ebook img

Determinants of Laplacians on Hilbert modular surfaces PDF

0.22 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Determinants of Laplacians on Hilbert modular surfaces

DETERMINANTS OF LAPLACIANS ON HILBERT MODULAR SURFACES YASUROGON 7 1 0 Abstract. WestudyregularizeddeterminantsofLaplaciansactingonthespaceofHilbert- 2 Maass forms for the Hilbert modular group of a real quadratic field. We show that these determinantsare described by Selberg typezeta functions introduced in [4, 5]. n a J 3 2 1. Introduction ] T Determinants of the Laplacian ∆ acting on the space of Maass forms on a hyperbolic N Riemann surface X are studied by many authors. (See, for example [13, 2, 8, 9].) It is known . that the determinants of ∆ are described by the Selberg zeta function (cf. [14]) for X. h t On the other hand, two Laplacians ∆(1), ∆(2) act on the space of Hilbert-Maass forms on a the Hilbert modular surface X of a real quadratic field K. For this reason, it seems that m K there are no explicit formulas for “Determinants of Laplacians” on X until now. In this [ K article we consider regularized determinants of the first Laplacian ∆(1) acting on its certain 1 subspaces V(2), indexed by m 2N. We show that these determinants are described by v m ∈ 0 Selberg type zeta functions for XK introduced in [4, 5]. 8 Let K/Q be a real quadratic field with class number one and be the ring of integers of K 3 O K. Put D be the discriminant of K and ε> 1 be the fundamental unit of K. We denote the 6 a b 0 generator of Gal(K/Q) by σ and put a := σ(a) for a K. We also put γ = ′ ′ for . ′ ∈ ′ c′ d′ 1 a b (cid:16) (cid:17) 0 γ = PSL(2, ). Let Γ = (γ,γ ) γ PSL(2, ) be the Hilbert modular 7 c d ∈ OK K { ′ | ∈ OK } 1 group(cid:16)of K. (cid:17)It is known that Γ is a co-finite (non-cocompact) irreducible discrete subgroup K : v of PSL(2,R) PSL(2,R) and Γ acts on the productH2 of two copies of the upperhalf plane K Xi H by compon×ent-wise linear fractional transformation. ΓK have only one cusp ( , ), i.e. ∞ ∞ Γ -inequivalent parabolic fixed point. X := Γ H2 is called the Hilbert modular surface. r K K K a Let(γ,γ ) Γ behyperbolic-elliptic, i.e, tr(γ)\ > 2and tr(γ ) < 2. Thenthecentralizer ′ K ′ ∈ | | | | of hyperbolic-elliptic (γ,γ ) in Γ is infinite cyclic. ′ K Definition 1.1 (Selberg type zeta function for Γ with the weight (0,m)). For an even K integer m 2, we define ≥ ∞ 1 (1.1) Z (s) := 1 ei(m 2)ωN(p) (n+s) − for Re(s) > 1. m − − − (p,p′)Y∈PΓHEnY=0(cid:16) (cid:17) Date: January 24, 2017. Key words and phrases. Hilbert modular surface; Selberg zeta function; Regularized determinant. 2010 Mathematics Subject Classification. 11M36, 11F72, 58J52 This work was partially supported by JSPS Grant-in-Aidfor ScientificResearch (C) no. 26400017. 1 2 Y.GON Here, (p,p) run through the set of primitive hyperbolic-elliptic Γ -conjugacy classes of ′ K Γ , and (p,p) is conjugate in PSL(2,R)2 to K ′ N(p)1/2 0 cosω sinω (p,p′)∼ 0 N(p) 1/2 , sinω −cosω . − (cid:16)(cid:16) (cid:17) (cid:16) (cid:17)(cid:17) Here, N(p) > 1, ω (0,π) and ω / πQ. The product is absolutely convergent for Re(s)> 1. ∈ ∈ Analytic properties of Z (s) are known. m Theorem 1.2 ([5, Theorems5.3and6.5]). For an even integer m 2, Z (s) a priori defined m ≥ for Re(s)> 1 has a meromorphic extension over the whole complex plane. In this article, we also consider “the square root of Z (s)”. 2 Definition 1.3 ( Z (s)). 2 p ∞ 1/2 Z (s):= 1 N(p) (n+s) − 2 − − (1.2) p (p,p′)Y∈PΓHEnY=0(cid:16) (cid:17) 1 ∞ 1 N(p)−ks = exp for Re(s)> 1. 2 k1 N(p) k (cid:16) (Xp,p′)Xk=1 − − (cid:17) By [5, Theorem 6.5] and the fact that the Euler characteristic of X is even (See Lemma K 2.2), we see that d logZ (s) has even integral residues at any poles. Therefore, we find that ds 2 Z (s) has a meromorphic continuation to the whole complex plane. 2 1 pLet us introduce the completed Selberg type zeta functions Z22(s) and Zm(s) (m ≥ 4), which are invariant under s 1 s. (See [5, Theorems 5.4 and 6.6].) → − b b Definition 1.4 (Completed Selberg zeta functions). 1 1 1 1 1 (1.3) Z2(s) := Z (s)Z2(s)Z2 (s;2)Z2 (s;2)Z2 (s;2) 2 2 id ell par/sct hyp2/sct with p Zi21d(s)b:= Γ2(s)Γ2(s+1) ζK(−1), Ze12ll(s;2) := N νj−1Γ sν+jl νj−2ν1j−2l, j=1 l=0 (cid:0) (cid:1) Y Y (cid:0) (cid:1) 1 1 Z2 (s;2) := ε s, Z2 (s;2) := ζ (s). par/sct − hyp2/sct ε (1.4) Z (s):= Z (s)Z (s)Z (s;m)Z (s;m) (m 4) m m id ell hyp2/sct ≥ with b N νj−1 νj−1−αl(m,j)−αl(m,j) Zid(s) := Γ2(s)Γ2(s+1) 2ζK(−1), Zell(s;m) := Γ sν+jl νj , j=1 l=0 (cid:0) (cid:1) Y Y (cid:0) (cid:1) m m 1 Z (s;m) := ζ s+ 1 ζ s+ 2 − . hyp2/sct ε 2 − ε 2 − Here, Γ (s) is the double Gamma functi(cid:16)on (for defi(cid:17)niti(cid:16)on, we refer(cid:17)to [10] or [3, Definition 2 4.10, p. 751]), the natural numbers ν ,ν ,...,ν are the orders of the elliptic fixed points in 1 2 N X and the integers α (m,j),α (m,j) 0,1,...,ν 1 are defined in (2.1), ζ (s) is the K l l j K ∈ { − } Dedekind zeta function of K, ζ (s):= (1 ε 2s) 1 and ε is the fundamental unit of K. ε − − − DETERMINANTS OF LAPLACIANS ON HILBERT MODULAR SURFACES 3 Let m 2N. We recall that two Laplacians ∈ ∂2 ∂2 ∂2 ∂2 ∂ (1.5) ∆(1) := y2 + , ∆(2) := y2 + +imy 0 − 1 ∂x2 ∂y2 m − 2 ∂x2 ∂y2 2∂x 1 1 2 2 2 (cid:16) (cid:17) (cid:16) (cid:17) areactingonL2 (Γ H2;(0,m)), thespaceofHilbert-MaassformsforΓ withweight(0,m). dis K\ K (See Definition 2.6.) We consider a certain subspace of L2 (Γ H2;(0,m)) given by dis K\ m m (1.6) V(2) = f(z ,z ) L2 (Γ H2;(0,m)) ∆(2)f = 1 f . m 1 2 ∈ dis K\ m 2 − 2 n (cid:12) o The set of eigenvalues of ∆(1) are enumerated a(cid:12)s (cid:0) (cid:1) 0 Vm(2) (cid:12) 0 < λ(cid:12)(m) λ (m) λ (m) 0(cid:12) ≤ 1 ≤ ··· ≤ n ≤ ··· Let s be a fixed sufficiently large real number. We consider the spectral zeta function by using these eigenvalues. ∞ 1 (1.7) ζ (w,s) = (Re(w) 0). m w λ (m)+s(s 1) ≫ n=0 n − X We can show that ζm(w,s) is holom(cid:0)orphic at w = 0. ((cid:1)See Proposition 4.3.) (1) Let us define the regularized determinants of the Laplacian ∆ . 0 Vm(2) Definition 1.5 (Determinants of restrictions of ∆(1)). Let m 2N(cid:12)(cid:12). For s 0, define 0 ∈ ≫ (1) ∂ ∞ 1 (1.8) Det ∆ +s(s 1) := exp . (cid:16) 0 (cid:12)Vm(2) − (cid:17) (cid:16)−∂w(cid:12)w=0nX=0 λn(m)+s(s−1) w(cid:17) (cid:12) (cid:12) (1) (cid:12) (cid:0) (cid:1) We see later that Det ∆ +s(s 1) can beextended to an entire function of s. (See 0 Vm(2) − Corollary 1.7.) (cid:16) (cid:12) (cid:17) Our main theorem is as fol(cid:12)lows. Theorem 1.6 (Main Theorem). Let (cid:3) := ∆(1) for m 2N. We have the following m 0 Vm(2) ∈ determinant expressions of the completed Selberg type zeta functions. (cid:12) (1) Z212(s)= e(s−12)2ζK(−1)+C2 Det (cid:3)s2(s+s(1s)−1(cid:12)) . s(s(cid:0) 1) −Det (cid:3) +(cid:1) s(s 1) (2) Zb4(s) = e2(s−12)2ζK(−1)+C4 −Det·(cid:3) +s4(s 1)− . 