Development of Capacitive Electrodes Ana Teresa Ramalho Cordeiro Thesis to obtain the Master of Science Degree in Biomedical Engineering Supervisors: Professor Jorge Manuel Ferreira Morgado Professor Maria Isabel de Sousa Rocha Examination Committee Chairperson: Professor João Pedro Estrela Rodrigues Conde Supervisor: Professor Jorge Manuel Ferreira Morgado Member of the Committee: Professor Francisco André Corrêa Alegria September 2014 ii Acknowledgments I would like to express my sincere gratitude to my supervisor Professor Jorge Morgado for the useful comments and remarks, his enormous patience and motivation through the learning process of this master thesis, as well as to Professor Isabel Rocha. Furthermore, I would like to thank Professor Rau´l Martinsforhisguidance,enthusiasm,immenseknowledgeaswellforthecontinoussupportontheway. Also, I would like to thank my lab mates who willingly shared their precious time whenever I needed somehelp. Iwouldliketothanktomyfamilyandfriendswhohavealwayssupportedme,whetherwhen makingfunofmystressfulpersonalityorjustbybeingthere. Thankyou iii iv Resumo Opresentetrabalhoabordaaimplementac¸a˜odeumprocessoparaafabricac¸a˜odeele´ctrodoscapaci- tivos. O procedimento usa moldes de o´xido de alum´ınio (OA) nanoporosos preenchidos com n´ıquel. Apo´s a remoc¸a˜o do molde de alumina, os ele´ctrodos de n´ıquel tem a superf´ıcie coberta com nanofios. Por cima,doismateriaisdiele´ctricos,a´lcoolpolivin´ılicoedio´xidodetitaˆnio,foramdepositadosparaaumentar aindamaisasuacapacidade. No desenvolvimento dos moldes de alumina nanoporosa, os estudos iniciais focaram-se no controle da morfologia. De seguida, os ele´ctrodos nanoestruturados (Ele´ctrodos I) foram caracterizados em termosdacapacidadeele´ctrica. Omaioraumentodacapacidadefoiparaosele´ctrodosfabricadoscom um molde de OA poroso obtido atrave´s de dupla anodizac¸a˜o com corrente constante de 70 mA. Este aumento variou com a frequeˆncia, sugerindo a existeˆncia de um sistema de dispersivo. O aumento foi de25.29%e32.73%para100Hze1kHz,respectivamente,emrelac¸a˜oaumele´ctrododerefereˆncia (a1mm). Um segundo tipo de ele´ctrodos (Ele´ctrodos II) foi desenvolvido por um processo mais simples que consistenumfilmedeumadispersa˜odenanotubosdecarbononopol´ımerocondutorPEDOT:PSSnum contactodealum´ınio. Oobjectivoeraverificarseestaabordagemresultavanoaumentodarugosidade para que a a´rea superficial aumentasse, uma vez que seria mais simples do que o processo anterior usado para Ele´ctrodos I. A sua capacidade foi medida. Na˜o se verificou um aumento significativo, sugerindoqueoconteu´dodenanotubosdecarbonoerademasiadobaixo. Palavras-chave: Ele´ctrodoscapacitivos,aluminaanodizadaporosa v vi Abstract Thepresentworkaddressestheimplementationofaprocedureforthemanufactureofcapacitiveelec- trodes. That procedure used anodized aluminum oxide (AAO) porous templates with an electrochemical nickel filler. After removal from the alumina template, the nickel electrodes have the surface covered with nanowires. On the top of this, two dielectric materials, polyvinyl alcohol and titanium dioxide, were depositedtofurtherincreasetheircapacitance. Inthedevelopmentoftheanodizedporousaluminatemplates, thestudieswereinitiallyfocusedonthe morphologycontrol. Afterwards,nanostructuredelectrodes(ElectrodesI)werepreparedandcharacter- ized in terms of capacitance. The highest increase of the capacitance value was found for electrodes fabricated with a nanoporous AAO template obtained through double-step anodization at constant cur- rentof70mA.Thiscapacitanceincreasevariedwiththefrequency,suggestingtheexistenceofadisper- sivesystem,andtheincreasewasa25.29%and32.73%increasefor100Hzand1kHz,respectively, withrespecttoareferenceelectrode,attheminimumdistance. Another type of electrodes (Electrode II) was developed by a simpler process consisting in depositing a dispersion of carbon nanotubes in a conducting polymer PEDOT:PSS on an aluminum contact. The objective was to verify if this approach resulted in yielded roughness so that the surface area would significantly increase, since it would be simpler than the development process used for Electrodes I. Their electric capacitance was measured. It was not found a significant increase of the capacitance suggestingthatthecarbonnanotubescontentwastoolow. Keywords: Capacitiveelectrodes,anodizedaluminumoxide vii viii Contents Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii ListofTables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi ListofFigures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 Motivation 1 2 TheoreticalFoundationsandLiteratureReview 5 2.1 AnodicAluminumOxide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 Aluminumanodizationstructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.2 AAOElectrochemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.3 KineticsofAnodicAluminumOxideFormation . . . . . . . . . . . . . . . . . . . . 12 2.1.4 Double-stepAnodizationofAluminum . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1.5 Pre-texturedPorousAAOvsSelf-organizedPorousAAOtemplates . . . . . . . . 19 2.2 FillingoftheAAOtemplate-Electrodeposition . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.1 Nickelelectrodeposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3 High-kDielectrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3 ExperimentalProcedures: methodsandmaterials 23 3.1 ElectrodesI-ManufactureoftheAAOtemplatesbyaluminumanodization. . . . . . . . . 24 3.1.1 AnnealingProcess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.1.2 DegreasingProcess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.3 Electropolishing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.4 Anodization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.1.5 Pore-wideningandbarrierlayerdestruction . . . . . . . . . . . . . . . . . . . . . . 31 3.2 ElectrodesI-Electrodepositionofnickeltofillthetemplates . . . . . . . . . . . . . . . . . 32 3.3 ElectrodesI-Cleaningandassembling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3.1 MetalliccontactandPolymericlayer . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.3.2 Cleaningoftheremainingaluminumsubstrateandaluminumoxide . . . . . . . . 35 ix 3.4 ElectrodesI-Depositionofthedielectric(spincoating). . . . . . . . . . . . . . . . . . . . 36 3.5 AtomicForceMicroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.6 ElectrodesII-Evaporationofthealuminumcontact. . . . . . . . . . . . . . . . . . . . . . 38 3.7 ElectrodesII-DepositionofthePEDOT:PSSandMultiwallCarbonNanotubescomposite film . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.8 ElectrodesII-Depositionofthedielectric(spincoating) . . . . . . . . . . . . . . . . . . . 40 3.9 ConductanceandCapacitancemeasurements . . . . . . . . . . . . . . . . . . . . . . . . 40 4 ResultsandDiscussion 45 4.1 AnodizationResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.1.1 Nanoporousstructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.1.2 PoreDensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.1.3 Meanporediameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.1.4 SurfaceAreaandPoreLength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.2 ElectrodepositionResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.3 ConductanceandCapacitanceResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.3.1 Dielectricmaterialinfluence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.3.2 ElectrodesI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.3.3 ElectrodesII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5 Conclusions 67 5.1 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.2 FutureWork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Bibliography 74 x
Description: