Problems in Introductory Physics B. Crowell and B. Shotwell 2 Copyright 2016 B. Crowell and B. Shotwell. This book is licensed under the Creative Com- mons Attribution-ShareAlike license, version 3.0, http://creativecommons.org/licenses/by- sa/3.0/, except for those photographs and drawings of which we are not the author, as listed in the photo credits. If you agree to the license, it grants you certain privileges that you would not otherwise have, such as the right to copy the book, or download the digital version free of charge from www.lightandmatter.com. Contents 1 Measurement 7 1.1 The SI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 Significant figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Proportionalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Kinematics in one dimension 15 2.1 Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3 Kinematics in three dimensions 31 3.1 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2 Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4 Newton’s laws, part 1 43 4.1 Newton’s first law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2 Newton’s second law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.3 Newton’s third law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5 Newton’s laws, part 2 51 5.1 Classification of forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.2 Friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.3 Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.4 Ropes, pulleys, tension, and simple machines . . . . . . . . . . . . . . . . . . . . . . 53 5.5 Analysis of forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6 Circular motion 69 6.1 Uniform circular motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.2 Rotating frames. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.3 Nonuniform motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.4 Rotational kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 7 Conservation of energy 79 7.1 Conservation laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 7.2 Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 7.3 Kinetic energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3 4 CONTENTS 7.4 Potential energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 8 Conservation of momentum 97 8.1 Momentum: a conserved vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 8.2 Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 8.3 The center of mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 9 Conservation of angular momentum 105 9.1 Angular momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 9.2 Rigid-body dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 9.3 Torque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 9.4 Statics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 10 Fluids 121 10.1 Statics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 10.2 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 11 Gravity 127 11.1 Kepler’s laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 11.2 Newton’s law of gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 11.3 The shell theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 11.4 Universality of free fall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 11.5 Current status of Newton’s theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 11.6 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 12 Oscillations 141 12.1 Periodic motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 12.2 Simple harmonic motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 12.3 Damped oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 12.4 Driven oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 13 Waves 151 13.1 Free waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 13.2 Bounded waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 14 Electrical interactions 157 14.1 Charge and Coulomb’s law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 14.2 The electric field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 14.3 Conductors and insulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 14.4 The electric dipole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 CONTENTS 5 14.5 The field of a continuous charge distribution . . . . . . . . . . . . . . . . . . . . . . . 158 14.6 Gauss’s law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 14.7 Gauss’s law in differential form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 15 The electric potential 167 15.1 The electric potential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 15.2 Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 15.3 Dielectrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 15.4 Poisson’s equation and Laplace’s equation . . . . . . . . . . . . . . . . . . . . . . . . 168 15.5 The method of images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 16 Circuits 175 16.1 Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 16.2 Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 16.3 The loop and junction rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 17 Basics of relativity 183 17.1 The Lorentz transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 17.2 Length contraction and time dilation . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 18 Electromagnetism 187 18.1 Electromagnetism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 18.2 The magnetic field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 19 Maxwell’s equations and electromagnetic waves 195 19.1 Maxwell’s equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 19.2 Electromagnetic waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 19.3 Maxwell’s equations in matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 20 LRC circuits 199 20.1 Complex numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 20.2 LRC circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 21 Thermodynamics 205 21.1 Pressure, temperature, and heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 21.2 Kinetic theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 21.3 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 6 CONTENTS 22 Optics 211 22.1 Geometric optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 22.2 Wave optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 23 More about relativity 225 23.1 More about relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 24 Quantum physics 227 24.1 The nucleus, half-life, and probability . . . . . . . . . . . . . . . . . . . . . . . . . . 227 24.2 Wave-particle duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 1 Measurement This is not a textbook. It’s a book of problems The digits after the first few are completely meant to be used along with a textbook. Although meaningless. Sincethecircumferencecouldhave each chapter of this book starts with a brief sum- varied by about a centimeter in either direction, mary of the relevant physics, that summary is the diameter is fuzzy by something like a third not meant to be enough to allow the reader to ofacentimeter. Wesaythattheadditional,ran- actually learn the subject from scratch. The pur- dom digits are not significant figures. If you pose of the summary is to show what material is write down a number with a lot of gratuitous needed in order to do the problems, and to show insignificant figures, it shows a lack of scientific what terminology and notation are being used. literacyandimplestootherpeopleagreaterpre- cision than you really have. As a rule of thumb, the result of a calculation 1.1 The SI has as many significant figures, or “sig figs,” as the least accurate piece of data that went in. In The Syst`eme International (SI) is a system of the example with the soccer ball, it didn’t do us measurementinwhichmechanicalquantitiesare any good to know π to dozens of digits, because expressed in terms of three basic units: the me- the bottleneck in the precision of the result was ter (m), the kilogram (kg), and the second (s). the figure for the circumference, which was two Other units can be built out of these. For ex- sig figs. The result is 22 cm. The rule of thumb ample, the SI unit to measure the flow of water works best for multiplication and division. through a pipe would be kg/s. The numbers 13 and 13.0 mean different Tomodifytheunitsthereisaconsistentsetof things, because the latter implies higher preci- prefixes. The following are common and should sion. The number 0.0037 is two significant fig- be memorized: ures, not four, because the zeroes after the dec- prefix meaning imal place are placeholders. A number like 530 nano- n 10−9 couldbeeithertwosigfigsorthree;ifwewanted micro- µ 10−6 toremovetheambiguity,wecouldwriteitinsci- milli- m 10−3 entific notation as 5.3×102 or 5.30×102. kilo- k 103 mega- M 106 1.3 Proportionalities Thesymbolµ,formicro-,isGreeklowercasemu, Often it is more convenient to reason about the which is equivalent to the Latin “m.” There is also centi-, 10−2, which is only used in the cen- ratios of quantities rather than their actual val- ues. Forexample,supposewewanttoknowwhat timeter. happenstotheareaofacirclewhenwetripleits radius. We know that A = πr2, but the factor 1.2 Significant figures of π is not of interest here because it’s present in both cases, the small circle and the large one. The international governing body for football Throwing away the constant of proportionality, (“soccer” in the US) says the ball should we can write A ∝ r2, where the proportionality have a circumference of 68 to 70 cm. Tak- symbol ∝, read “is proportional to,” says that ing the middle of this range and divid- the left-hand side doesn’t necessarily equal the ing by π gives a diameter of approximately right-handside, butitdoesequaltheright-hand 21.96338214668155633610595934540698196 cm. side multiplied by a constant. 7 8 CHAPTER 1. MEASUREMENT Any proportionality can be interpreted as a statement about ratios. For example, the state- ment A ∝ r2 is exactly equivalent to the state- ment that A /A = (r /r )2, where the sub- 1 2 1 2 scripts 1 and 2 refer to any two circles. This in ourexample,thegiveninformationthatr /r = 1 2 3 tells us that A /A =9. 1 2 In geometrical applications, areas are always proportional to the square of the linear dimen- sions, while volumes go like the cube. 1.4 Estimation It is useful to be able to make rough estimates, e.g., how many bags of gravel will I need to fill my driveway? Sometimes all we need is an esti- mate so rough that we only care about getting theresulttoaboutthenearestfactoroften, i.e., to within an order of magnitude. For example, anyone with a basic knowledge of US geography can tell that the distance from New Haven to NewYorkisprobablysomethinglike100km,not 10 km or 1000 km. When making estimates of physical quantities, the following guidelines are helpful: 1. Don’t even attempt more than one signifi- cant figure of precision. 