 G-12parachutecanopy. Fig.2 Payloadrigging. Fig.3 Systemofaxesandde(cid:142)nitionofaerodynamicterms. lengtheningoneortwoadjacentactuatorsandhencedisturbingthe 4)Theaerodynamicforcesgeneratedbythepayloadarenegligi- symmetricshapeof the canopy.The pneumaticmuscleactuators ble. (PMA)developedbyVertigo,Inc.,27 aremodeledandusedinthis 5)Undistortedcanopyhasanaxialsymmetryaboutthezaxis. studyasaprototypeofthecontrolrisers. Distortionofthecanopy’sshape(causedbythelengtheningofone TwoCartesiancoordinatesystemshavebeenchosentodescribe ortwoadjacentrisers)introducesasymmetricforcesandmoments ADSmotion(seeFig.3). allowingsteeringoftheADSinacertaindirectioninahorizontal LinearpositionoftheADS iscomputedwithrespecttoalocal plane.Moreover,itobviouslymakesADS nonsymmetrical.(One tangentplane u .ItspositiveydirectionisalignedwithlocalNorth, f g planeofsymmetrystillremains,butitslocationisnotconstantwith thepositivexdirectionpointsEast,andthepositivezdirectionpoints respecttothebodyframe.)Inthisstudyhoweverwewilladditionally up. assumethattheeffectofriserslengtheningandcanopydistortion Allothercomputationsareperformedinthebody-(cid:142)xedcoordi- from the standpointof changing tensors of inertia and apparent nateframe b .Itsoriginisattachedtothecenteroftheopen-end f g massesisnegligiblysmall.Thereforeevenforacontrolledcircular planeofthecanopy.Thex and y bodyaxeslieintheplaneparal- parachutethesetwotensorswillbeassumedtohavethesameform leltothecanopy’s base,andz isalignedwiththeimaginaryaxis asforuncontrolled(symmetrical)parachute. extendingtowardthecentroidofthepayload. Itisworthmentioningthatindifferentaerohydrodynamicstudies theoriginof b issometimesplacedatthecanopy’scentroid.The AerialDeliverySystemGeometry undisturbedcfangopyisalwaysassumedtobeaplanetaryellipsoid, Figure4introducesasetofparametersde(cid:142)ningtheparachute’s butitcanhaveadifferentratioofminorandmajoraxes.Thatmakes geometry.Numbers1:::4denotetheADS’scomponents:canopy, thelocationoftheoriginof b tobeconditionalfromtheconcrete rigging(suspension)lines,actuators(PMAs),andpayload.Thepo- parachutedesign.Moreoverfthgezcoordinateofthecanopycentroid sitionoftheircentroidszi aredeterminedwithrespecttothebody canbedeterminedonlyapproximatelybecauseinthegeneralcase frameorigin(pointOonFig.4). thereisnoanalyticalformulaforellipsoidalshells.Despitethefact Onthis(cid:142)gureRpD23R0denotestheradiusofin(cid:143)atedparachute, thatoriginallythesix-DoFmodelpresentedinthispaperwasalso andapl denotesthedimensionofacontainer(withoutlossofgen- developedwiththissetupoftheframe b ,itwaslateronredone eralityallthreedimensionsofacargocontainerwereconsideredto withtheoriginatthecenteroftheopen-fengdplaneofthecanopyto bethesame). makeequationsofmotionmoreuniversal. Asjustmentioned,theshapeofundisturbedcanopyisahalfof For simplicitywe will skipsubscriptb in the furtheranalysis, aplanetaryellipsoid(hemispheroid),meaningthatitiscircularin assumingthatallvariablesandaerodynamiccoef(cid:142)cientswhenap- planwhenviewedalongthezdirectionandellipticalwhenviewed plicablearede(cid:142)nedin b . fromtheside.Theratiooftheminortomajoraxes(canopyshape The followingassumfpgtionsmostlyadoptedfrom the Tory and ratio)willbedenotedas".ToryandAyres12reportedthatthisratio Ayrespaper12wereusedtodevelopthemodel: fora(cid:143)atcircularcanopyistypicallyequalto0.5.Otherresearchers 1)Becauseofthepredeterminedarchitecture,theparachuteand (e.g.,seeRefs.14–17)assumedcanopytobeahemisphere(" 1). D payloadareconsideredtoberigidlyconnectedtoeachother(Fig.2). FortheADSathand,"isequalto0.82. 2)Duringtheairdrop,thesetworigidlyconnectedpartsareas- sumedtoexperienceonlygravityandaerodynamicforces. BasicSix-Degree-of-FreedomEquations 3)Thecanopyexperiencesallaerodynamicforcesandmoments Followingbasicanalyticalmechanicsprinciples,thetotalenergy aboutitscenterofpressure. T of a whole descendingsystem relative to body frame can be DOBROKHODOV,YAKIMENKO,ANDJUNGE 485 rigginglinesm ,actuatorsm ,andpayloadm 2 3 4; X4 K m z mz D i iD G i 1 D wherez isthestaticc.g.oftheoverallADSwithrespecttothepoint G O(seeFig.4).Theothernotationsdenotethediagonalcomponents ofADS’sinertiatensorI ;I ;I andapparentmasstensor’scom- xx yy zz ponents® .Theonlyasymmetryleftintheseequationsiscaused mn byapossibleasymmetryofpayload.(I ingeneralmightnotbe xx equaltoI :/(Computationofbothtensorsisconsideredindetails yy inthefollowingsubsections.) Equations(4)and(5)areverysimilartothoseusedtomodela rigid-bodymotion[F mV m.› V/andM I› › I› ], D C £ D P C £ andinvectorformtheycanberewrittenasfollows: F M V ¤ M ; M I› H I M (6) D m P C c Om D P C cOC cr Inthelatterexpression M diagm ® ;m ® ;m ® m D2 f C 11 C 11 C 333g vr wq q rp ¡ PC ¤ 4 ur wp qr p 5 c D ¡ ¡ P vp uq 0 .p2 q2/ ¡ ¡ C M [m ® ;m ® ;K ® ]T Om D C 11 C 33 C 15 I diag I ® ;I ® ;I ® D 2f xx C 44 yy C 44 zzC 366g wp ur v qr vw Fig.4 ADSgeometry. H 4wq¡vr ¡uP ¡pr uw5 c D ¡ C P ¡ 0 0 0 givenby T DTADSCTair (1) IOD[K C®15;Iyy C®44¡Izz¡®66;®33¡®11]T TheexpressionsforT,TADS,andTair canbefoundinRef.16. M [0;0;.I I /pq]T Foranideal(cid:143)uidthekineticenergycanbedeterminedintermsof cr D yy ¡ xx velocitypotential.However,itiscommonpractice16toassumethat BeingresolvedwithrespecttoVand› ,Eqs.(6)yield P P thekineticenergyofreal(cid:143)uidcanbede(cid:142)nedsimilarly.Usingthe Lagrangeapproach,thebasicequationsofmotionfortheparachute– VP DMm¡1.F¡¤cMOm/; ÄP D I¡1.M¡HcIO¡Mcr/ (7) airsystemcanbeobtained.Themostgeneralformoftheseequations TheattitudeoftheADSisdeterminedbytheEulerangles’,#, in b is andÃ.Therelationbetweenvector› andEuleranglesisfoundin f g ‡ ´ ‡ ´ theusualway28;29: d @T @T 2 3 2 3 › F (2) Á 1 sinÁtgµ cosÁtgµ dt @V C £ @V D P ‡ ´ ‡ ´ ‡ ´ 4µ5 40 cosÁ sinÁ 5› (8) d @T @T @T P D › V M (3) à 0 sinÁ.1=cosµ/ cosÁ.1=cosµ/ dt @› C £ @› C £ @V D P ThelocaltangentplanecoordinatesP [x ;y ;z ]T oftheori- uD u u u whereaftersubstitutingtheexpressionforkineticenergyofthebody ginof b canbeobtainedemployingcorrespondingrotationmatrix andtheairintoEqs.(2)and(3)andapplyingappropriateapparent uR: f g b masstensorforasymmetricbody,andsomealgebra,the(cid:142)nalform ofequationsofmotionwillappeartobeasfollows: PPu DubRV (9) 2 3 .m ® /.u vr/ .m ® /wq .K ® /.q rp/ C 11 P¡ C C 33 C C 15 PC F 4.m ® /.v ur/ .m ® /wp .K ® /.p qr/5 (4) D C 11 PC ¡ C 33 ¡ C 15 P¡ .m ® /w .m ® /.uq vp/ .K ® /.p2 q2/ C 33 P ¡ C 11 ¡ ¡ C 15 C 2 3 .I ® /p .K ® /.v wp ur/ .I ® I ® /qr .® ® /vw xxC 44 P¡ C 15 P¡ C ¡ yyC 44¡ zz¡ 66 C 33¡ 11 M 4.I ® /q .K ® /.u wq vr/ .I ® I ® /pr .