ebook img

(Dreissena polymorpha) Byssal Adhesion Apparatus PDF

126 Pages·2010·8.84 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview (Dreissena polymorpha) Byssal Adhesion Apparatus

Investigation of the Protein Components of the Zebra Mussel (Dreissena polymorpha) Byssal Adhesion Apparatus by Trevor Gilbert A thesis submitted in conformity with the requirements for the degree of Masters of Applied Science The Institute of Biomaterials and Biomedical Engineering University of Toronto © Copyright by Trevor Gilbert 2010 Investigation of the Protein Components of the Zebra Mussel (Dreissena polymorpha) Byssal Adhesion Apparatus Trevor Gilbert Masters of Applied Science The Institute of Biomaterials and Biomedical Engineering University of Toronto 2010 Abstract The byssal adhesion mechanism of the biofouling species Dreissena polymorpha was investigated using a combination of studies on synthetic peptide mimics of tandem repeat sequences from byssal component Dreissena polymorpha foot protein 1 (Dpfp-1) and characterization of the regions of the byssus. A 20-residue fusion peptide incorporating two Dpfp-1 repeat sequences adopts a random coil and β-turn conformation in solution, and spontaneously forms a film at the solid-liquid interface in the presence of iron (III) cations. Infrared characterization of the byssus Amide I region showed that β-sheets dominate its secondary structure, although the proportion of different secondary structures varies between regions. Matrix-assisted laser desorption ionization (MALDI) mass spectrometry of intact byssal regions identified previously unknown differences in the composition of byssal threads, plaques, and the adhesive interface, which are believed to correlate to the different roles of these components in the overall structure. ii Acknowledgments There are a number of people I would like to acknowledge for their guidance, support, and assistance over the course of this project. First, I would like to thank my supervisor, Professor Eli Sone, for his mentorship and guidance throughout the project, as well as the other students in the Sone Lab (Nikrooz Farsad, Varuna Prakash, Nick Fonseca, Hamzah Qureshi, Ryan Singh, Gurpreet Dhaliwal, and other Sone Lab colleagues) for their collaborative efforts. I would also like to thank Professor Christopher Yip, for valuable advice on infrared spectroscopy experiment design and access to his lab’s instruments, as well as Professor Yip’s students (Jocelyne Verity, Gary Mo and Michelle Edwards for providing training and debugging assistance on the Yip Lab’s equipment. I would also like to express my gratitude towards Professor Warren Chan and his post-doctoral fellow Dr. Fayi Song, for access to and training on their lab’s UV-Vis spectrometer. Additionally, I wish to acknowledge the valuable technical support provided by Feryal Saraf (Faculty of Dentistry) for cryo-microtome operation; Dr. Jian Chen and Suzanne Ackloo (Ontario Cancer Biomarker Network) for MALDI analytical services; Dr. Alex Young (Faculty of Chemistry) for ESI mass spectrometry of synthetic peptides; and Dr. Mostafa Hatam and his colleagues at Aapptec for their valuable assistance with the peptide synthesizer from their company. Finally, I would like to thank my family for their continued encouragement and support throughout my studies. iii Table of Contents   Acknowledgments .......................................................................................................................... iii  Table of Contents ........................................................................................................................... iv  List of Tables ................................................................................................................................ vii  List of Figures .............................................................................................................................. viii  List of Appendices (if any) ........................................................................................................... xii  Chapter 1 Introduction and Literature Review ............................................................................... 1  1  Introduction ................................................................................................................................ 1  1.1  Introduction to Zebra Mussels – Biology, Mode of Life, and Invasive Properties ............ 1  1.2  The Zebra Mussel Byssus and Foot .................................................................................... 5  1.3  Byssal Composition in Marine Mussels ............................................................................. 9  1.4  Byssal Composition in Zebra Mussels .............................................................................. 13  1.5  Comparison of Dpfp-1 to Marine Mussel Adhesion Proteins .......................................... 18  1.6  Mussel-mimetic Peptides based on Marine Foot Proteins ................................................ 20  1.7  Long-term rationale for studying byssal adhesion ............................................................ 22  1.8  Objectives ......................................................................................................................... 24  1.8.1  Overall Objectives ................................................................................................ 