ebook img

Development of a Rational Modeling Approach for the Design, and Optimization of the Multifiltration Unit PDF

504 Pages·1996·14 MB·English
by  HandDavid W.
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Development of a Rational Modeling Approach for the Design, and Optimization of the Multifiltration Unit

Final Summary Report NASA-CR-206999 DEVELOPMENT OF A RATIONAL MODELING APPROACH FOR THE DESIGN, AND OPTIMIZATION OF THE MULTIFILTRATION UNIT by David W. Hand, John C. Crittenden, Anisa N. Ali, John L. Bulloch, David R. Hokanson, and David L. Parrem Civil and Environmental Engineering Department Michigan Technological University Houghton, MI 49931 Prepared for: Ames Research Center Moffett Field, CA 94035-1000 Grant number: NAG 2-820 No Patent ,,'/ Volume I: Phase I ABSTRACT This thesis includes the development and verification of an adsorption model for analysis and optimization of the adsorption processes within the International Space Station multifiltration beds. The fixed bed adsorption model includes multicomponent equilibrium and both external and intraparticle mass transfer resistances. Single solute isotherm parameters were used in the multicomponent equilibrium description to predict the competitive adsorption interactions occlLrring during the adsorption process. The multicomponent equilibrium description used the Fictive Component Analysis to describe adsorption in unknown background matrices. Multicomponent isotherms were used to validate the multicomponent equilibrium description. Column studies were used to develop and validate external and intraparticle mass transfer parameter correlations for compounds of interest. The fixed bed model was verified using a shower and handwash ersatz water which served as a surrogate to the actual shower and handwash wastewater. TABLE OF CONTENTS Page ABSTRACT ............................................................................................................... i ACKNOWLEDGEMENTS ....................................................................................... ii LIST OF TABLES ..................................................................................................... v LIST OF FIGURES ................................................................................................... vi LIST OF ACRONYMS ............................................................................................. xiv 1.0 INTRODUCTION AND PROJECT OBJECTIVES ........................................ 1 1.1 Multifiltration Bed Model Overview ............................................................. 1 1.2 Objectives ....................................................................................................... 4 1.3 Adsorption Modeling Overview ................................................................. 4 2.0 EXPERIMENTAL MATERIALS, METHODS, AND PROCEDURES ......... 6 2.1 Chemicals .................................................................................................... 6 2.2 Analytical Methods ..................................................................................... 6 2.2.1 Total Organic Carbon (TOC) ............................................................. 6 2.2.2 Volatile Organic Compounds (VOCs) ............................................... 7 2.3 Adsorbents .................................................................................................. 7 2.3.1 Adsorbent Preparation ....................................................................... $ 2.4 Solution Preparation .................................................................................... 9 2.4.1 Ultrapure Water .................................................................................. 9 2.4.2 Ersatz Solutions ................................................................................. 9 2.5 Isotherm Experiment Procedure .................................................................. I0 2.6 Column Study Procedure ............................................................................ l0 2.6.1 Beds In Series Experiment Procedure ................................................ 10 3.0 ADSORPTION EQUILIBRIUM MODELING ................................................ 11 3.1 Singlo Solute Equilibrium ........................................................................... Il 3.2 Ideal Adsorbed Solution Theory ................................................................. 12 3.3 Fictive Component Analysis (FCA) For Unknown Mixtu_s ..................... 13 3.3.1 FC Parameter Determination ............................................................. 14 3.3.2 TOC Isotherm Fitting ......................................................................... 14 3.3.3 Tracer Isotherm Fitting ...................................................................... 15 3.3.4 Relationship of FCs on Different Adsorbents .................................... 16 3.4 Scope of Adsorption Equilibrium Experiments .......................................... 16 3.5 Adsorption Equilibrium Modeling Results ................................................. 17 3.5.1 Single Solute Isotherms ..................................................................... 17 3.5.2 Shower and Handwash Ersatz Water Development. .......................... I 8 °.) III 3.5.3 TOC FC Results For 580-26 .............................................................. 19 3.5.4 TOC FC Results for APA .................................................................. 23 3.5.5 TOC FC Results for XAD-4 .............................................................. 26 3.5.6 Tracer FC Results for 580-26 ............................................................ 28 3.5.7 Tracer FC Results for APA ................................................................ 37 3.5.8 Tracer FC Results for XAD-4 ............................................................ 45 4.0 FIXED BED ADSORPTION MODEL FOR THE MFB ................................. 52 4.1 PSDM Model Equations ............................................................................. 52 4. I.1 Dimensionless Groups Which Characterize The PSDM ................... 54 4.2 Estimation Of Mass Transfer Parameters ................................................... 57 4.2.1 Mass Transfer Parameter Correlafiom ............................................... 59 4.3 Fixed Bed Model For TOC Removal In Unknown Mixtures ..................... 60 4.4 Fixed Bed Model For Target Compound Removal In Unknown Mixture, 60 4.5 Fixed Bed Model For Adsorption Beth In Series Operation ...................... 60 4.6 Scope Of Adsorption Kinetics Experiments ............................................... 61 4.7 Fixed Bed Adsorption Modeling Results .................................................... 61 4.7.1 Mass Transfer Parameter Correlations .......................................... :.... 61 4.7.2 580-26 TOC Breakthrough Modeling With The TOC FCs .............. 63 4.7.3 APA TOC Breakthrough Modeling With The TOC FCs .................. 65 4.7.4 XAD-4 TOC Breakthrough Modeling With The TOC FCs .............. 65 4.7.5 Target Compound Breakthrough From 580-26 GAC Fixed Beds ..... 73 4.7.6 Target Compound Breakthrough From APA GAC Fixed Beds ........ 84 4.7.7 Target Compound Breakthrough From XAD-4 Resin Fixed Beds ... 96 4.8 MYB Adsorption Model Verification With Ersatz Water ........................... I08 4.8.1 MFB Model Verification Column TOC Breakthrough ..................... 108 4.8.2 MFB Model Verification Column Target Compound Breakthrough I11 5.0 CONCLUSIONS AND FUTURE RESEARCH 118 6.0 NOMENCLATURE ......................................................................................... 122 7.0 REFERENCES ................................................................................................. 125 APPENDIX I. MULTIFILTRATION BED INFLUENT WASTEWATERS ..... 128 APPENDIX II. ADSORBENT PHYSICAL PROPERTY DETERMINATION. 135 APPENDIX lII. BOTTLE POINT ISOTHERM PROCEDURE ........................... 137 APPENDIX IV. COLUMN EXPERIMENT PROCEDURE ................................. 141 APPENDIX V. ERSATZ ISOTHERM DATA ..................................................... 143 APPENDIX VI. ERSATZ COLUMN DATA ........................................................ 180 iv LIST OF TABLES Table Page 1-1 Ion Exchange Resins and Adsorbents in the ISS Multifiltration Beds ............. 3 2-1 Conditions for VOC Analysis ........................................................................... 7 2-2 Analytical Detection Limits .............................................................................. 8 2-3 Physical Properties of Adsorbents Studied ....................................................... 8 2-4 Organic and Inorganic Ersatz Shower and HandwaslO Water Constituents ............................................................................................ 9 3-1 Single Solute Isotherm Parameters from NASA/Ames (Hand et al., In Press) 17 3-2 Analyses of Ersatz Water Used for Isotherm .................................................... 20 3-3 TOC FCs Determined from Fitting Ersatz TOC Isotherms .............................. 20 3-4 RPE of Ersatz Isotherm Fits and Predictions for 580-26 .......... ........................ 23 3-5 RPE of Ersatz Isotherm Fits and Predictions for APA ..................................... 26 3-6 RPE of Ersatz Isotherm Fits and Predictions for XAD-4 ................................. 28 3-7 Tracer FCs Determined From Fitting Ersatz Tracer Isotherms ........................ 29 4-I Ersatz Water Used in Column Experiments ..................................................... 62 4-2 Mass Transfer Parameter Fitting Results for 580-26 Ersatz Cohunns .............. 62 4-3 Mass Transfer Parameter Fitting Results for APA Ersatz Columns ................. 64 4-4 Mass Transfer Parameter Fitting Results for XAD-4 Ersatz Columns ............. 64 4-5 TOC FCs Input to PSDM for Ersatz Column TOC Breakthrough Prediction.. 65 4-6 Tracer FCs Input to PSDM for Ersatz Column Target Compound Breakthrough Predictions .................................................................................. 73 V LIST OF FIGURES Figure Page I-I MultifiltratioBned Schematic..............................................2............................. I-2 PSDM Mechanisms ......................................................5.................................... 3-1 Comparison of the actual shower and handwash wastewater TOE isotherm on 580-26 to the ersatz water TOC isotherm on 580-26 .................... 19 3-2 FCA fitofersatzwaterTOE isothermon 580-26. Fitsimultaneously with diluteTOE isotherm................................................2.2................................ 3-3 FCA fitofdiluteersatzwaterTOC isothermon 580-26. Fit simultaneouslywithnondilu_ TOE isotherm...............................2.2.................. 3-4 FreundlichK correlationforAPA GAC inreferenceto580-26 GAC ...........2.4. 3-5 FCA fitofersatzwaterTOE isothermon APA. Fitsimultaneouslywith diluteTOE isotherm.....................................................2.5................................... 3-6 FCA fitofdiluteersatzwaterTOC isothermon APA. Fit simultaneouslywith nondiluteTOE isotherm...............................2.5.................. 3-7 FreundlichK correlationforXAD-4 resininreferenceto580-26 GAC .........2.7 3-8 FCA fitofersatzwaterTOC isothe_rmon XAD-4. Fitsimultaneously with diluteTOE isotherm................................................2.7................................ 3-9 FCA fitofdiluteersatzwaterTOC isothc_non XAD-4. Fit simultaneouslywithnondiluteTOC isotherm...............................2.8.................. 3-I0 FCA fit of ersatz water tracer (TCE) isotherm on 580-26. Fit simultaneously with dilute tracer isotherm ....................................................... 31 3-11 FCA fit of dilute ersatz water tracer (TCE) isotherm on 580-26. Fit simultaneously with nondilute tracer isotherm ................................................. 31 3-12 FCA prediction of toluene isotherm in ersatz water on 580-26 ........................ 32 3-13 FCA prediction of toluene isotherm in dilute ersatz water on 580-26 .............. 32 3-14 FCA prediction of m-xylene isotherm in ersatz water on 580-26 ..................... 33 3-15 FCA prediction of m-xylene isotherm in dilute ersatz water on 580-26 .......... 33 3-16 FCA prediction of 1,2,4-TCB isotherm in ersatz water on 580-26 ................... 34 3-17 FCA prediction of 1,2,4-TCB isotherm in dilute ersatz water on 580-26 ........ 34 3-18 FCA prediction of naphthalene isotherm in ersatz water on 580-26 ................ 35 3-19 FCA prediction of naphthalene isotherm in dilute ersatz water on 580-26 ...... 35 vi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.