® ® /uw5 (5) D yy C 44 PC C 15 PC ¡ C yy C 44¡ zz¡ 66 ¡ 33¡ 11 .I ® /r .I I /pq zz C 66 PC yy¡ xx (Anexampleofstep-by-stepderivationoftheseequationscanbe ComputationofMomentsofInertia foundforexampleinRef.16.) The staticmass centerand moments of inertiaare determined InEqs.(4)and(5), basedontheweightanddimensionsofeachcomponent. X4 First,thez coordinateofeachcomponentcentroidwithrespect m m tooneofitssurfacesz andindividualcentralmomentsofinertia D iD1 i foreachcomponentinQitheaxesofcorrespondentcentroidIQijj were denotesthemassofthesystemthatincludesthemassofcanopym , derived.(Magnitudesofz thencanbecomputedwithaccountofz .) 1 i Qi 486 DOBROKHODOV,YAKIMENKO,ANDJUNGE Table1 Relevantformulasofmomentsofinertiaforparachutecomponents Component Canopy(1) Suspensionlines(2)andPMAs(3) Payload(4) zQiDj¡B!Cj ¡R2p"0:83 Lc2os° a2pl µ ¶ Ii Ii 0:248m1R¡2pe0:52" ¢ mi L2.1Ccos2°/ R2 m4ap2l QaaDQbb 0:246m1R2pe" Ix1xDIy1y 2 ‡ 12 C´¤ 6 IQcic 23m1R2p.1C0:143 "/ mi L2s1i2n2° CR¤2 m46ap2l Finally,themomentsofinertiaforthewholeADSwerecomputed asasumofinertiasofcorrespondingADScomponents X4 I Ii jjD jj i 1 D Thenumericalvaluesforthemomentsofinertiaofeachcompo- nentofagenericADSaregiveninTableA4intheAppendix.Here itcanbestatedthatalthoughthemajorcontributionsinto I and xx Fig.5a Canopy(1). Iyy momentsofinertiaareobviouslycausedbythepayload(more than98%),moment I isformedbasicallybytheparachuteitself zz (canopy,SLs,andPMAs)withaminorin(cid:143)uenceofpayload(less than15%).Thatshowswhyitisreasonabletoneglecttheeffectof ADS asymmetrywhilelengtheningrisers.Anotherfeatureisthat thesymmetryofthecargoboxwithrespecttotheaxiszsimpli(cid:142)es Eqs.(7)zeroingvectorM . cr ApparentMassTerms Similartotherigid-bodymasstensor,theapparent(virtual)mass tensor A has 66 36 elements,and in a real (cid:143)uid these can all ¢ D beunique.Foranideal(cid:143)uid,however,Aisasymmetricaltensor, leaving a maximum of 21 distinctterms. In the case of a body withtwoplanesofsymmetryandcoordinateframeoriginlocated Fig.5b Suspensionlines(2)andPMAs(3). somewhereontheaxisofsymmetry,tensorAcanbefurtherreduced tothefollowingform: 2 3 ® 0 0 0 ® 0 11 15 6 0 ® 0 ® 0 0 7 6 22 24 7 66 0 0 ®33 0 0 0 77 A 6 7 (11) D6 0 ®24 0 ®44 0 0 7 4 5 ® 0 0 0 ® 0 15 55 0 0 0 0 0 ® 66 Herethe(cid:142)rstthreediagonalelementsrepresentapparentmasses oftheairvirtuallystagnantwithinandaround(below)thecanopy, thenextthreearecorrespondentapparentmomentsofinertia,and Fig.5c Payload(4). theoff-diagonalairmass/inertiaelementscontributetothecoupling motion. Because of axial symmetry of the circular canopy, ® ® , Table 1 containsformulasfor each component.Figures5a–5c ® ® ,and® ® .Thatleavesonlythreedistincte2le2mDen1t1s, showthecomponents.Althoughformulasforahemisphericalshell w5h5iDcha4r4e® ,®24,D®¡,®15,and® .[Thatiswhydynamicequations 11 33 44 15 66 andasolidcube(payload)arewellknown(forexample,seeRef.30), havetheirappearance,Eqs.(4)and(5)]. theformulasforahemispheroidalshellandforafrustumrightcir- Intheearlierstudiestorepresenta(cid:143)owaroundafullydeployed cularconeshellformedbySLsorPMAsareoriginal.Approximate canopy,the latterwas representedas a spheroid.In this casethe formulasfor a hemispheroidalshell were speci(cid:142)cally derivedto referenceairmassandmomentsofinertiacorrespondtothoseof matchrealvaluesintherangeof" [0:5 1].(Exactcumbersome theairdisplacedbythebody 2 I formulasfora hemispheroidalshellcan befoundfor instancein Ref.31.) ma Dmsa D 43¼½R3p" (12) In Table 1 R is a radius of the shell measured at the z co- oard=ipna2teolf itssci¤enn°tr=o2idf.o(rRP¤MDARsp.)¡TlhSeLscionn°e=h2aflfo-ranSgLlsea°ndfoRr¤thDe Ixaixr D 15maR2p.1C"2/; Izazir D 25maR2p (13) pl C PMA (seeconventionsofTable1). consideredADScon(cid:142)gurationcanbecomputedfromthegeometric Todayit is a usualpracticeto referto the airtrappedwithina relationsin° .R a =p2/.l l / 1. D p¡ pl SLC PMA ¡ hemisperoid.Inthiscaseairmassmakesthehalfofspheroid Theindividualinertiacomponentswerethentransferredtothe originof b usingtheparallelaxistheorem m 0:5ms (14) f g a D a andformulasforthemomentsofinertiaarethesameasEqs.(13).If Ii Ii m z2; i 1;:::;4 (10) jj D QjjC i i D neededtobecomputedwithrespecttocentroidaxes,thezcoordinate DOBROKHODOV,YAKIMENKO,ANDJUNGE 487 forthehemispheroid’scentroidequaltoz 3"R needstobe withintheshownrange.EighteenyearslaterLudwig and Heins2 PD¡8 p takenintoconsideration. increasedthebaselinevalueandextendedtherange.Attheendof Generallyspeaking,apparentmasstermsdependonthecanopy’s the1960sbasedonexperimentalresearchbyIbrahim,4;5Whiteand con(cid:142)guration,porosity,acceleration,andspatialangleofattack.For Wolf8solvedthe(cid:142)ve-DoFequationsofmotionusingapproximately instance,Ibrahim4;5showedthatapparentmassescandroptheirval- thesamevaluesforapparentmassesandintroducedapparentmo- uesmorethan20timeswiththeporosityincreasedfrom0to40%. mentofinertia® .ToryandAyres12implementedtheoreticalval- 44 Apparentmomentsofinertiaalsodecreasetheirvaluesbythefac- uescomputedforthepotential(cid:143)owaroundspheroid.Notonlydid torof2.75.IntheirexperimentalstudyYavuzandCockrell14 and theyuseerroneousequations,buttheirmodelingdataseemedtonot Yavuz15demonstratedstrongdependenceoftheangleofattackon matchtheresultsofexperiment. especially® .(Itdecreases4.5timeswithincreaseoftheangleof Thebeginningofthe1980swasaneweraofcircularparachute 33 attackfrom0to40deg.)Theyalsorevealedastrongdependence modeling.Eaton13 and other researchteams14;16;17 developedthe ofapparentmasstermsfromappropriateaccelerationsshowingthat right set of six-DoF equations and performed stability analysis. theycanchangeasmuchasbyafactorof(cid:142)vewhileexperiencing Eaton’scoef(cid:142)cientsifreferredtothemassofahemispheroidrather steadyacceleration.With regardtothelatterstudy,howeverit is thanaspheroidwouldgivethevaluesof0.4and0.8fortheapparent unclearhow the dependencefrom accelerationcan be takeninto masses,whichisfairlyclosetothoseofDoherrandothers.16;17 account.First,theparachutedoesnotexperienceaconstantaccel- In spite of the results of experimental work of Yavuz and erationduringdescent.Accordingtothe(cid:143)ight-testdataavailable, Cockrell14 andYavuz15showingcompletelydifferentscaleforap- accelerationsduringdescentofafullydeployedparachuteoscillate parentmassterms,itlookslikeeverybodyiscontinuingusingthe aroundzero.Buteventhevalueatzeroaccelerationcannotbeim- classicalsetofDoherr(e.g.,seeRefs.18–20). plementedbecausealldependenceshavea(cid:142)rst-orderdiscontinuity The present study was not aimed at tuning these coef(cid:142)cients, atthispointsothatthevaluesdifferasmuchasthreetimeswhen andsoa classicalsetofapparentmasstermswasusedherealso. approachingto the steady-statedescent (zero acceleration)from Howevertheauthorswouldliketoaddressthisissueinthefuture.It negativetopositiveacceleration,notmentioningthatthedatawere alsoexplainswhyelement® wasleftinequationsnotwithstanding 66 obtainedforthesmallrigidmodelsofahemispherecanopy.Second, thatforundisturbedcanopyitisalwaysneglected.Forundisturbed thephysicalvaluesofapparentmassesobtainedatzeroacceleration canopyit contributesto the damping of yaw oscillations,and so whenbeingscaledtothewholeADSmakenosensebecausethey authorsalsonormalizeditasshowninEqs.