2. Don’t guess area, volume, or mass directly. Guess linear dimensions and get area, vol- ume,ormassfromthem. Massisoftenbest found by estimating linear dimensions and density. 3. When dealing with areas or volumes of ob- jects with complex shapes, idealize them as if they were some simpler shape, a cube or a sphere, for example. 4. Check your final answer to see if it is rea- sonable. If you estimate that a herd of ten thousand cattle would yield 0.01 m2 of leather,thenyouhaveprobablymadeamis- take with conversion factors somewhere. PROBLEMS 9 Problems superdupermean,definedas(ab)1/3. Isthisrea- sonable? 1-a1 Convert 134 mg to units of kg, writing (cid:46) Solution, p. 233 your answer in scientific notation. (cid:46) Solution, p. 233 1-a2 Express each of the following quantities 1-d2 (a) Based on the definitions of the sine, in micrograms: cosine,andtangent,whatunitsmusttheyhave? (a) 10 mg, (b) 104 g, (c) 10 kg, (d) 100×103 g, (b) A cute formula from trigonometry lets you √ (e) 1000 ng. find any angle of a triangle if you know the lengths of its sides. Using the notation shown inthefigure,andlettings=(a+b+c)/2behalf the perimeter, we have 1-a3 In the last century, the average age of the onset of puberty for girls has decreased by (cid:115) several years. Urban folklore has it that this (s−b)(s−c) tanA/2= . is because of hormones fed to beef cattle, but s(s−a) it is more likely to be because modern girls have more body fat on the average and possibly Showthattheunitsofthisequationmakesense. because of estrogen-mimicking chemicals in the Inotherwords,checkthattheunitsoftheright- environment from the breakdown of pesticides. hand side are the same as your answer to part a A hamburger from a hormone-implanted steer of the question. has about 0.2 ng of estrogen (about double the (cid:46) Solution, p. 233 amount of natural beef). A serving of peas contains about 300 ng of estrogen. An adult woman produces about 0.5 mg of estrogen per day (note the different unit!). (a) How many hamburgers would a girl have to eat in one day to consume as much estrogen as an adult woman’s daily production? (b) How many √ servings of peas? 1-d1 The usual definition of the mean (aver- age) of two numbers a and b is (a+b)/2. This is called the arithmetic mean. The geometric mean, however, is defined as (ab)1/2 (i.e., the square root of ab). For the sake of definiteness, let’s say both numbers have units of mass. (a) Compute the arithmetic mean of two numbers thathaveunitsofgrams. Thenconvertthenum- bers to units of kilograms and recompute their Problem 1-d2. mean. Istheanswerconsistent? (b)Dothesame forthegeometricmean. (c)Ifaandbbothhave units of grams, what should we call the units 1-d3 Jae starts from the formula V = 1Ah 3 of ab? Does your answer make sense when you for the volume of a cone, where A is the area of take the square root? (d) Suppose someone pro- its base, and h is its height. He wants to find poses to you a third kind of mean, called the an equation that will tell him how tall a conical 10 CHAPTER 1. MEASUREMENT tent hastobe inorderto have acertainvolume, given its radius. His algebra goes like this: 1 V = Ah Problem 1-g2. 3 A=πr2 1 V = πr2h 1-j1 Theone-litercubeinthephotohasbeen 3 πr2 markedoffintosmallercubes,withlineardimen- h= sionsonetenththoseofthebigone. Whatisthe 3V volume of each of the small cubes? Useunitstocheckwhetherthefinalresultmakes (cid:46) Solution, p. 233 sense. If it doesn’t, use units to locate the line of algebra where the mistake happened. (cid:46) Solution, p. 233 1-d4 The distance to the horizon is given by √ theexpression 2rh,wherer istheradiusofthe Earth, and h is the observer’s height above the Earth’s surface. (This can be proved using the Pythagorean theorem.) Show that the units of this expression make sense. Don’t try to prove the result, just check its units. (For an example ofhowtodothis,seeproblem1-d3onp.9,which has a solution given in the back of the book.) Problem 1-j1. 1-d5 Let the function x be defined by x(t)= Aebt, where t has units of seconds and x has unitsofmeters. (Forb<0,thiscouldbeafairly 1-j2 How many cm2 is 1 mm2? accurate model of the motion of a bullet shot (cid:46) Solution, p. 233 into a tank of oil.) Show that the Taylor series 1-j3 Comparethelight-gatheringpowersofa of this function makes sense if and only if A and 3-cm-diameter telescope and a 30-cm telescope. b have certain units. (cid:46) Solution, p. 233 1-j4 The traditional Martini glass is shaped like a cone with the point at the bottom. Sup- 1-g1 InanarticleontheSARSepidemic, the pose you make a Martini by pouring vermouth May 7, 2003 New York Times discusses conflict- intotheglasstoadepthof3cm,andthenadding ing estimates of the disease’s incubation period gin to bring the depth to 6 cm. What are the (the average time that elapses from infection to proportions of gin and vermouth? the first symptoms). “The study estimated it to (cid:46) Solution, p. 233 be 6.4 days. But other statistical calculations ... 1-j5 How many cubic inches are there in a showed that the incubation period could be as cubic foot? The answer is not 12. long as 14.22 days.” What’s wrong here? √ 1-j6 Assume a dog’s brain is twice as great 1-g2 The photo shows the corner of a bag of in diameter as a cat’s, but each animal’s brain pretzels. What’s wrong here? cells are the same size and their brains are the same shape. In addition to being a far better
Description: