ebook img

Discovering Archipelagos of Tractability for Constraint Satisfaction and Counting PDF

28 Pages·2017·0.62 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Discovering Archipelagos of Tractability for Constraint Satisfaction and Counting

Discovering Archipelagos of Tractability for Constraint Satisfaction and Counting ∗ RobertGanian M.S.Ramanujan StefanSzeider ViennaUniversityofTechnology UniversityofBergen ViennaUniversityofTechnology Vienna,Austria Bergen,Norway Vienna,Austria [email protected] [email protected] [email protected] 5 1 0 2 l u Abstract J TheConstraintSatisfactionProblem(CSP)isacentralandgenericcomputationalproblemwhich 0 providesacommonframeworkformanytheoreticalandpracticalapplications.Acentrallineofresearchis 2 concernedwiththeidentificationofclassesofinstancesforwhichCSPcanbesolvedinpolynomialtime; ] suchclassesareoftencalled“islandsoftractability.” Aprominentwayofdefiningislandsoftractability S for CSP is to restrict the relations that may occur in the constraints to a fixed set, called a constraint D language, whereas a constraint language is conservative if it contains all unary relations. Schaefer’s . s famous Dichotomy Theorem (STOC 1978) identifies all islands of tractability in terms of tractable c constraintlanguagesoveraBooleandomainofvalues. Sincethenmanyextensionsandgeneralizationsof [ thisresulthavebeenobtained.Recently,Bulatov(TOCL2011,JACM2013)gaveafullcharacterizationof 2 allislandsoftractabilityforCSPandthecountingversion#CSPthataredefinedintermsofconservative v constraintlanguages. 9 ThispaperaddressesthegenerallimitofthementionedtractabilityresultsforCSPand#CSP,that 7 4 theyonlyapplytoinstanceswhereallconstraintsbelongtoasingletractablelanguage(ingeneral,the 2 unionoftwotractablelanguagesisn’ttractable). Weshowthatwecanovercomethislimitationaslongas 0 wekeepsomecontrolofhowconstraintsoverthevariousconsideredtractablelanguagesinteractwith . 7 eachother. ForthispurposeweutilizethenotionofastrongbackdoorofaCSPinstance,asintroduced 0 byWilliamsetal.(IJCAI2003),whichisasetofvariablesthatwheninstantiatedmovestheinstanceto 5 anislandoftractability,i.e.,toatractableclassofinstances. Weconsiderstrongbackdoorsintoscattered 1 classes,consistingofCSPinstanceswhereeachconnectedcomponentbelongsentirelytosomeclass : v from a list of tractable classes. Figuratively speaking, a scattered class constitutes an archipelago of Xi tractability. Themaindifficultyliesinfindingastrongbackdoorofgivensizek;onceitisfound,we cantryallpossibleinstantiationsofthebackdoorvariablesandapplythepolynomialtimealgorithms r a associatedwiththeislandsoftractabilityonthelistcomponentwise. Ourmainresultisanalgorithm that,givenaCSPinstancewithnvariables,findsintimef(k)nO(1)astrongbackdoorintoascattered class(associatedwithalistoffiniteconservativeconstraintlanguages)ofsizekorcorrectlydecidesthat thereisn’tsuchabackdoor. Thisalsogivestherunningtimeforsolving(#)CSP,providedthat(#)CSPis polynomial-timetractablefortheconsideredconstraintlanguages. Ourresultmakessignificantprogress towards the main goal of the backdoor-based approach to CSPs – the identification of maximal base classesforwhichsmallbackdoorscanbedetectedefficiently. ∗ResearchsupportedbytheAustrianScienceFunds(FWF),projectP26696X-TRACT. 1 Introduction TheConstraintSatisfactionProblem(CSP)isacentralandgenericcomputationalproblemwhichprovidesa common framework for many theoretical andpractical applications [24]. An instanceof CSP consists of acollectionofvariablesthatmustbeassignedvaluessubjecttoconstraints,whereeachconstraintisgiven intermsofarelationwhosetuplesspecifytheallowedcombinationsofvaluesforspecifiedvariables. The problemwasoriginallyformulatedbyMontanari[32],andhasbeenfoundequivalenttothehomomorphism problemforrelationalstructures[18]andtheproblemofevaluatingconjunctivequeriesondatabases[27]. In general CSP is NP-complete. A central line of research is concerned with the identification of classes of instances for which CSP can be solved in polynomial time. Such classes are often called “islands of tractability”[27,28]. A