24  1.8.2  Specific Objectives ............................................................................................... 25  1.9  Fmoc Solid-Phase Peptide Synthesis ................................................................................ 27  1.10 Secondary Structure Determination from Fourier-Transform Infrared Spectroscopy ...... 28  1.11 Matrix-Assisted Laser Desorption Time-of-Flight (MALDI-TOF) Mass Spectrometry . 31  Chapter 2 Materials and Methods ................................................................................................. 35  2  Materials, Techniques and Methods: ....................................................................................... 35  iv 2.1  Materials, Instruments and Suppliers ................................................................................ 35  2.2  Fmoc-protected peptide synthesis ..................................................................................... 35  2.3  Fourier-transform infrared (FTIR) absorbance spectroscopy: .......................................... 38  2.4  Deconvolution / spectral feature sharpening ..................................................................... 40  2.5  MALDI-TOF Mass Spectrometry Sample Preparation .................................................... 41  Chapter 3 Mimetic Peptides Based on Dpfp-1 Repeat Sequences ............................................... 44  3  Mimetic Peptides Based on Dpfp-1 Repeat Sequences: .......................................................... 44  3.1  Introduction ....................................................................................................................... 44  3.2  Single Copies of Dpfp-1 Consensus Sequences ............................................................... 46  3.3  Peptide interactions with Iron (III) chloride ..................................................................... 49  3.4  Double Tridecameric-Repeat Mimetic Peptide ................................................................ 53  3.5  Dpfp-1 Consensus Sequence Fusion Peptide .................................................................... 56  Chapter 4 Spatial Approaches to Analyzing the Byssus ............................................................... 62  4  Spatial Approaches to Analyzing the Byssus ........................................................................... 62  4.1  Spatially Selective Byssal Characterization by Fourier-Transform Infrared Spectroscopy: .................................................................................................................... 62  4.1.1  Introduction ........................................................................................................... 62  4.1.2  Adhesive interface layer ....................................................................................... 63  4.1.3  Plaque Matrix and Thread Cores .......................................................................... 66  4.2  MALDI-TOF Mass Spectrometry ..................................................................................... 69  4.2.1  Introduction ........................................................................................................... 69  4.2.2  Interface layer composition ................................................................................... 70  4.3  Pair-wise comparisons of MALDI-TOF data from different regions ............................... 73  4.3.1  Footprint vs. upturned plaque ............................................................................... 73  4.3.2  Adhesive Interface vs. Plaque Matrix: .................................................................. 74  4.3.3  Threads vs. plaque matrix: .................................................................................... 76  v 4.3.4  Interface vs. Threads: ............................................................................................ 77  4.3.5  Summary of Mass Peaks and Localization ........................................................... 78  4.4  Attempted sequencing of MS peaks ................................................................................. 79  Chapter 5 Conclusions .................................................................................................................. 81  5  Conclusions: ............................................................................................................................. 81  5.1  Mimetic Peptide Investigations ......................................................................................... 81  5.2  Byssal Characterization .................................................................................................... 82  Chapter 6 Recommended Future Work ........................................................................................ 84  6  Recommended Future Work: ................................................................................................... 84  6.1  Future directions for mimetic peptide investigations ........................................................ 84  6.2  Future directions for byssal characterization .................................................................... 85  References ..................................................................................................................................... 87  Appendix I: Peptide Synthesis Protocols ...................................................................................... 94  Appendix II: Kaiser and Chloranil Test Protocols ...................................................................... 100  Appendix III: ESI Mass Spectra and Analytical HPLC Chromatograms of Synthesized Peptides .................................................................................................................................. 101  Appendix IV: SEM Sample Preparation ..................................................................................... 106  Appendix V: List of Suppliers for Chemicals and Equipment ................................................... 107  Appendix VI: Table of MALDI peaks by region ........................................................................ 110  Copyright Acknowledgements .................................................................................................... 111  vi List of Tables Table 1: Locations and functions of known marine mussel byssal proteins ................................. 11  Table 2: Zebra Mussel Foot Proteins Dpfp-1 through -3 .............................................................. 15  Table 3: Primary sequence of foot-derived Dpfp-1; Uniprot ID Q9NB54. Repeat sequences are italicized and underlined. C-terminal repeats alternate blue and unhighlitghted; N-terminal repeats alternate yellow and unhighlighted. .................................................................................. 16  Table 4: Consensus repeat sequences in Dpfp-1. Sites of post-translational modifications (hydroxylation to DOPA for tyrosine residues and glycosylation with galactosamine for serine and threonine residues) are indicated by *. ................................................................................... 17  Table 5: Tandem repeat sequences from other species ................................................................. 19  Table 6: FTIR Amide I peak assignments for D O and H O ....................................................... 28  2 2 Table 7: Mimetic Peptide Sequences ............................................................................................ 36  Table 8: Coupling protocols used for each amino acid ................................................................. 36  Table 9: List of synthesis reagents and suppliers ........................................................................ 107  Table 10: List of general-purpose reagents and suppliers .......................................................... 108  Table 11: List of Instruments ...................................................................................................... 109  Table 12: Summary of MALDI-MS peak locations in the regions of the byssus ....................... 110  vii List of Figures Figure 1: Zebra mussels; showing foot and siphons. Inset: typical size of an adult zebra mussel. 2  Figure 2: Internal organ structure of zebra mussel; reproduced with permission [1] ..................... 3  Figure 3: Schematic and micrograph of the hierarchical ultrastructure of the byssus .................... 5  Figure 4: Zebra mussel foot. A: Photograph of foot extruded from shell to deposit a byssal thread on the shell of another mussel. B: Cross-section of foot (F), showing byssal gland (BG) and byssal canal (BC); reproduced with permission [1] ................................................................. 7  Figure 5: Schematic of enzymatic formation and reactions of protein-bound DOPA (other modes of covalent cross-linking are also possible) .................................................................................... 8  Figure 6: Interconversion of bis (purple) and tris (pink) iron (III) DOPA complexes in Mefp-1. Reproduced with permission [23]. ................................................................................................ 10  Figure 7: Spatial distribution of byssal proteins in marine mussels ............................................. 12  Figure 8: Mature zebra mussel byssal plaque on a glass substrate, showing brown pigment characteristic of quinone tanning .................................................................................................. 14  Figure 9: Snell's Law .................................................................................................................... 29  Figure 10: Attenuated Total Reflection ........................................................................................ 30  Figure 11: A: tandem MALDI (TOF/TOF) mass spectrometer schematic. B: Schematic of triple quadrupole TOF/TOF analyzer, used for more sophisticated ion sorting. Both reproduced with permission [72]. ............................................................................................................................ 34  Figure 12: Schematic of ATR study of interface adhesive layer - mussels remain attached throughout the experiment, but are not depicted in this figure. .................................................... 39  viii Figure 13: MALDI-TOF Sample Preparation. A: Adhered byssal material may be either shaved and sectioned to produce footprint and bulk samples (left path) or treated to dissolve the substrate, allowing the plaque to be fixed in gelatin with the interface upturned for matrix preparation (right path). B: Plaques prior to shaving. C: Footprints left from (B). D: Cryomicrotome section of bulk plaque material embedded in gelatin. E: Cryomicrotome section of thread cross-sections embedded in gelatin. .............................................................................. 43  Figure 14: Gaussian fit Amide I absorbance of single-copy tridecameric repeat peptide mimic in D O (15 mg/mL) ........................................................................................................................... 47  2 Figure 15: Gaussian fit of heptameric repeat peptide mimc in D O (15 mg/mL) ........................ 48  2 Figure 16: Comparison of Amide I band profile in single-copy peptide mimics and co-solution at standard concentration 15 mg/mL in D O .................................................................................... 48  2 Figure 17: Peak splitting of characteristic DOPA ring-stretch in the single-copy tridecameric repeat peptide mimic (15 mg/mL), in the presence of iron (III) cations (at a ratio of two equivalents iron (III) chloride to one DOPA). Peak splitting was not observed in the presence of calcium cations at the same molar ratio. ....................................................................................... 50  Figure 18: Quantitative fit of DOPA ring stretch peak-splitting of the single-copy tridecameric repeat peptide mimic in the presence of iron (III) cations ............................................................ 50  Figure 19: UV-Vis titration of tridecameric repeat into BisTris-buffered iron (III) chloride solution. Step size of peptide: iron cation ratio is based on titration steps of 0.5 equivalents peptide per equivalent of iron (III) chloride in the starting solution. ............................................ 52  Figure 20: Manually constrained Gaussian fit of the Amide I band and adjacent aspartic acid carbonyl stretch in the double tridecameric repeat peptide mimic ............................................... 53  Figure 21: Iron (III) chloride has no major effect on the Amide I band shape of the double tridecameric repeat peptide mimic ................................................................................................ 54  Figure 22: Titration of double tridecameric peptide into BisTris-buffered iron (III) chloride. Step size of peptide: iron cation ratio is based on titration steps of 0.5 equivalents peptide per equivalent of iron (III) chloride in the starting solution. Ratios higher than 4 peptide: 1 iron were ix examined without observing an absorbance shift to the tris region, but were not shown because they presented non-linearities at 535 nm which disrupted fitting. ................................................ 55  Figure 23: Gaussian fit of fusion peptide in D O solution, 10 mg/mL ......................................... 57  2 Figure 24: Iron (III) chloride addition to fusion peptide in BisTris-buffered D O does not affect 2 Amide I band shape ...................................................................................................................... 57  Figure 25: Fusion peptide + FeCl films; 3 equivalents peptide: 2 equivalents iron. 3 A: Peptide 1 mg/mL. B: Peptide 10 mg/mL. ............................................................................... 59  Figure 26: Scanning electron micrograph of a fold in the smooth area of the free-standing film recovered from the air-water interface .......................................................................................... 59  Figure 27: Scanning electron micrograph of an area of the rough morphology which occupies approximately 10% of the fusion peptide film from the air-water interface, between folds of the smoother morphology ................................................................................................................... 60  Figure 28: Hypothesized schematic of fusion peptide film self-assembly, incorporating iron- DOPA complexation and side-chain attractions between individual peptide units. Two additional non-DOPA ligands forming coordination bonds to the iron centres are not shown; see Figure 6 and Section 1.3 for details of possible ligands. ............................................................................. 61  Figure 29: Anomalous fit of Amide I absorbance of a footprint in transmission mode. The β- sheet peak at 1635cm-1 appears to be the true largest contribution, but the fit settled on a different local error minimum dominated by the 1660 cm-1 helix / turn ambiguous component (marked by arrows). The assignment of the 1619cm-1 peak (marked with ? in the table) is tenuous, since that peak is close to the lower end of the β-sheet range ....................................................................... 64  Figure 30: Fitted Amide I regions of ATR-FTIR scans of the underside of attached byssal plaques .......................................................................................................................................... 65  Figure 31: Gaussian fit of the Amide I band of a plaque .............................................................. 67  Figure 32: Gaussian fit of the Amide I band of thread ................................................................. 67  x

Description:
spectroscopy experiment design and access to his lab's instruments, as well as Professor Yip's students . 1.10 Secondary Structure Determination from Fourier-Transform Infrared Spectroscopy 28 move to a new location, or remove the proximal end of a damaged byssus), the mussel secretes.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.