ebook img

DIT - University of Trento Techniques for robust source separation and localization in adverse ... PDF

216 Pages·2010·7.66 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview DIT - University of Trento Techniques for robust source separation and localization in adverse ...

PhDDissertation InternationalDoctorateSchoolinInformationand CommunicationTechnologies DIT - University of Trento Techniques for robust source separation and localization in adverse environments Issuesandperformanceofanewframeworkofemergingtechniquesforfrequency-domainconvolutive blind/semi-blindseparationandlocalizationofacousticsources Francesco Nesta Advisor: Prof. MaurizioOmologo FBK-irstFondazioneBrunoKessler March2010 ”Doubt is the only certainty” ...someoneIdon’tremember 2 Acknowledgment Iwouldliketoexpressmygratitudetoallthepeoplewhowalkedwithmeduringthisadventure. In particular, to my advisor Maurizio Omologo for his moral support and totally confidence in my work even when I felt to be ”in a dead-end street”. To the FBK and the University of Trento which gave me an outstanding support to present my work and funny demos to a wide international audience. To all my colleagues for their helpfulness in solving my technical problems and willingness to listen my boring and strange theories. To prof. Fred Juang and all the colleagues of Georgia Tech which made me grow professionally with them. To all my room-matesforactinginterestinmyenthusiasmeverytimeIthoughttohavediscoveredanew wheel. To all the new international friends, which made these years of my life an exciting time andtoallmyoldfriendsforneverlettingmeforgetmyorigin. Andlast,butnotforimportance, I want to thank my parents and my brothers for always encouraging me when something was wrongandGeiza,forkeepingmesaneduringthelastfreneticmonths. Finally,aspecialthanks tothespiritsthatguidedmeonthischallengingbutalwaysworthfulexperience. Abstract Acousticsourceseparationisarelativelyrecenttopicofsignalprocessingwhichaimstosimul- taneously separate many acoustic sources recorded through one or more microphones. Such a problem was formulated to emulate the natural capability of the human auditory system which is able to recognize and enhance the sound coming from a particular source. Addressing this problemisofhighinterestintheautomaticspeechrecognition(ASR)communitysinceitwould improve the effectiveness of a natural human-machine interaction. Among numerous methods of multichannel blind source separation techniques, those based on the Independent Compo- nent Analysis (ICA) applied in the frequency-domain [81] are the most investigated, due to their straightforward physical interpretation and computational efficiency. In spite of recent developments many issues still need to be address to make such techniques robust in adverse conditions, such as high reverberation, ill-conditioning and occurrence of permutations. Fur- thermore,mostoftheproposedBSSmethodsarecomputationallyexpensiveandnotfeasiblefor areal-timeimplementation. This PhD thesis describes a research activity in the robust separation of acoustic sources in adverse environment. A new framework of blind and semi-blind techniques is proposed which allowssourcelocalizationandseparationeveninhighlyreverberantenvironmentandwithreal- timeconstraint. Foreachproposedtechnique,theoreticalandpracticalissuesarediscussedand a comparison with alternative state-of-art methods is provided. Furthermore, the robustnessof the proposed framework is validated implementing two real-time blind and semi-blind systems whicharetestedinchallengingreal-worldscenarios. Keywords [blind source separation, source localization, acoustic echo cancellation, indepen- dentcomponentanalysis,permutationproblem] 5 Contents 1 Introduction 1 1.1 TheProblemofSourceEnhancement . . . . . . . . . . . . . . . . . . . . . . 1 1.2 MultichannelSourceEnhancement . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.2 FixedBeamformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.3 AdaptiveBeamformers . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 ScopeandThesisOutline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4.1 InternationalJournalPublications . . . . . . . . . . . . . . . . . . . . 10 1.4.2 InternationalConferencePublications . . . . . . . . . . . . . . . . . . 10 2 AnintroductiontoBSS 13 2.1 InstantaneousLinearModel . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1.1 PrincipalComponentAnalysis . . . . . . . . . . . . . . . . . . . . . . 16 2.1.2 IndependentComponentAnalysis . . . . . . . . . . . . . . . . . . . . 17 2.1.3 ICABasedonNongaussianity . . . . . . . . . . . . . . . . . . . . . . 20 2.2 NGandKLdivergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3 BSSforconvolutivemixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3.1 MainframeworkforconvolutiveBSS . . . . . . . . . . . . . . . . . . 24 3 Frequency-DomainBSS 31 3.0.2 OutputSourceEstimation . . . . . . . . . . . . . . . . . . . . . . . . 32 3.0.3 ScalingAmbiguityandMinimalDistortionPrinciple(MDP) . . . . . . 33 3.0.4 CircularityofFFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1 PermutationProblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2 PhysicalInterpretationofFD-BSS . . . . . . . . . . . . . . . . . . . . . . . . 37 3.3 ICAforFD-BSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 i 4 RecursiveConvolutiveICA 43 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2 RR-ICA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2.1 Wiener-likeweighting . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2.2 Relationship between Wiener-like weighted ICA and Adaptive Beam- Formers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.2.3 LeastMeanSquaretrackingofthedemixingmatrix . . . . . . . . . . . 48 4.2.4 Proposedalgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2.5 RR-ICAandOthersBSS . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.3 Experimentalresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.3.1 Experimentswithsimulateddata . . . . . . . . . . . . . . . . . . . . . 52 4.3.2 Experimentswithreal-worlddata . . . . . . . . . . . . . . . . . . . . 56 4.4 ConcludingRemarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5 GSCT 65 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.2 FD-BSSandidealacousticpropagation . . . . . . . . . . . . . . . . . . . . . 66 5.3 StateCoherenceTransform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.3.1 EquivalenceBetweenSCTandMLE . . . . . . . . . . . . . . . . . . 70 5.3.2 EquivalenceBetweenSCTandKernelpdfEstimation . . . . . . . . . 72 5.3.3 Definitionof g(·)andAdaptiveEstimationof α . . . . . . . . . . . . . 74 5.3.4 ConnectionsBetweenSCTandGCC-PHAT . . . . . . . . . . . . . . . 76 5.3.5 NumericalEvaluationoftheSCT . . . . . . . . . . . . . . . . . . . . 78 5.4 GeneralizedStateCoherenceTransform . . . . . . . . . . . . . . . . . . . . . 79 5.4.1 NumericalEvaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.4.2 GSCTandComputationalIssues . . . . . . . . . . . . . . . . . . . . . 83 5.5 SolvingReal-WorldproblemswiththeSCT/GSCT . . . . . . . . . . . . . . . 85 5.5.1 SpatialLocalizationofMultipleSources; . . . . . . . . . . . . . . . . 85 5.5.2 ReductionofPermutations . . . . . . . . . . . . . . . . . . . . . . . . 92 5.5.3 UnderdeterminedSourceSeparationbySpatialFiltering . . . . . . . . 101 5.6 ConcludingRemarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6 cSPEC 105 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.2 LimitationofSCTandPermutationProblem . . . . . . . . . . . . . . . . . . . 106 6.3 Correlation-basedApproachesandTheirLimitations . . . . . . . . . . . . . . 107 6.4 LocallyandGloballyCoherentSpectrumEstimation . . . . . . . . . . . . . . 110 ii 6.5 ProposedAlgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 6.6 ExperimentalResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.7 ConcludingRemarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 7 SBSSappliedtoMCAEC 115 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 7.2 AreviewoftheLMSalgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 117 7.3 TheoreticalanalysisofSBSS . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 7.3.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 7.3.2 Non-UniquenessProblem . . . . . . . . . . . . . . . . . . . . . . . . 124 (cid:98) 7.3.3 Steady-StateSolutionfor H . . . . . . . . . . . . . . . . . . . . . . 125 12 7.3.4 ConnectionbetweenMSEandICA . . . . . . . . . . . . . . . . . . . 128 7.3.5 EffectofConstrainton W(ω) . . . . . . . . . . . . . . . . . . . . . . 129 7.4 Algorithmicdesignandrelatedissues . . . . . . . . . . . . . . . . . . . . . . 132 7.4.1 OnlineImplementationofSBSS . . . . . . . . . . . . . . . . . . . . . 132 7.4.2 ProposedSBSSAlgorithm . . . . . . . . . . . . . . . . . . . . . . . . 135 7.5 Experimentalevaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 7.5.1 EvaluationMethods . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 7.5.2 ExperimentalResults . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 7.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 7.7 ConcludingRemarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 8 TowardsDistributedBSS 153 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 8.2 BSSasSoft-MasksEstimation . . . . . . . . . . . . . . . . . . . . . . . . . . 154 8.3 CooperativeWiener-ICA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 8.4 ExperimentalResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 8.5 ConcludingRemarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 9 Real-timeBSS/SBSS 161 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 9.2 ArchitectureoftheBSSsystem . . . . . . . . . . . . . . . . . . . . . . . . . . 161 9.2.1 Inputprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 9.2.2 ICA-BSS(first-stage) . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 9.2.3 SCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 9.2.4 ICA-BSS(secondstage) . . . . . . . . . . . . . . . . . . . . . . . . . 164 9.2.5 Outputprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 9.3 EvaluationoftheBSSalgorithm . . . . . . . . . . . . . . . . . . . . . . . . . 166 iii 9.4 Architectureofthereal-timeSBSS . . . . . . . . . . . . . . . . . . . . . . . . 173 9.4.1 Inputprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 9.4.2 ICA-SBSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 9.4.3 Outputprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 9.4.4 BSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 9.4.5 Start-endpointdetector . . . . . . . . . . . . . . . . . . . . . . . . . . 181 9.4.6 ASR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 9.5 EvaluationoftheSBSSalgorithm . . . . . . . . . . . . . . . . . . . . . . . . 182 10 Conclusions 187 Bibliography 187 iv

Description:
5.3.2 Equivalence Between SCT and Kernel pdf Estimation . Francesco Nesta, Maurizio Omologo, ”Cooperative Wiener-ICA for source localization.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.