University of Colorado, Boulder CU Scholar Aerospace Engineering Sciences Graduate Theses & Aerospace Engineering Sciences Dissertations Spring 1-1-2015 Direct Optical Ice Sensing and Closed-Loop Controller Design for Active De-icing of Wind Turbines Using Distributed Heating Shervin Shajiee University of Colorado Boulder, [email protected] Follow this and additional works at:https://scholar.colorado.edu/asen_gradetds Part of theAeronautical Vehicles Commons, and theSystems Engineering and Multidisciplinary Design Optimization Commons Recommended Citation Shajiee, Shervin, "Direct Optical Ice Sensing and Closed-Loop Controller Design for Active De-icing of Wind Turbines Using Distributed Heating" (2015).Aerospace Engineering Sciences Graduate Theses & Dissertations. 124. https://scholar.colorado.edu/asen_gradetds/124 This Dissertation is brought to you for free and open access by Aerospace Engineering Sciences at CU Scholar. It has been accepted for inclusion in Aerospace Engineering Sciences Graduate Theses & Dissertations by an authorized administrator of CU Scholar. For more information, please contact [email protected]. DirectOpticalIceSensingandClosed-LoopControllerDesignfor ActiveDe-icingofWindTurbinesUsingDistributedHeating by ShervinShajiee B.S.,AmirkabirUniversityofTechnology,2001 M.S.,SharifUniversityofTechnology,2004 M.S.,UniversityofMinnesota,2008 Athesissubmittedtothe FacultyoftheGraduateSchoolofthe UniversityofColoradoinpartialfulfillment oftherequirementsforthedegreeof DoctorofPhilosophy DepartmentofAerospaceEngineeringSciences 2015 Thisthesisentitled: DirectOpticalIceSensingandClosed-LoopControllerDesignforActiveDe-icingofWindTurbines UsingDistributedHeating writtenbyShervinShajiee hasbeenapprovedfortheDepartmentofAerospaceEngineeringSciences LucyY.Pao RobertR.McLeod Date Thefinalcopyofthisthesishasbeenexaminedbythesignatories,andwefindthatboththecontentandthe formmeetacceptablepresentationstandardsofscholarlyworkintheabovementioneddiscipline. Shajiee,Shervin(Ph.D.,AerospaceEngineeringSciences) DirectOpticalIceSensingandClosed-LoopControllerDesignforActiveDe-icingofWindTurbinesUsing DistributedHeating Thesisdirectedby LucyY.Pao Iceaccumulationonwindturbinesoperatingincoldregionsreducespowergenerationbydegrading aerodynamic efficiency and causes mass imbalance and fatigue loads on the blades. Due to blade rotation andvariationofthepitchangle,differentlocationsonthebladeexperiencelargevariationsofReynoldsnum- ber,Nusseltnumber,heatloss,andnon-uniformicedistribution. Hence,applyingdifferentamountsofheat fluxindifferentbladelocationscanprovidemoreeffectivede-icingforthesametotalpowerconsumption. This large variation of required heat flux motivates using distributed resistive heating, with the capability of locally adjusting thermal power as a function of location on the blade. The main contributions of this researcharedevelopingtheexperimentalfeasibilityofdirecticesensingusinganopticalsensingtechnique as well as development of a computational framework for implementation of closed-loop localized active de-icing using distributed sensing. A script-base module was developed in a commercial finite-element software (ANSYS) which provides the capability of (i) Closed-loop de-icing simulations for a distributed network of sensors and actuators, (ii) investigating different closed-loop thermal control schemes and their de-icing efficiency (iii) optimizing thermal actuation for a distributed resistive heating, and (iv) analyzing differentfaultyscenariosforsensorsandthermalactuatorsunderknownfaultsinthenetwork. Differentsur- rogatemodelswereusedtoenhancethecomputationalefficiencyofthisapproach. Theresultsshowedthat optimalvalueofcontrolparametersinadistributednetworkofheatersdependsonconvectiveheattransfer characteristics,layoutofheatersandtypeofclosed-loopcontrollerschemeusedforthermalactuation. Fur- thermore, it was shown that closed-loop control provides much faster de-icing than the open-loop constant heatfluxthermalactuation. Itwasobservedbothexperimentallyandnumericallythathighintensitypulsed thermalactuationslightlyimprovesicemeltingbutrelativelyincreasestheamountofappliedthermalstress tothebladestructure. Thisthesisincludes: (1)Aliteraturestudyondifferentmethodsoficedetectionand iv areviewonpassiveandactiveanti/de-icingtechniquesonwindturbines,(2)Developmentofanopticalice sensingmethodfordirectdetectionoficeonthebladeincludingexperimentalresults,(3)Descriptionofan aero/thermodynamicmodel,whichpredictshowmuchheatfluxisneededlocallyforde-icingundervariable atmospheric conditions, (4) Experimental results showing the proof-of-concept of closed-loop de-icing us- ingdistributedopticalicesensing,distributedtemperaturesensing,andresistiveheating,and(5)Numerical modeling of ice melting on a blade for different distributed heater layouts and geometries in order to opti- mizethermalactuationstrategy,improvede-icingefficiency,andfinally(6)Developmentofacomputational frameworkforclosed-loopactivede-icingusingdistributedlocalizedheatingandsensing. Dedication ToMahnaz,Abdolhossein,Hooman,Jamshid,andIsabellefortheirloveandpatience Acknowledgements First, I would like to express my deepest gratitude to my advisor, Prof. Lucy Y. Pao for her excep- tional guidance, patience, endless support as well as the freedom that she gave me during this research. I truly express my extended appreciation for her invaluable guidance and continuous support in every single moment over the past 5 years, her positive attitude and trust in my academic capabilities. She encouraged my research and allowed me to grow as a research scientist. Her advice on both research as well as on mycareerhavebeeninvaluable. Iwouldalsothankmyacademicco-advisor,ProfessorRobertR.McLeod for his support during my research. His great feedback and comments have improved the quality of my technicalwriting. Iamthankfulforhishelpinprovidingmewiththeexperimentalsetupforopticalsensing duringthefirstthreeyearsofmyresearch. I would like to express my special thanks to Patrick N. Wagner for his help in building an icing chamber for my research. Also, I would like to thank Dr. Eric D. Moore for his guidance with the Optical Frequency Domain Reflectometry (OFDR) software and for his help in the integration of the closed-loop controllertotheopticalsensingsetup. IwouldliketothankDr. AliNajafifromANSYSInc. forassistingin thecalculationsofthevolumeoficeresidueinANSYSandassistinginthedevelopmentofcomputational modules in ANSYS for the closed-loop simulations of de-icing. Special thanks to ANSYS Inc. and Arin RousefromANSYSforthekindsupportandprovidingthesoftwarelicenseduringmyresearch. I appreciate the help of Dr. Patrick Moriarty from the U.S. National Renewable Energy Laboratory (NREL) for providing a blade part for our test setup, and Kyle Kemble from the Colorado Space Grant Consortium for using their cooling unit while developing the icing chamber for my research. I would like to thank my committee members, Professor Kurt Maute, Dr. Patrick Moriarty, and Dr. Andrew Clifton for vii serving as my committee members and for their brilliant comments and feedback for my comprehensive and final exam. I am very grateful to my colleagues including Dr. Eric Simley, Fiona Dunne, Jakob Aho, Dr. Jason Laks, Dr. Hua Zhong, Dr. David Schlipf, Daniel Zalkind, and Arnold Braker for their valuable comments during the progress of this research. I am thankful to Annie Brookover, graduate advisor in the departmentofaerospaceengineeringsciences,forheradministrativesupportandadvice. Finally, I would like to dedicate this thesis to my family: Abdolhossein, Mahnaz, Jamshid, Hooman andIsabellefortheirpatience,love,devotion,encouragement,andsupport. Thisresearchisinthememory ofmyfather,Abdolhossein,foralwaysteachingmetoworkhard. ThisworkhasbeenpartiallysupportedbyCenterforResearchandEducationinWind(CREW)seed grantduringthefirsttwoyearsofmystudy. Igreatlyappreciatetheirsupport. Contents Chapter 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 TypesofAtmosphericIceaccumulation . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.2 AerodynamicPowerDegradationDuetoIcing . . . . . . . . . . . . . . . . . . . . 5 1.2 SummaryofResearchGoals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 ThesisContributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4 ThesisOutline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 IceSensingandThermalActuation: ExistingandProposedMethods 14 2.1 IceSensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1.1 BackgroundInformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1.2 ProposedDirectOpticalIceSensing . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 IceMitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.1 PassiveIcePrevention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.2 ActiveThermalActuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.3 ProposedDistributedThermalActuation . . . . . . . . . . . . . . . . . . . . . . . 20 3 BladeThermodynamics 23 3.1 CalculationofHeatFluxRequirementforDe-icing . . . . . . . . . . . . . . . . . . . . . . 23 3.2 VariationofConvectiveHeatFluxforDifferentWindTurbineOperatingConditions. . . . . 25 ix 3.3 TotalRequiredHeatFluxforDe-icing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4 De-icingProfitabilityAnalysis 30 4.1 AerodynamicPowerLossDataforDifferentIceAccumulations . . . . . . . . . . . . . . . 31 4.2 ProfitabilityDerivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.3 EstimatedEquipmentCostandPaybackTimefortheProposedActiveDistributedDe-icing . 34 5 ExperimentalSetupandClosed-LoopExperiments 36 5.1 ExperimentalSetupDescription . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.2 ComputationalModelValidationwithExperiments . . . . . . . . . . . . . . . . . . . . . . 40 5.3 Closed-LoopDe-icingExperimentalResults . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.3.1 LowIntensityContinuousPIDController . . . . . . . . . . . . . . . . . . . . . . . 44 5.3.2 HighIntensityPulseAmplitudeModulation(PAM) . . . . . . . . . . . . . . . . . . 45 6 EvaluatingDifferentHeaterLayoutsforDe-icingUsingConstantHeatFlux 50 6.1 SimulationsofDifferentHeaterLayoutsforaSmall-ScaleBlade . . . . . . . . . . . . . . . 50 6.1.1 De-icingPerformanceMetricforHeaterLayoutEvaluation. . . . . . . . . . . . . . 52 6.1.2 De-icingPerformanceComparisonforDifferentHeaterLayouts . . . . . . . . . . . 53 6.2 SimulationsofDifferentHeaterLayoutsfora1.5MWBladeTipSegment . . . . . . . . . . 58 6.2.1 Non-UniformIceGeometryandBoundaryConditions . . . . . . . . . . . . . . . . 59 6.2.2 DistributedHeaterLayoutConfigurations . . . . . . . . . . . . . . . . . . . . . . . 62 6.2.3 De-IcingPerformanceMetricforHeaterLayoutEvaluation . . . . . . . . . . . . . 63 6.2.4 De-IcingPerformanceComparisonforDifferentHeaterLayouts . . . . . . . . . . . 64 6.2.5 SensitivityStudyofOtherBoundaryConditions . . . . . . . . . . . . . . . . . . . 67 7 ComputationalClosed-LoopControllerDesignforDe-icingUsingDistributedResistiveHeatersand TemperatureSensors 75 7.1 ModelAssumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 7.2 Non-UniformIceGeometryandBoundaryConditions . . . . . . . . . . . . . . . . . . . . 77
Description: