ebook img

Discovery of very high energy gamma-rays from the flat spectrum radio quasar 3C 279 with the MAGIC telescope PDF

0.22 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Discovery of very high energy gamma-rays from the flat spectrum radio quasar 3C 279 with the MAGIC telescope

Discovery of very high energy gamma-rays from the flat spectrum radio quasar 3C 279 with the MAGIC telescope M. Errando∗, R. Bock†,∗∗, D. Kranich‡, E. Lorenz‡,†, P. Majumdar§, M. Mariotti∗∗, D. Mazin∗, E. Prandini∗∗, F. Tavecchio¶, M. Teshima† and R. Wagner† (on behalf of 9 the MAGIC Collaboration) 0 0 2 ∗IFAE,EdificiCn.,CampusUAB,E-08193Bellaterra,Spain †Max-Planck-InstitutfürPhysik,D-80805München,Germany n a ∗∗UniversitàdiPadovaandINFN,I-35131Padova,Italy J ‡ETHZurich,CH-8093Switzerland 1 §DESYDeutschesElektr.-SynchrotronD-15738Zeuthen,Germany 2 ¶INAFNationalInstituteforAstrophysics,I-00136Rome,Italy ] Abstract. 3C279isoneofthebeststudiedflatspectrumradioquasarslocatedatacomparativelylargeredshiftofz=0.536. E Observationsintheveryhighenergybandofsuchdistantsourceswereimpossibleuntilrecentlyduetotheexpectedsteep H energy spectrumand thestronggamma-rayattenuation bytheextragalacticbackground lightphoton field, whichconspire . to make the source visible only with a low energy threshold. Here the detection of a significant gamma-ray signal from h 3C279atveryhighenergies(E>75GeV)duringaflareinearly2006isreported.Implicationsofitsenergyspectrumonthe p currentunderstandingoftheextragalacticbackgroundlightandveryhighenergygamma-rayemissionmechanismmodelsare - o discussed. r Keywords: ActiveGalacticNuclei:individual;gammarays:observations;gamma-raytelescopes t s PACS: 95.55.Ka,95.85.Pw,98.54.Cm,98.62.Js,98.70.Vc a [ INTRODUCTION tivisticelectrons,whilethehigh-energypeakispresum- 1 ablyduetotheinverseComptonscatteringoflow-energy v The flatspectrumradioquasar(FSRQ) 3C 279,located photons by these electrons. The soft photon population 5 7 at a redshift of z=0.536, is one of the brightest extra- canbethesynchrotronphotonsthemselves(synchrotron 2 galacticobjectsinthegamma-raysky[1]anditisanex- self-ComptonorSSCmechanism[8])orambientradia- 3 ceptionally variable source at variousenergy bands, in- tion(externalComptonorECmechanism[9,10]).Other 1. cludingverystronggamma-rayflaresrecordedbysatel- scenarios (hadronic models) involve gamma-ray emis- 0 litedetectorEGRETin1991and1996[2].Itsdetection sionduetoacceleratedprotonsandions[11,12]. 9 atveryhighenergy(VHE,definedhereasE >50GeV) ApartfrombeingthefirstFSRQdetectedintheVHE 0 gamma-raysby the MAGIC telescope [3, 4] is the first band, the detection of 3C 279 is important because : v detectionofanFSRQ inthisenergybandaswellasthe gamma-rays from distant sources are expected to be i farthestobjectdetectedatthesewavelengths,asthehigh- stronglyattenuatedinintergalacticspacebythepossible X estredshiftpreviouslyobservedwasz=0.212[5]. interactionwithlow-energyphotons(g +g →e++e−). r TheEGRETexperimentdetected66blazars:51FSRQ These photons form the extragalactic background light a and 15 BL Lac objects [6]. Blazars are thought to be (EBL)[13]andhavebeenradiatedbystarsandgalaxies poweredbyaccretionofmatterontosupermassiveblack in the course of cosmic history. The attenuation by the holesresidinginthecentersofgalaxiesandejectingrel- EBLincreaseswithincreasingdistancetothesourceand ativistic jets with small angles to the line of sight [7]. energyoftheemittedgamma-ray,therefore,VHEradia- ExceptfortheFSRQ 3C279,alltheblazarsdetectedat tion from distant sources is stronglysuppressed at high VHE upto knoware ofthe BL Lac type,beingthe dif- energies(forE≥300GeVandz=0.536morethan90% ference between this two subclasses that FSRQs show oftheemittedgamma-raysareexpectedtobeabsorbed). optical emission lines while in BL Lacs these are very weak or absent. The spectral energy distribution (SED) ofblazarsischaracterizedbytwobroadbumps,thefirst OBSERVATIONSAND ANALYSIS onepeakingbetweentheinfraredandtheX-raybandand thesecondoneinthegamma-raydomain.Thefirstpeak Observations of 3C 279 were performed using the is usually attributed to synchrotronemission from rela- MAGIC telescope (see [14] for a detailed description), which is located on the Canary Island of La Palma and has a 17m-diameter tessellated reflector dish and s a photomultipliercamera covering3.5◦ field of view. It unt180 o160 C hasa triggerthresholdof 60GeV, an angularresolution 140 of approximately 0.1◦ and an energy resolution above 120 100 150GeVofabout25%. 80 Data were taken in on/off mode, which includes on 60 Observation time: 82 mins events taken with the telescope pointing at the source 40 Excess events: 166 – 28 20 Excess significance: 6.15 s and a similar amount of off events taken at a sky loca- 0 0 10 20 30 40 50 60 70 80 90 tion near the source with very similar operating condi- |ALPHA| [deg] tions.3C279wasobservedover10nightsbetweenJan- uary and April 2006 for a total of 9.7 hours. Simulta- FIGURE 1. Histogram of the image parameter alpha ob- neousopticalR-bandobservationswiththe1.03-mtele- tained for 3C 279 in the night of 23 February 2006 for on scopeattheTuorlaObservatory(Finland)andthe35-cm (dots) and off (crosses and filled area) pointings. The dotted KVAtelescopeonLaPalmarevealedthatduringMAGIC lineisasimpleparabolicfitwithoutlineartermtotheoff events between0◦and80◦,servingtosmoothenthebackgrounddistri- observations 3C 279 was in high optical state, a factor butionforabetterextrapolationtowardsalpha=0.Thenum- of 2 aboveits long-termbaseline flux (hostgalaxysub- berofexcesseventsisobtainedwithrespecttothisline. tracted). The data anaysis was carried out using the standard MAGIC analysis and reconstruction software [14]. To ·10-9 searchforagamma-raysignal,firstthestandardcalibra- -2] sm-1 0.6 MAGIC tictineaorglinizbpaorrtafiotoectnhdeedosuifdrgaentthaawelswa.ssahTsaohpwpepeelrnrifeeoidxmrtmuassegtideenp.sgT[itn1hhc5eeln]u.adamHendapidlmtirhtouaendgiepecaocrblafeamacthnkee--- integral flux (100-500 GeV) [c00..42 22 Feb 2006 23 Feb 2006 groundsuppressionwasachievedusingtheRandomFor- 0 est (RF) method [16, 17], where for each event the so- -0.2 called hadronness (h) parameter is computed based on 8 KVA theimageparameters.Moreover,theRFmethodwasalso mJy] uuslaetdedfogratmhemean-erargyysaemstpimleawtioitnhuthseinsgamaeMzoenntiethCaanrglolesdimis-- optical flux [ 6 tributionasthedatasample.Allimageparameterswere 4 checkedforconsistencybetweenonandoff data. 760 780 800Time (Julian Date8 2- 02453000) FIGURE2. MAGIC(top)andopticalR-band(bottom)light curvesobtainedfor3C279fromFebruarytoMarch2006.The RESULTS long-term baseline for the optical flux is 3mJy (host galaxy subtracted). Theexcesseventswereobtainedbysubtractingsuitably normalized off from the on data. Cuts in h and alpha (thelatterdescribesthedirectionofthemainaxisofthe TheobserveddifferentialVHEspectrum(Fig.3)was image)wereoptimizedusingCrabNebuladatatakenat obtained with looser cuts to increase the number of similar zenith angles. For the detection and light curve gamma-raycandidates,andcanbedescribedbyapower thecutsh<0.12andalpha<12◦whereused,resulting lawwithspectralindexofa =4.1±0.7 ±0.2 .The stat syst ina combinedefficiencyof40%forgammas.Forthese measuredintegratedfluxabove100GeVon23February cuts and a quality cut that removed small images the is(cid:0)5.15±0.82stat±1.50syst(cid:1)×10−10cm−2s−1. resultingenergythresholdis170GeV. 3C279wasclearlydetectedonthenightof23Febru- ary 2006 (Fig. 1) with a significance of 6.2s , which DISCUSSION translates into 5.8s when corrected with a trial factor correspondingto10nightsofobservation.Alesssignif- TheEBLinfluencesthepropagationofgamma-rayemit- icant excess on the previousnightis visible in the light ted from distant sources resulting in an exponentialde- curve(Fig.2).Asdeterminedbythec 2test,theprobalil- creasewithenergyandacutoffinthemeasuredgamma- ity thatthe gamma-rayfluxonall10nightswas zerois ray spectrum. Several models have been proposed for 2.3×10−7, correspondingto 5.0s in a Gaussian distri- the EBL [13]. All havelimited predictivepowerfor the bution. 3c279, measured Kneiske et al. 2002 (modified) Primack et al. (2005) error band from 3 analyses Energy Threshold of MAGIC Stecker et al. (2006) -1-1-2] s cmdifferential flux, dN/dE [TeV111111000000--11----098761 fdNitN0 t/=od E(m5 .=e2 a N–s 0u1 .r72e)0d·0 1sEG0p-ee1V0c [tTr-ueGmV-:1EE cBBmLL---cc2 oosrrrr-ee1]cctteedd,, SPtreimckaecrk (,f aGs*t )=, G2*.9 =4 0–. 409.9 –1 1.19 Gamma-Ray Energy [TeV]11001-1 Mkn 501H 114E2S 610+E24S1 22E198S1+ 0201103-E042S73 -21102111+4O96pacity Foτr >G a1m3C m27a9 Rayτττ ==s= 125 10-12 G = 4.11 – 0.68 7080 100 200 300 400 500 Energy, E [GeV] 10-20 0.1 0.2 0.3 0.4 0.5 0.6 0.7 FIGURE 3. Differential energy spectrum of 3C 279 mea- Redshift z sured by MAGIC. The grey area includes the combined sta- tistical(1s )andsystematicerrors,andunderlinesthemarginal FIGURE 5. The gamma-ray horizon. The redshift region significanceofdetectionsathighenergy.Thedottedlineshows overwhichthegamma-rayhorizoncanbeconstrainedbyob- compatibility of the measured spectrum with a power law of servations has been extended upto z=0.536. Theprediction photon index a =4.1. The triangles are measurements cor- range of EBL models is illustrated by [18] (thick solid line) rectedonthebasisofthetwomodelsforEBLdensitydiscussed and[21](dashed-dottedline).Thetunedmodelof[22](dashed inthetext. line)representsanupperEBLlimitbasedonour3C279data, obtained on the assumption that the intrinsic photon index is ≥1.5 (arrow corresponding to 3C 279). Limits obtained for -2W m-1) sr 102 SAPCMtlroabeimszecmikranteci ce&rk t M e eRatit lac .aa ru2lol.e. 0w 2 2020a0800v0,06e 5u7 'Bp,f apausecptrk p egleivmrroo liluitumntidiotn' ovreetghriyeorncslooaulslerocwetosedathrbeeetsmwhooedewnenlth[b2iys2]bm.laoTcdhkeelanarrnaordwroasw,mmfiaolxlseitmdoubfmawnpdhoicissshibtlhlieee (n Iνν Aharonian et al. 2006, upper limit tnreaanrslpyacreoninccyid(ie.en.t,wmiitnhimgaulmaxEyBcLoulnevtse.l)Tghievegnrabyya[1re8a],iwndhiiccahteiss anopticaldeptht >1,wherethefluxofgammaraysisstrongly suppressed.Toillustratethestrengthoftheattenuationinthis 10 areaenergiesfort =2andt =5(thinblacklines)areshown, againwith[18]asmodel. 1 VHE spectrum difficult to reconcile with an extrapola- 10-1 1 10 102 103 λ (µm) tion of the EGRET data and with generalconstraintsin FIGURE4. EBLmodelsat z=0and direct measurements the spectral energy distribution. On the other hand, the oftheEBLphotondensityatvariouswavelengths.Theupper lowmodelapparentlygivesanacceptableresult.Thedis- limitderivedfromthedetectionof3C279(blackline)isbased tance at which the flux of photons of a given energy is on[22]withparametersadapted totheresultsfromthelatest attenuatedbyafactore(thepathcorrespondingtoanop- galaxycounts(seeSupportingMaterialin[4]fordetails).The ticaldeptht =1) is called thegamma-rayhorizon[24] dotted line is an upper limit from [23]. The shaded region andisusuallyexpressedasafunctionoftheredshift.This corresponds to the range of frequencies where the MAGIC energy-redshiftrelationisshowninFigure5. measuredspectrumissensitive. Assumingahardestintrinsicphotonindexa ⋆=1.5a modelbased on Kneiske et al. [22, 25] can be tuned to giveanupperlimittotheEBLdensityinthe0.2−2m m EBLdensity,particularlyasafunctionoftheredshift,as rangeasshowninFig.4.Thisresultsupportstheconclu- manydetailsaboutstarandgalaxyevolutionremainun- sion drawn from VHE measurementsat lower redshifts certain. To illustrate this uncertainty two extreme mod- [26]thattheEBLdensityisclosetothelowerlimitsset elsareusedtocalculatethesourceintrinsicspectrum:a by galaxy counts. It is important to point out that this modelbyPrimacketal.[18]closetothelowerlimitsset limit is only valid under the assumption that the intrin- bygalaxycounts[19,20]andthe‘fast-evolution’model sicphotonindexcannotbeharderthan1.5,whichisthe bySteckeretal.[21]correspondingtothehighestpossi- hardest value given for EGRET sources and is also the bleattenuation.Thesemodelswillbereferredaslowand hardestthatcanbeobtainedwithclassicalleptonicemis- highrespectivelyandareshowninFigure4. sion mechanisms.Alternativescenarioscanproducein- A power-law fit to the EBL-correctedspectral points results in an intrinsic photonindexa ⋆ =2.9±0.9 ± trinsicspectrawitha ⋆<1.5.SSCmodelswithanarrow 0.5 (low absorption) and a ⋆ =0.5±1.2 ±0s.5tat electrondistributioncan producespectra with a ⋆ ≈0.7 syst stat syst [27], and internal absorption by soft photons can also (high absorption). The high model leads to an intrinsic REFERENCES 1. D.A.Kniffenetal.1993,Astrophys.J.411,133. 2. A.E.Wehrleetal.1998,Astrophys.J.497,178. 3. M. Teshima et al. 2007, in Proc. of the 30th InternationalCosmicRayConference,Mérida,México. arXiv:0709.1475. 4. J.Albertetal.2008,Science320,1752. 5. J.Albertetal.2007,AstrophysJ.667,L21. 6. R.C.Hartmanetal.1999,Astrophys.J.Suppl.123,79. 7. R.D.BlandfordandM.J.Rees1972,Astrophys.Lett.10, 77. 8. L.Maraschi,G.GhiselliniandA.Celotti1992,Astrophys. J.397,L5. 9. C.D.DermerandR.Schlickeiser1993,Astrophys.J.416, 458. 10. M. Sikora, M. C. Begelman and M. J. Rees 1994, Astrophys.J.421,153. FIGURE6. Spectralenergydistributionfor3C279atdiffer- 11. K.MannheimandP.L.Biermann1992,Astron.Astrophys. entsourceintensities,overtheyearsfrom1991to2003,taken 251,L21. from [34, 35] with MAGIC points (2006) at the high-energy 12. A.Mückeetal.2003,Astropart.Phys.18,593. end. The MAGIC points are corrected according to the two 13. M. G.Hauser andE.Dwek2001, Annu.Rev. Astron. extremeEBLmodelsdiscussedonthetext.Thespectrumcor- Astrophys.39,249. rectedwiththelowEBLmodelgivesclearlyamoreplausible 14. J.Albertetal.2008,Astrophys.J.674,1037. result. An emission model and its individual components are 15. A.M.Hillas1985,inProc.ofthe19thICRC,LaJolla,3, alsoshown:thesolidlinerepresentsthetotalmodelemission, 445. fittedonlytotheMAGICpointsunfoldedwithalowEBLden- 16. L.Breiman2001,MachineLearning45,5. sityandthesimultaneousopticalpointfromtheKVAtelescope. 17. J.Albertetal.2008,Nucl.Instr.Meth.A588,424. The individual components of the emission model are syn- 18. J.R.Primack,J.S.BullockandR.S.Somerville,inHigh chrotron radiation (dotted line), disk emission (long-dashed), EnergyGamma-RayAstronomy,editedbyF.Aharonian, synchrotron-self-Compton (short-dashed) andexternalComp- H.VoelkandD.Horns,AIPConferenceProceedings745, ton(dot-dashed). AmericanInstituteofPhysics,Heidelberg,2005,p.23. 19. P.MadauandL.Pozzetti2000,Mon.Not.R.Astron.Soc. 312,L9. harden the spectrum [28, 29, 30, 31]. However, an ac- 20. G.Fazioetal.2004,Astrophys.J.Suppl.Ser.154,39. 21. F.W.Stecker,M.A.MalkanandS.T.Scully,Astrophys. curate modeling of the internal absorption in 3C 279 J.648(2006)774. finds no important hardening of its spectrum in the en- 22. T.M.Kneiske,K.MannheimandD.H.Hartmann2002, ergybandmeasuredbyMAGIC[32]. Astron.Astrophys.386,1. Theemissionmechanismresponsiblefortheobserved 23. D.MazinandM.Raue2007,Astron.Astrophys.471,439. VHE radiation remains uncertain. The spectrum cor- 24. G.G.FazioandF.W.Stecker1970,Nature226,135. rected with a low level EBL can be reproduced by a 25. T.M.Kneiskeetal.2004,Astron.Astrophys.413,807. one-zone SSC+EC model [33] (Fig. 6) while the spec- 26. F.Aharonianetal.2006,Nature440,1018. 27. K.Katarzyn´skietal.2006,Mon.Not.R.Astron.Soc.368, trum corrected with a high absorption can not be fitted L52. by generic leptonic emission models. Studies including 28. W.Bednarek1997,Mon.Not.R.Astron.Soc.285,69. quasi-simultaneousopticalandX-raydata[36]conclude 29. F.Aharonian,D.KhangulyanandL.Costamante2008, thatneitherone-zoneSSCnorone-zoneECmodelscan Mon.Not.R.Astron.Soc.387,1206. reproducetheobservedSED[37]. 30. H.T.Liu,J.M.BaiandL.Ma2008,arXiv:0807.3133,to bepublished. 31. J.SitarekandW.Bednarek2008,arXiv:0807.4228,tobe published. ACKNOWLEDGMENTS 32. F.TavecchioandD.Mazin2008,arXiv:0809.2467,tobe published. MAGIC enjoys the excellent working conditions at 33. L.MaraschiandF.Tavecchio2003,Astrophys.J.593, the ORM in La Palma and is supported by the Ger- 667. man BMBF and MPG, the Italian INFN, the Spanish 34. L.Balloetal.2002,Astrophys.J.567,50. 35. W. Collmar et al. 2004, in Proceedings of the 5th MCI-NN, ETH research grant TH 34/04 3, the Polish INTEGRALWorkshopontheINTEGRALUniverseESA MNiSzW GrantN N203 390834and by the YIP of the SP-552,p.555. HelmholzGemeinschaft. 36. M.Böttcheretal.2007,Astrophys.J.670,968. 37. M.Böttcher2008,theseproceedings.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.