(15)forthefuturestudy, exceedthoseofADSitself(seethefollowing). lettingk howevertobezerohere. 66 Thereforeinthepresentstudytheauthorsfollowedallothermajor studiesandconsideredallapparentmasstermstodependexplicitly ComputationofForcesandMoments ontheairdensityonly.Allotherpossibleeffectswererepresented AerodynamicForcesandMomentsforUndisturbedCanopy byconstantcoef(cid:142)cients: Thetotalexternalforceandmomentactingonthesystem(Fig.3) arecausedbytheaerodynamiceffectsandtheweightofeachsystem ®11 Dk11ma; ®33 Dk33ma; ®44 Dk44IQxxa component.Thus,wecanwrite X ®66Dk66IQzza; ®15 Dk15mazP (15) FDFa=dCG; MDMa=dC MGi (16) As opposed to other studies17 where expression l i pz [.rleSpLrCeslePnMtAin/g2¡theRd2pi]st(asneeceFfirgo.m4)fwraamseusebdaosriagirnefteorethneceploeinngBttoDhf, where GDubRT[0;0;mg]T (the apparent (virtual)masses do not P f g contributetotheweightofthesystem). applicationofthetranslationalapparentmasscomponent(canopy’s Inturn,forcontrolledADS centerofpressure)wasusedbecauseofthesenseofEqs.(4)and (5)F.4o;5l;l9o¡w11i;n14gRef.17,coef(cid:142)cientsinEqs.(15)weretakentobeas Fa=d DFcanopyCFrisers; Ma=d DMcanopyCMrisers (17) follows:k 0:5,k 1:0,k 0:24,andk 0:75.[Actually Let us address further in this subsection aerodynamic terms 11D 33D 44D 15D the valuesgivenare slightlydifferentfromthe valuesin Ref.17 forundistortedcanopy.Initialvaluesofthedimensionlessaerody- becausetheywererecomputedtomatchnotations(13)and(14).] namiccoef(cid:142)cientsofacircularparachutewereobtainedfromtwo FortheADSathandwithm 472kg(½ 1kgm 3),thefollow- sources.Thebasicshapeoftheaerodynamiccurvesfortheundis- ingexpressionsarevalid:® aD236kg( 2D2%ofm¡),® 472kg tortedcanopywasadoptedfromKnacke,26whereasinitialaerody- ( 44% of m), ® 160011kDgm2 (less»than 0.5% of33ID ), and namiccoef(cid:142)cientestimateswerebasedonCFDresultsprovidedby ®» 707kgm( 434%Dof K).By lookingatthesenumberxsx,itbe- Mosseev.25 15D » comesclearthat® and® areevidentlyofmostimportance.The The functionaldependenceof the aerodynamiccoef(cid:142)cientson 11 33 differencebetweenthemaffectsthedynamicbehaviorofthesystem theangleofattackobtainedbyMosseevisshownonFig.6. [seeEqs.(5)]. Onthis(cid:142)gureC .® /denotesaerodynamicdragcoef(cid:142)cient,and D sp To giveanimpressionwhatcoef(cid:142)cientswereusedbytheother C .® / denotestotal aerodynamicmoment coef(cid:142)cient,both de- m sp researches,Table2containssomedataonthemajorresearchinthe pendingonthespatialangleofattack. areaforthepast60years. This spatialangle of attack ® and its components—angle of sp Henn1wasthe(cid:142)rsttoperformastabilityanalysiswithaccountof attack ® and sideslipangle ¯—are shown on Fig. 7 and can be apparentmasses.Foraspheroidasareferencebody,hetook0.5as computedusing b -framecomponentsofanairspeedvectorV as f g a