prominent way of defining islands of tractability for CSP is to restrict the relations that may occur in the constraints to a fixed set Γ, called a constraint language. A finite constraint language is tractable if CSP restricted to instances using only relations from Γ, denoted CSP(Γ), can be solved in polynomial time. Schaefer’sfamousDichotomyTheorem[38]identifiesallislandsoftractabilityintermsoftractable constraint languages over the two-element domain. Since then, many extensions and generalizations of thisresulthavebeenobtained[26,12,29,39]. TheDichotomyConjectureofFederandVardi[17]claims that for every finite constraint language Γ, CSP(Γ) is either NP-complete or solvable in polynomial time. Schaefer’sDichotomyTheoremshowsthattheconjectureholdsfortwo-elementdomains;morerecently, Bulatov [3] showed the conjecture to be true for three-element domains. Several papers are devoted to identifyingconstraintlanguagesΓforwhichcountingCSP,denoted#CSP(Γ),canbesolvedinpolynomial time[5,13,6],i.e.,wherethenumberofsatisfyingassignmentscanbecomputedinpolynomialtime. Such languagesΓarecalled#-tractable. Aconstraintlanguageover isconservativeifitcontainsallpossibleunaryconstraintsover ,anditis D D semi-conservativeifitcontainsallpossibleunaryconstantconstraints(i.e.,constraintsthatfixavariabletoa specificdomainelement). Thesepropertiesofconstraintlanguagesareverynatural,asonewouldexpect inpracticalsettingsthattheunaryrelationsarepresent. Indeed,someauthors(e.g.,[10])evendefineCSP sothateveryvariablecanhaveitsownsetofdomainvalues,makingconservativenessabuilt-inproperty. Recently,Bulatov[4]gaveafullcharacterizationofalltractableconservativeconstraintlanguagesoverfinite domains. Furthermore,Bulatov[5]gaveafullcharacterizationofall#-tractableconstraintlanguagesover finitedomains. Thus,Bulatov’sresultsidentifyallislandsof(#-)tractabilityoverfinitedomainswhichcanbe definedintermsofaconservativeconstraintlanguage. A general limit of tractability results for CSP and #CSP based on constraint languages, such as the mentionedresultsofSchaeferandBulatov,isthattheyonlyapplytoinstanceswhereallconstraintsbelongto asingletractablelanguage. Onecannotarbitrarilycombineconstraintsfromtwoormoretractablelanguages, as in general, the union of two tractable languages isn’t tractable (see Section 2). In this paper we show thatwecanovercomethislimitationaslongasconstraintsoverthevariousconsideredtractablelanguages interactwitheachotherinacontrolledmanner. Forthispurposeweutilizethenotionofastrongbackdoor ofaCSPinstance,asintroducedbyWilliamsetal.[40]. AsetB ofvariablesofaCSPinstanceisastrong backdoorintoatractableclass ifforallinstantiationsofthevariablesinB,thereducedinstancebelongs H to . Inthispaper,weconsiderstrongbackdoorsintoascatteredclass,denoted ,consisting 1 d H H ⊕···⊕H ofallCSPinstancesIsuchthateachconnectedcomponentofIbelongsentirelytosomeclassfromalistof tractableclasses ,..., . Figurativelyspeaking, ... constitutesanarchipelagooftractability, 1 d 1 d H H H ⊕ ⊕H consistingoftheislands ,..., . 1 d H H 2 Ourmainresultisthefollowing: Theorem1. LetΓ ,...,Γ besemi-conservativefiniteconstraintlanguagesoverdomain ,andlet ∗ be 1 d D D thelanguagecontainingallrelationsover . IfΓ ,...,Γ aretractable(or#-tractable),thenCSP( ∗)(or 1 d D D #CSP( ∗),respectively)canbesolvedintime22O(k) nO(1) forinstanceswithnvariablesthathaveastrong D · backdoorofsizek intoCSP(Γ ) ... CSP(Γ ). 1 d ⊕ ⊕ NotethattherearenaturalCSPinstanceswhichhaveasmallstrongbackdoorintothescatteredclass CSP(Γ ) ... CSP(Γ )butrequirestrongbackdoorsofarbitrarilylargesizeintoeachindividualbase 1 d ⊕ ⊕ classCSP(Γ ). Thepowerofastrongbackdoorintoascatteredclassoveroneintoasingleclassstemsfrom i thefactthattheinstantiationofvariablesinthebackdoorcanservetwopurposes. Thefirstistoseparate constraintsintocomponents,eachbelongingentirelytosomeCSP(Γ )(possiblyevendifferentCSP(Γ )’s i i fordifferentinstantiations),andthesecondistomodifyconstraintssothatoncemodified,thecomponent containingtheseconstraintsbelongstosomeCSP(Γ ). i Whenusingthebackdoor-basedapproach,themaincomputationaldifficultyisindetectingsmallbackdoor setsintothechosenbaseclass. Thistaskbecomessignificantlyharderwhenthebaseclassesaremademore general. However,weshowthatwhilescatteredclassesaresignificantlymoregeneralthansinglebaseclasses, wecanstilldetectstrongbackdoorsintosuchclassesinFPTtime. Theformalstatementofthisresult,which representsourmaintechnicalcontribution,isthefollowing. Lemma1. Thereisanalgorithmthat,givenaCSPinstanceIandaparameterk,runsintime22O(k) nO(1) · andeitherfindsastrongbackdoorofsizeatmostk inIintoCSP(Γ∗) ... CSP(Γ∗)orcorrectlydecides 1 ⊕ ⊕ d thatnoneexists. Here Γ∗ Γ is obtained from Γ by taking the closure under partial assignments and by adding a i ⊇ i i redundantrelation. Weremarkthatthefinitaryrestrictionontheconstraintlanguagesisunavoidable,sinceotherwisethe arityoftherelationsorthedomainsizewouldbeunbounded. However,forunboundedarity,smallbackdoors cannot be found efficiently as Lemma 1 would not hold already for the special case of d = 1 unless FPT = W[2][20]. Similarly,withunboundeddomain,asmallstrongbackdoorcannotbeusedefficiently. Forinstance,thenaturalencodingoftheW[1]-hardk-cliqueproblemtoCSP[34]onlyhask variables,and thereforehasasize-k strongbackdoortoanybaseclassthatcontainsthetrivialconstrainswithemptyscopes, whichisthecaseforanynaturalbaseclass;anFPTalgorithmsolvingsuchinstanceswouldonceagainimply FPT = W[1]. ThefollowingisabriefsummaryofthealgorithmofLemma1. Wewillgiveamoredetailedsummaryin Section3. 1. Webeginbyusingthetechniqueofiterativecompression[37]totransformtheproblemintoastructured subproblemwhichwecallEXTENDED SBD(CSP(Γ1) CSP(Γd)) COMPRESSION(EXT-SBD ⊕···⊕ COMP). In this technique, the idea is to start with a sub-instance and a trivial solution for this sub- instance and iteratively expand the sub-instances while compressing the solutions till we solve the problemontheoriginalinstance. Specifically,inEXT-SBD COMPwearegivenadditionalinformation aboutthedesiredsolutionintheinput: wereceivean“old”strongbackdoorwhichisslightlybigger than our target size, along with information about how this old backdoor interacts with our target solution. ThisisformalizedinSubsection3.1. 2. In Subsection 3.2, we consider only solutions for EXT-SBD COMP instances which have a certain ‘inseparabilityproperty’andgiveanFPTalgorithmtotestforthepresenceofsuchsolutions. Tobe 3 moreprecise,hereweonlylookforsolutionsofEXT-SBD COMPwhichleavetheomittedpartofthe oldstrongbackdoorinasingleconnectedcomponent. Wehandlethiscaseseparatelyatthebeginning sinceitservesasabasecaseinouralgorithmtosolvegeneralinstances. Interestingly,eventhisbase caserequirestheextensionofstateoftheartseparatortechniquestoaCSPsetting. 3. Finally,inSubsection3.3weshowhowtohandlegeneralinstancesof EXT-SBD COMP. Thispartof thealgorithmreliesonanewpatternreplacementtechnique,whichsharescertainsuperficialsimilarities withprotrusionreplacement[2]butallowsthepreservationofamuchlargersetofstructuralproperties (such as containment of disconnected forbidden structures and connectivity across the boundary). Weinterleaveourpatternreplacementprocedurewiththerecentlydevelopedapproachof‘important separatorsequences’[30]aswellasthealgorithmdesignedintheprevioussubsectionfor‘inseparable’ instancesinordertosolvetheproblemongeneralinstances. Beforeweconcludethesummary,we would like to point out an interesting feature of our algorithm. At its very core, it is a branching algorithm;inFPTtimeweidentifyaboundedsetofvariableswhichintersectssomesolutionandthen branchonthisset. NotethatthisapproachdoesnotalwaysresultinanFPT-algorithmforcomputing strongbackdoorsets. Infact,dependingonthebaseclassitmightonlyimplyanFPT-approximation algorithm (see [22]). This is because we need to explore all possible assignments for the chosen variable. However,wedevelopanotionofforbiddensetsofconstraintswhichallowsustosuccinctly describe when a particular set is not already a solution. Therefore, when we branch on a supposed strongbackdoorvariable,wesimplyaddittoapartialsolutionwhichwemaintainandthenwecan at any point easily check whether the partial solution is already a solution or not. This is a crucial componentofourFPTalgorithm. Related Work Williams et al. [40, 41] introduced the notion of backdoors for the runtime analysis of algorithmsforCSPandSAT,seealso[25]foramorerecentdiscussionofbackdoorsforSAT.Abackdooris asmallsetofvariableswhoseinstantiationputstheinstanceintoafixedtractableclass. Onedistinguishes betweenstrongandweakbackdoors,wherefortheformerallinstantiationsleadtoaninstanceinthebaseclass, andforthelatteratleastoneleadstoasatisfiableinstanceinthebaseclass. Backdoorshavebeenstudiedunder adifferentnamebyCramaetal.[11]. Thestudyoftheparameterizedcomplexityoffindingsmallbackdoors wasinitiatedbyNishimuraetal.[33]forSAT,whoconsideredbackdoorsintotheclassesofHornandKrom CNFformulas. FurtherresultscovertheclassesofrenamableHornformulas[36],q-Hornformulas[21]and classes of formulas of bounded treewidth [22, 35]. The detection of backdoors for CSP has been studied forinstancein[1,7]. Gaspersetal.[20]recentlyobtainedresultsonthedetectionofstrongbackdoorsinto heterogeneousbaseclassesoftheformCSP(Γ ) CSP(Γ )whereforeachinstantiationofthebackdoor 1 d ∪···∪ variables,thereducedinstancebelongsentirelytosomeCSP(Γ )(possiblytodifferentCSP(Γ )’sfordifferent i i instantiations). OursettingismoregeneralsinceCSP(Γ ) CSP(Γ ) CSP(Γ ) CSP(Γ ), 1 d 1 d ⊕···⊕ ⊇ ∪···∪ andthesizeofasmalleststrongbackdoorintoCSP(Γ ) CSP(Γ )canbearbitrarilylargerthanthe 1 d ∪···∪ sizeofasmalleststrongbackdoorintoCSP(Γ ) CSP(Γ ). 1 d ⊕···⊕ 2 Preliminaries 2.1 ConstraintSatisfaction Let be an infinite set of variables and a finite set of values. A constraint of arity ρ over is a pair V D D (S,R)whereS = (x ,...,x )isasequenceofvariablesfrom andR ρ isaρ-aryrelation. Theset 1 ρ V ⊆ D var(C) = x ,...,x iscalledthescopeofC. Avalueassignment(orassignment,forshort)α : X 1 ρ { } → D 4 is a mapping defined on a set X of variables. An assignment α : X satisfies a constraint ⊆ V → D C = ((x ,...,x ),R) if var(C) X and (α(x ),...,α(x )) R. For a set I of constraints we write 1 ρ 1 ρ (cid:83) ⊆ ∈ var(I) = var(C)andrel(I) = R : (S,R) C,C I . C∈I { ∈ ∈ } AfinitesetIofconstraintsissatisfiableifthereexistsanassignmentthatsimultaneouslysatisfiesallthe constraintsinI. TheConstraintSatisfactionProblem(CSP,forshort)asks,givenafinitesetIofconstraints, whetherIissatisfiable. TheCountingConstraintSatisfactionProblem(#CSP,forshort)asks,givenafinite setIofconstraints,todeterminethenumberofassignmentstovar(I)thatsatisfyI. CSPisNP-completeand #CSPis#P-complete(see,e.g.,[5]). Letα : X beanassignment. Foraρ-aryconstraintC = (S,R)withS = (x ,...,x )wedenote 1 ρ → D byC theconstraint(S(cid:48),R(cid:48))obtainedfromC asfollows. R(cid:48) isobtainedfromRby(i)deletingalltuples α | (d ,...,d )fromRforwhichthereissome1 i ρsuchthatx X andα(x ) = d ,and(ii)removing 1 ρ i i i ≤ ≤ ∈ (cid:54) fromallremainingtuplesallcoordinatesd withx X. S(cid:48) isobtainedfromS bydeletingallvariablesx i i i ∈ withx X. ForasetIofconstraintswedefineI as C : C I . i α α ∈ | { | ∈ } Aconstraintlanguage(orlanguage,forshort)Γoverafinitedomain isasetΓofrelations(ofpossibly D variousarities)over . ByCSP(Γ)wedenoteCSPrestrictedtoinstancesIwithrel(I) Γ. Aconstraint D ⊆ languageΓistractableifforeveryfinitesubsetΓ(cid:48) Γ,theproblemCSP(Γ(cid:48))canbesolvedinpolynomial ⊆ time. AconstraintlanguageΓis#-tractableifforeveryfinitesubsetΓ(cid:48) Γ,theproblem#CSP(Γ(cid:48))canbe ⊆ solvedinpolynomialtime. Inhisseminalpaper[38],SchaefershowedthatforallconstraintlanguagesΓovertheBooleandomain 0,1 , CSP(Γ) is either NP-complete or solvable in polynomial time. In fact, he showed that a Boolean { } constraintlanguageΓistractableifandonlyatleastoneofthefollowingpropertiesholdsforeachrelation R Γ: (i)(0,...,0) R,(ii)(1,...,1) R,(iii)Risequivalenttoaconjunctionofbinaryclauses,(iv)R ∈ ∈ ∈ is equivalent to a conjunction of Horn clauses, (v) R is equivalent to a conjunction of dual-Horn clauses, and (vi) R is equivalent to a conjunction of affine formulas; Γ is then called 1-valid, 0-valid, bijunctive, Horn, dual-Horn, or affine, respectively. A Boolean language that satisfies any of these six properties is calledaSchaeferlanguage. AconstraintlanguageΓoverdomain isconservativeifΓcontainsallunary D relations over . Except for the somewhat trivial 0-valid and 1-valid languages, all Schaefer languages D are conservative. Γ is semi-conservative if it contains all unary relations over that are singletons (i.e., D constraintsthatfixthevalueofavariabletosomeelementof ). D AconstraintlanguageΓisclosedunderassignmentsifforeveryC = (S,R)suchthatR Γandevery ∈ assignmentα,itholdsthatR(cid:48) ΓwhereC = (S(cid:48),R(cid:48)). ForaconstraintlanguageΓoveradomain we α ∈ | D denotebyΓ∗thesmallestconstraintlanguageover thatcontainsΓ 2 andisclosedunderassignments; D ∪{D } noticethatΓ∗isuniquelydeterminedbyΓ. Evidently,ifalanguageΓistractable(or#-tractable,respectively) andsemi-conservative,thensoisΓ∗: first,allconstraintsoftheform(S, 2 )canbedetectedinpolynomial α D | timeandremovedfromtheinstancewithoutchangingthesolution,andtheneachconstraintC(cid:48) = (S(cid:48),R(cid:48)) withR(cid:48) Γ∗ ΓcanbeexpressedintermsoftheconjunctionofaconstraintC = (S,R)withR Γand ∈ \ ∈ unaryconstraintsovervariablesinvar(C) var(C(cid:48)). \ As mentioned in the introduction, the union of two tractable constraint languages is in general not tractable. Take for instance the conservative languages Γ = 0,1 3 (1,1,1) 2{0,1} and Γ = 1 2 {{ } \ { }} ∪ 0,1 3 (0,0,0) 2{0,1}. Using the characterization of Schaefer languages in terms of closure {{ } \ { }} ∪ properties (see, e.g., [23]), it is easy to check that Γ is Horn and has none of the five other Schaefer 1 properties;similarly,Γ isdual-HornandhasnoneofthefiveotherSchaeferproperties. Hence,iffollowsby 2 Schaefer’sTheoremthatCSP(Γ )andCSP(Γ )aretractable,butCSP(Γ Γ )isNP-complete. Onecan 1 2 1 2 ∪ findsimilarexamplesforotherpairsofSchaeferlanguages. 5 2.2 ParameterizedComplexity A parameterized problem is a problem whose instances are tuples (I,k), where k N is called the P ∈ parameter. Wesaythataparameterizedproblemisfixedparametertractable(FPTinshort)ifitcanbesolved byanalgorithmwhichrunsintimef(k) I O(1) forsomecomputablefunctionf;algorithmswithrunning ·| | timeofthisformarecalledFPTalgorithms. ThenotionsofW[i]-hardness(fori N)arefrequentlyusedto ∈ showthataparameterizedproblemisnotlikelytobeFPT;anFPTalgorithmforaW[i]-hardproblemwould implythattheExponentialTimeHypothesisfails[8]. Wereferthereadertoothersources[15,16,19]foran in-depthintroductionintoparameterizedcomplexity. 2.3 Backdoors,IncidenceGraphsandScatteredClasses LetIbeaninstanceofCSPover andlet beaclassofCSPinstances. AsetB ofvariablesofIiscalleda D H strongbackdoorinto ifforeveryassignmentα : B itholdsthatI . Noticethatifwearegiven α H → D | ∈ H astrongbackdoorB ofsizek intoatractable(or#-tractable)class ,thenitispossibletosolveCSP(or H #CSP)intime k nO(1). Itisthusnaturaltoaskforwhichtractableclasseswecanfindasmallbackdoor |D| · efficiently. STRONG BACKDOOR DETECTION INTO (SBD( )) H H Setting: Aclass ofCSPinstancesoverafinitedomain . H D Instance: ACSPinstanceIover andanon-negativeintegerk. D Task: FindastrongbackdoorinIinto ofcardinalityatmostk,ordeterminethatnosuch H strongbackdoorexists. Parameter: k. We remark that for any finite constraint language Γ, the problem SBD(CSP(Γ)) is fixed parameter tractableduetoasimplefolklorebranchingalgorithm. Ontheotherhand, SBD(CSP(Γ(cid:48)))isknowntobe W[2]-hardforawiderangeofinfinitetractableconstraintlanguagesΓ(cid:48) [20]. GivenaCSPinstanceI,we use (I) = (var(I) I,E)todenotetheincidencegraphofI;specifically,Icontainsanedge x,Y for B ∪ { } x var(I),Y Iifandonlyifx var(Y). Wedenotethisgraphby whenIisclearfromthecontext. ∈ ∈ ∈ B Furthermore,forasetS ofvariablesofI,wedenoteby (I)thegraphobtainedbydeletingfrom (I)the S B B verticescorrespondingtothevariablesinS;wemayalsouse inshortifIisclearfromthecontext. We S B refertoDiestel’sbook[14]forstandardgraphterminology. TwoCSPinstancesI,I(cid:48) arevariabledisjointifvar(I) var(I(cid:48)) = . Let ,... beclassesofCSP 1 d ∩ ∅ H H instances. Thenthescatteredclass istheclassofallCSPinstancesIwhichmaybepartitioned 1 d H ⊕···⊕H into pairwise variable disjoint sub-instances I ,...I such that I for each i [d]. Notice that this 1 d i i ∈ H ∈ implies that (I) can be partitioned into pairwise disconnected subgraphs (I ),... (I ). If ,... 1 d 1 d B B B H H aretractable,then isalsotractable,sinceeachI canbesolvedindependently. Similarly,If 1 d i H ⊕···⊕H ,... are#-tractable,then isalso#-tractable,sincethenumberofsatisfyingassignments 1 d 1 d H H H ⊕···⊕H ineachI canbecomputedindependentlyandthenmultipliedtoobtainthesolution. i We conclude this section by showcasing that a strong backdoor to a scattered class can be arbitrarily smallerthanastrongbackdoortoanyofitscomponentclasses. Consideronceagainthetractablelanguages Γ = 0,1 3 (1,1,1) 2{0,1} (Horn) andΓ = 0,1 3 (0,0,0) 2{0,1} (dual-Horn). Then 1 2 {{ } \{ }}∪ {{ } \{ }}∪ foranyk NonecanfindI CSP(Γ ) CSP(Γ )suchthatIdoesnothaveastrongbackdoorofsizek to 1 2 ∈ ∈ ⊕ eitherofCSP(Γ ),CSP(Γ ). 1 2 6 3 Strong-Backdoors to Scattered Classes Thissectionisdedicatedtoprovingourmaintechnicallemma,restatedbelow. Wewouldliketopointout thattheassumptionregardingtheexistenceofthetautologicalbinaryrelation 2 inthelanguagesismade D purelyforeaseofdescriptioninthelaterstagesofthealgorithm. Lemma1. LetΓ ,...Γ befinitelanguagesoverafinitedomain whichareclosedunderpartialassign- 1 d mentsandcontain 2. ThenSBD(CSP(Γ ) CSP(Γ ))caDnbesolvedintime22O(k) I O(1). 1 d D ⊕···⊕ | | Beforeproceedingfurther,weshowhowLemma1isusedtoproveTheorem1. ProofofTheorem1. LetIbeaninstanceofCSP( ∗). RecallingthedefinitionofΓ∗,weuseLemma1to D find a strong backdoor X of size at most k into CSP(Γ∗) CSP(Γ∗) in time 22O(k) I O(1). Since 1 ⊕ ··· ⊕ d | | CSP(Γ∗) CSP(Γ∗) CSP(Γ ) CSP(Γ ),itfollowsthatanystrongbackdoorintoCSP(Γ ) 1 ⊕···⊕ d ⊇ 1 ⊕···⊕ d 1 ⊕ CSP(Γ ) is also a strong backdoor into CSP(Γ∗) CSP(Γ∗). We branch over all the at most ···⊕ d 1 ⊕···⊕ d k assignmentsα : X ,andforeachsuchαwecansolvetheinstanceI inpolynomialtimesince α |D| → D | CSP(Γ∗) CSP(Γ∗)istractable. 1 ⊕···⊕ d Forthesecondcase,letIbeaninstanceof#CSP( ∗). Asabove,wealsouseLemma1tocomputea D strongbackdoorX intoCSP(Γ∗) CSP(Γ∗)ofsizeatmostk. Wethenbranchoverallatmost k 1 ⊕···⊕ d |D| assignmentsα : X ,andforeachsuchαwecansolvethe#CSPinstanceI inpolynomialtimesince α → D | CSP(Γ∗) CSP(Γ∗)is#-tractable;letcost(α)denotethenumberofsatisfyingassignmentsofI for 1 ⊕···⊕ (cid:80)d |α eachα. Wethenoutput cost(α). α:X→D WebeginourpathtowardsaproofofLemma1bystatingthefollowingassumptionontheinputinstance, whichcanbeguaranteedbysimplepreprocessing. LetρbethemaximumarityofanyrelationinΓ ,...,Γ . 1 d Observation1. Anyinstance(I(cid:48),k)of SBD(CSP(Γ ) CSP(Γ ))eithercontainsonlyconstraints 1 d ⊕···⊕ ofarityatmostρ+k,orcanbecorrectlyrejected. Proof. AssumethatI(cid:48)containsaconstraintC = (S,R)ofarityρ(cid:48) > ρ+k. ThenforeverysetX ofatmostk variables,thereexistsanassignmentα : X suchthatC hasarityρ(cid:48) > ρ,andhenceC CSP(Γ ) α α 1 → D | | (cid:54)∈ ⊕ CSP(Γd). Henceanysuch(I(cid:48),k)isclearlya NO-instanceof SBD(CSP(Γ1) CSP(Γd)). ···⊕ ⊕···⊕ Organization of the rest of the section. The rest of this section is structured into three subsections. In Subsection3.1,weuseiterativecompressiontotransformtheSBD problemtargetedbyLemma1intoits compressed version EXT-SBD COMP. Subsection 3.2 develops an algorithm which correctly solves any instanceof EXT-SBD COMPwhichhasacertaininseparabilityproperty. Finally,inSubsection3.3wegivea generalalgorithmforEXT-SBD COMPwhichusesthealgorithmdevelopedinSubsection3.2asasubroutine. 3.1 Iterativecompression Wefirstdescribeawaytoreducetheinputinstanceof SBD(CSP(Γ ) CSP(Γ ))tomultiple(buta 1 d ⊕···⊕ bounded number of)structured instances, such that solving these instances will leadto a solution for the inputinstance. Todothis,weusethetechniqueofiterativecompression[37]. Givenaninstance(I,k)of SBD(CSP(Γ ) CSP(Γ ))whereI = C ,...,C ,fori [m]wedefineC = C ,...,C . We 1 d 1 m i 1 i ⊕···⊕ { } ∈ { } iteratethroughtheinstances(C ,k)startingfromi = 1,andforeachi-thinstanceweuseaknownsolution i 7 X ofsizeatmostk+ρtotrytofindasolutionXˆ ofsizeatmostk. Thisproblem,usuallyreferredtoasthe i i compressionproblem,isthefollowing. SBD(CSP(Γ1) CSP(Γd)) COMPRESSION ⊕···⊕ Setting: LanguagesΓ ,...,Γ ofmaximumarityρoveradomain . 1 d D Instance: ACSPinstanceI,anon-negativeintegerk andastrongbackdoorsetX var(I) ⊆ intoCSP(Γ ) CSP(Γ )ofsizeatmostk+ρ. 1 d ⊕···⊕ Task: FindastrongbackdoorinIintoCSP(Γ ) CSP(Γ )ofsizeatmostk,orcorrectly 1 d ⊕···⊕ determinethatnosuchsetexists. Parameter: k. WhenΓ ,...,Γ areclearfromthecontext,weabbreviateSBD(CSP(Γ ) CSP(Γ ))as SBD 1 d 1 d ⊕···⊕ and SBD(CSP(Γ1) CSP(Γd)) COMPRESSION as SBD COMP. Wereducethe SBD problemtom ⊕···⊕ instancesoftheSBD COMPproblemasfollows. LetI(cid:48) beaninstanceof SBD.Thesetvar(C1)isclearlya strongbackdoorofsizeatmostρfortheinstanceI1 = (C1,k, )of SBD COMP. Weconstructandsolve ∅ asequenceof SBD COMP instancesI2,...Im bylettingIi = (Ci,k,Xi−1 var(Ci)),whereXi−1 isthe ∪ solution to I . If some such I is found to have no solution, then we can correctly reject for I(cid:48), since i−1 i C I(cid:48). On the other hand, if a solution X is obtained for I , then X is also a solution for I(cid:48). Since i m m m ⊆ therearemsuchiterations,thetotaltimetakenisboundedbymtimesthetimerequiredtosolvetheSBD COMPproblem. Moving from the compression problem to the extension version. We now show how to convert an instanceofthe SBD COMPproblemintoaboundednumberofinstancesofthesameproblemwherewemay additionallyassumethesolutionwearelookingforextendspartofthegivenstrongbackdoor. Formally,an instance of the EXTENDED SBD COMP problem is a tuple (I,k,S,W) where I is a CSP instance, k is a non-negativeintegerandW S isastrongbackdoorsetofsizeatmostk+ρintoCSP(Γ ) CSP(Γ ). 1 d ∪ ⊕···⊕ TheobjectivehereistocomputeastrongbackdoorintoCSP(Γ ) CSP(Γ )ofsizeatmostk which 1 d ⊕···⊕ containsS andisdisjointfromW. EXTENDED SBD COMPRESSION(EXT-SBD COMP) Setting: LanguagesΓ ,...,Γ ofmaximumarityρoveradomain . 1 d D Instance: ACSPinstanceI,anon-negativeintegerk anddisjointvariablesetsS andW such thatW S isastrongbackdoorsetintoCSP(Γ ) CSP(Γ )ofsizeatmostk+ρ. 1 d ∪ ⊕···⊕ Task: FindastrongbackdoorinIintoCSP(Γ ) CSP(Γ )ofsizeatmostkthatextends 1 d ⊕···⊕ S andisdisjointfromW,ordeterminethatnosuchstrongbackdoorsetexists. Parameter: k. WenowreduceSBD COMPto(cid:0)|X|(cid:1)-manyinstancesof EXT-SBD COMP,asfollows. LetI(cid:48) = (I,k,X) ≤k beaninstanceof SBD COMP. Weconstruct(cid:0)|X|(cid:1)-manyinstancesof EXT-SBD COMPasfollows. Forevery ≤k S (cid:0)X(cid:1),weconstructtheinstanceI(cid:48) = (I,k,S,X S). Clearly,theoriginalinstanceI(cid:48) isa YESinstance ∈ ≤k S \ of SBD COMP if and only if for some S (cid:0)X(cid:1), the instance I(cid:48) is a YES instance of EXT-SBD COMP. ∈ ≤k S Therefore,thetimetosolvetheinstanceI(cid:48) isboundedby(cid:0)|X|(cid:1) 2k+ρ timesthetimerequiredtosolvean ≤k ≤ 8 w1 w2 w3 s1 s2 s3 w s s s w w 2 1 2 3 3 1 Figure1: Anillustrationofseparatingandnon-separatingsolutions. Inbothcases,S = s ,s ,s isthe 1 2 3 { } hypotheticalsolutionunderconsiderationwhile w ,w ,w istheoldsolution. Inthefirstfigure,S isa 1 2 3 { } non-separatingsolutionwhileinthesecond,itisaseparatingsolution. instanceofEXT-SBD COMP. Intherestofthepaper,wegiveanFPTalgorithmtosolveEXT-SBD COMP, whichfollowingourdiscussionaboveimpliesLemma1. Lemma1.1. EXT-SBD COMPcanbesolvedintime22O(k) I O(1). | | WefirstfocusonsolvingaspecialcaseofEXT-SBD COMP,andthenshowhowthishelpstosolvethe probleminitsfullgenerality. 3.2 Solvingnon-separatinginstances In this subsection, we restrict our attention to input instances with a certain promise on the structure of a solution. We refer to these special instances as non-separating instances. These instances are formally definedasfollows. Definition 1. Let (I,k,S,W) be an instance of EXT-SBD COMP and let Z S be a solution for this ⊇ instance. WecallZ aseparatingsolution(seeFigure1)forthisinstanceifW isnotcontainedinasingle connectedcomponentof andanon-separatingsolutionotherwise. Aninstanceiscalledaseparating Z B instanceifitonlyhasseparatingsolutionsanditiscalledanon-separatinginstanceotherwise. Havingformallydefinednon-separatinginstances,wenowgiveanoverviewofthealgorithmwedesign to solve such instances. We begin by developing the notion of a forbidden set of constraints. The main motivation behind the introduction of this object is that it provides us with a succinct certificate that a particularsetisnotastrongbackdooroftherequiredkind,immediatelygivingusasmallstructurewhich 9 wemustexclude. However,theexclusioninthiscontextcanoccurnotjustbyinstantiatingavariableinthe scopeofoneoftheseconstraintsinthesolutionbutalsoduetothebackdoordisconnectingtheseconstraints. Thisissignificantlydifferentfromstandardgraphproblemswhereoncewehaveasmallviolatingstructure,a straightforwardbranchingalgorithmcanbeusedtoeliminatethisstructure. However,inourcase,evenif wehaveasmallviolatingstructure, itisnotatallclearhowsuchastructurecanbeutilized. Forthis, we firstsetupappropriateseparatormachineryforCSPinstances. Wethenarguethatforanyforbiddensetof constraints,ifavariableinthescopeoftheseconstraintsisnotinthesolution,thenoneoftheseconstraints mustinfactbeseparatedfromtheoldstrongbackdoorsetbythehypotheticalsolution. Followingthis,we arguethatthenotionofimportantseparatorsintroducedbyMarx[31]canbeusedtoessentiallynarrowdown thesearchspaceofseparatorswherewemustsearchforasolutionvariable. Finally,wecanuseabranching algorithminthissignificantlyprunedsearchspaceofseparatorsinordertocomputeasolution(ifthereexists one). WereiteratethatthenotionofforbiddensetsiscriticalinobtaininganFPTalgorithmasopposedtoan FPT-approximationalgorithm. Nowthatwehavegivenaslightlymoredetailedoverviewofthissubsection, weproceedtodescribeouralgorithmforsolvingnon-separatinginstances. Webeginwiththedefinitionof forbiddenconstraintsandthensetuptheseparatormachineryrequiredinthisaswellasthenextsubsection. ForbiddenConstraints. Let(I,k,S,W)beaninstanceof EXT-SBD COMP. Definition2. LetS var(I),letC = C ,...,C beasetofatmostdconstraintsandJ beasubsetof 1 (cid:96) ⊆ { } [d]. WesaythatCisJ-forbiddenwithrespecttoS ifthereisanassignmentτ : S suchthatforevery → D i J thereisat [(cid:96)]suchthatC [τ] / Γ . IfJ = [d],thenwesimplysaythatCisforbiddenwithrespect t i ∈ ∈ ∈ to S. Furthermore, we call τ an assignment certifying that C is J-forbidden (forbidden if J = [d]) with respecttoS. Thefollowingobservationisaconsequenceofthelanguagesbeingclosedunderpartialassignments. Observation2. IfCisasetofconstraintsforbiddenwithrespecttoavariablesetS,thenCisalsoforbidden withrespecttothesetS var(C). Conversely,ifCisforbiddenwithrespecttoS andS(cid:48) isasetofvariables ∩ disjointfromvar(C),thenCisalsoforbiddenwithrespecttoS S(cid:48) andwithrespecttoS(cid:48). ∪ Theintuitionbehindthedefinitionofforbiddensetsisthatitallowsustohavesuccinctcertificatesfor non-solutions. Thisintuitionisformalizedinthefollowinglemma. Lemma2. GivenaCSPinstanceI,asetX var(I)isastrongbackdoorsetintoCSP(Γ ) CSP(Γ ) 1 d ⊆ ⊕···⊕ ifandonlyifthereisnoconnectedcomponentof containingasetofconstraintsforbiddenwithrespect X B toX. Lemma2.1. GivenaCSPinstanceIandasetS ofvariables, wecancheckintime ( |S| I O(1))if O |D| ·| | thereisasetofconstraintsforbiddenwithrespecttoS. Proof. Clearly,itissufficienttorunoverallatmostd-sizedsetsofconstraintsandallassignmentstothe variables in S and examine the reduced constraints if they belong to each of the languages Γ ,...,Γ . 1 d Sincetheselanguagesarefinite,thefinalcheckcanbedoneintime (1). Thiscompletestheproofofthe O lemma. Lemma2.2. LetIbeaCSPinstanceandletCbeasetofconstraintscontainedinacomponentofIand forbidden(withrespecttosomeset). LetZ beastrongbackdoorsettoCSP(Γ ) CSP(Γ )forthis 1 d ⊕···⊕ instance. Then,eitherZ disconnectsCorZ var(C) = . ∩ (cid:54) ∅ 10

Description:
Schaefer's Dichotomy Theorem shows that the conjecture holds for two-element domains; more recently, .. show that a parameterized problem is not likely to be FPT; an FPT algorithm for a W[i]-hard problem would [21] S. Gaspers, S. Ordyniak, M. S. Ramanujan, S. Saurabh, and S. Szeider.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.