ebook img

Dictionary of Mathematical Geosciences: With Historical Notes PDF

890 Pages·2017·4.764 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Dictionary of Mathematical Geosciences: With Historical Notes

Richard J. Howarth Dictionary of Mathematical Geosciences With Historical Notes RichardJ.Howarth DepartmentofEarthSciences UniversityCollegeLondon London,UnitedKingdom ISBN978-3-319-57314-4 ISBN978-3-319-57315-1 (eBook) DOI10.1007/978-3-319-57315-1 LibraryofCongressControlNumber:2017942721 #SpringerInternationalPublishingAG2017 ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Introduction Isitpossibleformathematical geologytoaccedetothetrue dignityofareally rationaland scientificdiscipline,orshallitbenothingbutapurelymechanicalapplicationofcomputers? (G.Matheron1967). Many geologists become earth scientists because they are interested in rocks, minerals, fossils,andthegreatoutdoors,anditisnotgenerallythoughtofasamathematicalbranch of science. However, in recent years the interpretation of observational data, whether structures in the field, geochemical determinations, mineralogical or fossil assemblage compositions, stratigraphic correlation, the properties of geophysical or other time series and their analysis, etc., have all become increasingly reliant on the use of statistical and mathematicalmethods.Geophysicistswillgenerallyhavehadastrongbackgroundin,orat least a good aptitude for, mathematics, but this is not necessarily the case with their geological colleagues. In order to assist with this situation, this dictionary has been compiledsoastoprovidesomeguidancetothemethodsandterminologyencounteredin theliterature. Allthewordswhichappearinboldintheexplanatorytextarethemselvesincludedas topicselsewhere.Itisintendedtobeself-describingfromthemathematicalpointofview andnopriorknowledgeisassumed.Forthisreason,someoftheentriesdealwithentirely mathematicalorstatisticaltermsbecausetheyhavebeenusedinexplanationselsewhere. It is intended as an aid for undergraduate and postgraduate earth science students, as wellasprofessionalsintheacademicworldandindustry,whoneedaguidetoterminology withpointerstotheappropriateliteraturefromwhichfurtherinformation,andexamplesof use,canbefound.Itincludesmethodsusedingeology,geochemistry,palaeontology,and geophysics. The field of “geostatistics” in its original sense, i.e. as applied to spatial statistics and reserve estimation, is also included, but readers should be aware that the International Association for Mathematical Geosciences has published a more specialist glossary in this field (Olea et al. 1991). Since many aspects of early computing which underpinned this growth have now themselves passed into history, some terms from this fieldhavealsobeenincludedastheyoccurinthegeologicalliteratureofthe1960s–1980s and may not be familiar to readers brought up in an era of laptops and tablets. I have includednotesontheoriginofasmanyaspossibleofthetermsincludedinthisdictionary asIhopeitwilladdtotheinterestforthereader. Conventions used in biographical dates, etc. in this work: (?–1892) should be read as “yearofbirthunknown”;(1904?–1942),“possiblybornin1904,diedin1942”;(?1520–? 1559), “born about 1520, died about 1559”; (1907–), “still alive or year of death not recorded”; John [?Henry] Koonce, “second given name is possibly Henry”; ?A. Otsuka, “givennameisunknown,butmaybeginwiththeletterA.”Bibliographiccitationssuchas “Raphson(1668?)”meanthatthedateoftheoriginalworkisuncertain;and“(d’Alambert 1747 [1750])” mean that the date of publication was much later than submission to the journal. The history of mathematics websites maintained by Jeff Miller (New Port Richley, Florida), and the Ancestry.com website were invaluable in preparing this work, and I am immenselygrateful toAnnett Büttnerand D€orthe Mennecke-BuehleratSpringerDE and particularlytotheirproofreadersatSPiGlobal(Chennai)fortheirhelpwiththemanuscript. FritsAgterberg(Ottawa)andJohnMcArthur(London)arethankedfortheirinitialencour- agementandsuggestions. Readers are welcome to send the author suggested text (including references where applicable)foradditionalentries,orimprovementstoexistingones,andtheirsubmissions willbecreditedshouldanupdatededitionofthisworkbeproduced. London,UK RichardJ.Howarth Contents A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 F. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 G. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397 O. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419 P. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435 Q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493 R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503 S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541 T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611 U. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643 W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653 X. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667 Y. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669 Z. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673 Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677 Acronyms, Abbreviations and Symbols Acronyms A/D Analogtodigitalconversion AFMdiagram Alkalis-totalFeO-MgOdiagram(seeAFMdiagram) AGC Automaticgaincontrol AI Artificialintelligence AIC Akaikeinformationcriterion aln Additivelogisticnormaldistribution alsn Additivelogisticskew-normaldistribution AM Amplitudemodulation ANN Artificialneuralnetwork ANOVA Analysisofvariance ARprocess Autoregressiveprocess ARMAprocess Autoregressivemovingaverageprocess ART Algebraicreconstructiontechnique ASA Adaptivesimulatedannealing BLUE Bestlinearunbiasedestimator BME Bayesianmaximumentropy BPT Backprojectiontomography CAplot Concentration-areaplot CAD Computer-aideddesignordrafting CAI Computer-aidedorcomputer-assistedinstruction CART Classificationandregressiontrees CASC Correlationandscaling CEP Circularerrorprobability CICA Constrainedindependentcomponentanalysis Unlessotherwiseindicated,forexplanationrefertotheirfulltitles. CIPWnorm Cross,Iddings,Pirsson,Washingtonnorm(seeCIPWnorm) CONOP Constrainedoptimisation CPplot Cumulativeprobabilityplot D/A Digital-to-analog DBMS Databasemanagementsystem DEM Digitalelevationmodel DFT DiscreteFouriertransform DPSS Discreteprolatespheroidalsequence DSM Digitalsurfacemodel DTM Digitalterrainmodel EDA Exploratorydataanalysis EDF Empiricaldiscriminantfunction EMalgorithm Expectation-maximizationalgorithm F Favorabilityfunction FA Factoranalysis FAP FORTRANassemblyprogram FCM Fuzzyc-meansclustering FFT FastFouriertransform f-kanalysis Frequency-wavenumberanalysis FM Frequencymodulation FUNOP Fullnormalplot FWT FastWalshtransform,fastwavelettransform GA Geneticalgorithm GIS Geographicinformationsystem H Entropy,Hurstexponent ICA Independentcomponentanalysis IIRfilter Infiniteimpulseresponsefilter IQR Interquartilerange IRLS Iterativelyreweightedleastsquares(seeunderIWLS) IWLS Iterativeweightedleastsquares KEE Knowledgeengineeringenvironment LAD Leastabsolutedeviation(seeunderLAV) LAV Leastabsolutevalue LMS Leastmeansquares,leastmediansquares LOWESS Locallyweightedscatterplotsmoother MA Movingaverage MANOVA Multivariateanalysisofvariance MAP Macroassemblyprogram MCMC MarkovchainMonteCarlo MDS Multidimensionalscaling MED Minimumentropydeconvolution MEM Maximumentropymethod MESA Maximumentropyspectralanalysis MFAdiagram MgO-totalFeO-alkalisdiagram(seeMFAdiagram) ML Maximumlikelihood MLA Machinelearningalgorithm MLP Meanlaggedproduct MTBF Meantimebetweenfailure MV Multivariate NLMalgorithm Nonlinearmappingalgorithm ODE Ordinarydifferentialequation OLS Ordinaryleastsquares OOP Object-orientedprogramming PCA Principalcomponentsanalysis PDE Partialdifferentialequation PDF Probabilitydensityfunction P-PorPPplot Percent-percentplot PSD Powerspectraldensity PSO Particleswarmoptimization QA Qualityassurance QC Qualitycontrol Q-Qplot Quantile-quantileplot R Multiplecorrelationcoefficient R/Sanalysis Rescaled-rangeanalysis RBV Relativebiostratigraphicvalue RDBMS Relationaldatabasemanagementsystem REEdiagram Rareearthelementdiagram RMAregression Reducedmajoraxisregression RMS Rootmeansquare RTLalgorithm Region-time-lengthalgorithm SA Simulatedannealing S-Amethod Spectrum-areamethod SIRalgorithm Sampling-importance-resamplingalgorithm SIRT Simultaneousiterativereconstructiontechnique SNR Signal-to-noiseratio SQC Statisticalqualitycontrol SSA Singularspectrumanalysis SVD Singularvaluedecomposition TAS Totalalkalis-silicadiagram(seeTASdiagram) UANOVA Unbalancedanalysisofvariance URV Unitregionalvalue URPV Unitregionalproductionvalue,seeURV

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.