abaselinevaluesforbothcoef(cid:142)cients® and® andvariedthem follows: 11 33 Table2 Valuesofapparentmasscoef(cid:142)cients No. Researcher Year Model Originoffbg Ref.body " k11 k33 k44 k15 1 Henn1 1944 ThreeDoF O Spheroid 0.5 0.5[0–0.6] 0.5[0–1.0] —— —— 2 Ludwig,Heins2 1962 ThreeDoF O Spheroid 0.5 1.0[0.6–1.4] 1.0[0.6–1.4] —— —— 3 White,Wolf8 1968 FiveDoF Sys.c.g. Sphere 1 0.7 0.7 0.23 —— 4 Tory,Ayres12 1977 SixDoF Can.c.g. Spheroid 0.5 1.31 2.12 1.34 —— 5 Eaton13 1981 SixDoF Can.c.g. Spheroid 0.5 0.2[0–0.5] 0.4[0–1.0] Unclear —— 6 Yavuz,Cockrell14;15 1981 SixDoF Can.c.g. Hemisphere 1 [1.31–6] [2.12–10] 1.5–3.0 —— 7 Cockrell,Doherr,Saliaris16;17 1981 SixDoF O Hemisphere 1 0.5 1.0 0.24 0.75 8 Present 2003 SixDoF O Hemispheroid 0.82 0.5 1.0 0.24 0.75 488 DOBROKHODOV,YAKIMENKO,ANDJUNGE Fig.8 Yawrotationscheme. Fig.6 G-12parachuteaerodynamics. Fig.7 Flight angles determi- nation. ‡ ´ Fig.9 Effectofchangingriserlength. w ®sp Dcos¡1 pu2 va2 w2 (18) InEq.(22)Cndenotestheyawmomentcausedbyyawaccelera- aC aC a tion,andforasymmetricbodyitisequaltozero.Howeverincase ‡ ´ ‡ ´ oftransitionofoneoftherisersfromonestatetoanotherwhileone u v ® tan¡1 a ; ¯ tan¡1 p a (19) oftheadjacentrisershasbeenalreadylengthened,thismomentis D wa D u2aCwa2 notequaltozero.Thenextsubsectionaddressesthisissue. TheairspeedvectoraccountsforawindvectorWuinthefollow- YawMomentCausedbyDynamicAsymmetry ingmanner: Asjustmentioned,signi(cid:142)cantyawrotationwasobservedduring the(cid:143)ighttestswhenthelengthoftheriserwaschangingwhileone V V uRTW (20) a D ¡b u oftheadjacentrisershasbeenalreadylengthened.Figure8clari(cid:142)es thissituation. ObviouslytheaerodynamicforcevectorF dependsonthe canopy Here“0”standsforashortenedriser(l 0/,and“1”denotesa spatialangleofattackanddynamicpressureandcanbepresented NkD lengthenedriser(l 1/,typicallywhilerisertransition(4:::5s) asfollows: NkD yawangleof15:::20degwasaccrued(Fig.9). Therefore,ifthekthriserundergoestransitionthefollowingre- F C .® /qS .V = V / (21) canopy D D sp 0 a k ak lationisvalid: wnohWremrheoiqtfeDvaen0cd:t5oW½r;okalVnfa8dksS2h0iosDwdey¼dnRath0m2aiitscthtphereelsocsnaungroietp;ukyd¢’isknradelefanenordetenthscaeenlaaErteeuarc.allidmiaon- Cn Dsign.lNk¡1¡lNkC1/CnlN.lN/lNkCCnrr (23) In Eq. (23) l .l l /=.l l /, and the difference tionofaparachuteinglideplanearesuf(cid:142)cientlyuncoupled.There- NkD k¡ min max¡ min .l l /de(cid:142)nesthesignofthemoment. fore,thelongitudinalandlateralmotionofasymmetricparachute NkB¡y1¡anaNklCyz1ingdatafrom20(cid:143)ighttests,thefunctionaldependence can be studiedseparately,similarto the studyoftheaircraftlin- earizeddynamics.28;29Thisleadsustoassumeadditionallythatthe CnlN.lN/wasfoundtobeaspresentedonFig.10andthecoef(cid:142)cient Cr tobeconstantandequalto2s. longitudinalandthelateralmotionofacircularparachuteinaglide n Whenlor1 lissmall,ashappensattheverybeginningandat planeareuncoupled. N ¡N theveryendoftheactuationprocess,themagnitudeoftherotation This last assumptionimplies that roll and pitch motion of the is low because the canopy symmetry distortionis minimal. The ADShavethesamemomentcharacteristics,thatis,C C .¯/, rollD m rotationisatitshighestatthemiddleofactuationprocesswhenthe C C .®/.Therefore,thevectorofaerodynamicmomentcan pitchD m shapedistortionismaximal(seeFig.9). beexpressedasfollows: 2 3 C ActuatorForcesandMoments roll M 2qS R 4C 5 (22) Letusde(cid:142)nenowaneffectofriseractuation. canopy D 0 0 pitch Vertigo’sPMA27 usedasaprototypeofcontrolriserisbraided C n (cid:142)bertubeswithneopreneinnersleevesthatcanbepressurized.In DOBROKHODOV,YAKIMENKO,ANDJUNGE 489 Fig.10 DependenceC¹l (¹l). n Fig.13 Blockdiagramofthesystemidenti(cid:142)cationtechnique. First,expressionsforC .® /andC .® /werepresentedinthe d sp m sp followingform: £ ¤ CD.®sp/DkCD0CQD®D0 CkCD® C¤D.®sp/¡C¤D.0/ (25) Cm.®sp/DkCmCm¤.®sp/ (26) yieldingthree optimizationparametersk , k , and k . The CD0 CD® Cm initialvalueofC mg.qS / 1wasobtainedfromtheobvious equationforastQeDa®dDy0dDescentra0te¡. Second,anappropriatecostfunctionwaschosen: Fig.11 Dependence¹lPMA=f(PPMA). Z tf J P .t/ P .t/ dt (27) D k u ¡ Ou k 0 whereP .t/istheinertialpositionofADSobtainedin(cid:143)ighttest, u P .t/denotestheestimatedpositionofADSobtainedinsimulation, Ou andt standsforthe(cid:143)ighttime. f Thereforethe objectiveof identi(cid:142)cation was to minimize cost function(27) by varyingthree parameters in Eqs. (25) and (26) (Fig.13). Becausefromtheanalysisofthe(cid:143)ight-testdataitbecameobvious thattherewasasigni(cid:142)cantdifferenceintheADSdynamicsduring controlledanduncontrolleddrops,theidenti(cid:142)cationalgorithmwas Fig.12 Dependence F =f(¹l,n). (cid:142)rstappliedtothedataobtainedfromtheuncontrolleddrop.The kk riserskk resultingvaluesofk ,k ,andk wereusedthentoinitializethe CD0 CD® Cm secondstep,wherethesametechniquewasappliedtoacontrolled the nominalstateallPMAs arepressurized.Upon venting,PMA drop.Whereasvaluesofoptimizationparametersobtainedinthe(cid:142)rst increasesitslengthbyapproximatelyonethirdfromlPMADlmin to stepprovidedestimatesofADS aerodynamicsaroundzeroangle lP¤MADlmaxDlPMAC1lPMA andcompressesindiameter.[Thede- of attack,their adjustmentat the secondstep characterizedADS pendencel f.P /whereP standsforthePMApressure dynamicsathigheranglesofattackwithnonzerocontrolinputs.As NPMAD PMA PMA isshownonFig.11].Thisaction“deforms”theparachutecanopy aresult,someaveragedvalueswerefoundtomatchbothcontrolled creatingan asymmetricalshape,essentiallyshiftingthe centerof anduncontrolledreal-dropsets. pressureandprovidingadriveorslipconditionintheoppositedi- All two- and three-dimensionaltrajectoriesin this section are rectionof the controlaction.With four independentlycontrolled plottedinEast–North–Uplocaltangentplane(LTP)coordinates. actuators,twoofwhichcanbeactivatedsimultaneously,eightdis- tinctcontrolactionscanbegenerated. UncontrolledModelIdenti(cid:142)cation ThechangeintheaerodynamicforcecausedbyPMAactivation Thissubsectiondetailsresultsobtainedbyapplyingtheidenti(cid:142)- FriserswasmodeledasafunctionofPMA’srelativelengthlN,number cationtechniquetotheuncontrolleddropdata.Becausethemodel ofPMAactuatedn,andinvolvedactuationsystemdynamicswith assumesafullydeployedcanopy,itwasinitializedatthepointon transitiontime¿27: thereal-droptrajectorywherethecanopywasfullydeployed. Figures14–16 containthe three-andtwo-dimensionalplotsof F .t/ f.l;n;¿/ (24) k risers kD N thetrajectories,obtainedinoneofthereal(cid:143)ightthree-DoFandsix- DoFsimulations.(Thethree-DoFmodeloftheparachutewasused Figure12showssteady-statevaluesofthisdependence.Inturn, inthepreliminarystudy.21) the actuator moment can be computed as M P F , whereP [0;0;z ]T. risersD CP£ risers Notethattherealtrajectoryhasthreepointswheretheparachute’s CPD P directionofmotionchangesmorethan90deg.Thisparticulardata setwasselectedbecauseoftherichnessofthefrequencyspectrum ModelIdenti(cid:142)cation oftheparachutemotioninvolved.Fig.17containsthewindpro(cid:142)le Intheprecedingsectionweoutlinedallstepsinvolvedinthede- forthesamedrop.Itclearlyindicatesthatbothwinddirectionand velopmentoftheSix-DoFmodelforacontrolledcircularparachute. itsmagnitudeexperiencesigni(cid:142)cantchangeswithtime. Nextthismodelwascomparedwiththe(cid:143)ight-testdata.Thiscom- Because duringthe uncontrolleddrop the angle of attack and parisonrevealedinadequacyofthedataobtainedbyCFDanalysis sideslipangleare closeto zerothe valueof k was set to zero. Cm (seeFig.6).Therefore,astandardnonlinearsystemidenti(cid:142)cation Thischoiceimpliesthattheamplitudeofconingmotioncandiffer technique32wasappliedtotunetheCFDdependencesC .® /and from the (cid:143)ight-testdata;however,its naturalfrequencydoes not D¤ sp C .® /(seeFig.13). dependonk foruncontrolleddrops.Finally,theoptimalvalues m¤ sp Cm 490 DOBROKHODOV,YAKIMENKO,ANDJUNGE Fig.14 Three-dimensionalprojections. Fig.17 Windpro(cid:142)le. Fig.15 Horizontalprojection. Fig.18 ComparisonofVxcomponents. Figure21containspowerspectrumdensity(PSD)plotsforEuler angles(roll,pitch,andyaw)takenfromthe(cid:143)ighttestandthesix- DoFmodelrun.Amongdozensofmethodsavailable,theMultiple SignalClassi(cid:142)cationmethoddevelopedbySchmidt33wasapplied. Thismethodwaschosentodemonstrateageneralsimilaritybetween real and simulateddataas well as to emphasizethe matchingof principaleigenfrequenciesonthebothsetsofdata. Numerical valuesof these principaleigenfrequenciesfor each Fig.16 Verticalprojection. channelaredepictedinTable3. Similarresultsfortheprincipaleigenfrequencieswereobtained k andk wereobtainedbydeterminingaprioritherangeoftheir independentlyforanothersetofADS(cid:143)ight-testdatausingWelch’s Cd0 CD® possiblevaluesfromphysicalconsiderationsandapplyingsimple methodas well.34 That shows the consistencyof ADS (cid:143)ight-test searchtechniquesovertheresultinggridofthisparameterspace. datatakeninthepresenceofthedifferentwindpro(cid:142)les,indicating Figures18–20includeplotsofthex;y,andzcomponentsofthe thatthedatainTable3re(cid:143)ecttheinherentmotionoftheADS,and inertialvelocityobtainedfromthesix-DoFmodelsimulationand notthewindspectrum. duringthe(cid:143)ighttest.Analogousdataareplottedforthethree-DoF Inturn,thewindspectrumcharacteristicsfortherealdropbeing model.Aconspicuousfeatureofthesix-DoFmodelcanbeseenin analyzed are presentedin Fig. 22. The resultsclearly show that theplotsoftheverticalorzcomponent.(Figure20showsabsolute thewindenergywasconcentratedaroundmuchhigherfrequency values).Althoughtheverticalcomponentofthethree-DoFmodel (1.9Hz)ratherthan0.11-Hzparachute’sharmonicjustseen. remainsconstantduringthe(cid:143)ight,thesamecomponentofthesix- Themainconclusiontobedrawnfromspectralanalysisisthat DoFmodelfollowsthe(cid:143)ight-testdatareasonablywell.Therefore thesix-DoFmodeldynamicsaresuf(cid:142)cientlyclosetothoseofthe optimizationoverasetoftwoparametersgavefairlygoodresults. actualsystem.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.