2 (cid:0) (cid:1) − Det (cid:3) +s(s 1) (3) Fbor m ≥6, Zm(s) = e2(s−21)2ζK(−1)+(cid:0)CmDet (cid:3) m (cid:1)+s(s− 1) . (cid:0) m 2 (cid:1) − − Here, the constants C are given by bm (cid:0) (cid:1) 1 N ν2 1 C = logε+ j − logν , 2 j −2 12ν j j=1 X N ν2 1 12α (m,j) ν α (m,j) C = j − − 0 j − 0 logν (m 4), m j 6ν ≥ j(cid:8) (cid:9) j=1 X the natural numbers ν ,ν ,...,ν are the orders of the elliptic fixed points in X and the 1 2 N K integers α (m,j) 0,1,...,ν 1 are defined in (2.1). 0 j ∈ { − } 4 Y.GON We know the following Weyl’s law: Nm+(T) := #{j|λj(m) ≤ T}∼ (m2−1) ·ζK(−1)·T (T → ∞). (See [5, Theorem 6.11].) Therefore, we may say that Z (s) (m 4) have “more” zeros than m ≥ poles. We have several corollaries from Theorem 1.6 by direct calculation. Corollary 1.7. Let (cid:3) = ∆(1) for m 2N. For m 2N, we have m 0 Vm(2) ∈ ∈ (1) Det (cid:3)2+s(s−1) = s((cid:12)(cid:12)s−1)e−(s−12)2ζK(−1)−C2Z212(s). (2) Det(cid:0)(cid:3)m + s(s − 1(cid:1)) = e−(m−1)(s−12)2ζK(−1)−(C2+bC4+···+Cm)Z212(s)Z4(s)···Zm(s) for m 4. ≥(cid:0) (cid:1) b b b It follows from the above corollary that Det (cid:3) +s(s 1) (m 2N) can be extended to m − ∈ entire functions of s. (cid:0) (cid:1) By putting s= 1 in the above, we have Corollary 1.8. For m 2N, we have ∈ (1) Det((cid:3)2) = e−14ζK(−1)−C2Ress=1Z212(s). ((32)) DDeett(((cid:3)(cid:3)m4))==ee−−43mζK4−1(−ζK1)(−−(1C)−2+(CC24+)CR4e+bs·s·=·+1CZbm221)(Rs)es·sZ=b41′(Z12)12.(s)·Z4′(1)·Z6(1)···Zm(1) for m 6. ≥ b b b b Here, (cid:3) = ∆(1) for m 2N. m 0 Vm(2) ∈ (cid:12) (cid:12) 2. Preliminaries We fix the notation for the Hilbert modular group of a real quadratic field in this section. We also recall the definition of Hilbert-Maass formsfor the Hilbertmodulargroup and review “Differences of the Selberg trace formula”, introduced in [5], which play a crucial role in this article. 2.1. Hilbert modular group of a real quadratic field. LetK/Q beareal quadraticfield with class number one and be the ring of integers of K. Put D be the discriminant of K O K and ε> 1 be the fundamental unit of K. We denote the generator of Gal(K/Q) by σ and a b a b put a := σ(a) for a K. We also put γ = ′ ′ for γ = PSL(2, ). ′ ∈ ′ c′ d′ c d ∈ OK (cid:16)2 (cid:17) (cid:16) (cid:17) Let G be PSL(2,R)2 = SL(2,R)/ I and H2 be the direct product of two copies of {± } the upper half plane H := (cid:16)z C Im(z) >(cid:17)0 . The group G acts on H2 by { ∈ | } a z +b a z +b g.z = (g ,g ).(z ,z ) = 1 1 1, 2 2 2 H2 1 2 1 2 c z +d c z +d ∈ (cid:18) 1 1 1 2 2 2(cid:19) a b a b for g = (g ,g ) = ( 1 1 , 2 2 ) and z = (z ,z ) H2. 1 2 c1 d1 c2 d2 1 2 ∈ A discrete subgr(cid:16)oup Γ G(cid:17)i(cid:16)s called irr(cid:17)educible if it is not commensurable with any direct ⊂ productΓ Γ oftwo discretesubgroupsofPSL(2,R). We haveclassification oftheelements 1 2 × of irreducible Γ. DETERMINANTS OF LAPLACIANS ON HILBERT MODULAR SURFACES 5 Proposition 2.1 (Classification of the elements). Let Γ be an irreducible discrete subgroup of G. Then any element of Γ is one of the followings. (1) γ = (I,I) is the identity (2) γ = (γ ,γ ) is hyperbolic tr(γ ) > 2 and tr(γ ) > 2 1 2 1 2 ⇔ | | | | (3) γ = (γ ,γ ) is elliptic tr(γ ) < 2 and tr(γ ) < 2 1 2 1 2 ⇔ | | | | (4) γ = (γ ,γ ) is hyperbolic-elliptic tr(γ ) > 2 and tr(γ ) < 2 1 2 1 2 ⇔ | | | | (5) γ = (γ ,γ ) is elliptic-hyperbolic tr(γ ) < 2 and tr(γ ) > 2 1 2 1 2 ⇔ | | | | (6) γ = (γ ,γ ) is parabolic tr(γ ) = tr(γ ) = 2 1 2 1 2 ⇔ | | | | Note that there are no other types in Γ. (parabolic-elliptic etc.) Let us consider the Hilbert modular group of the real quadratic field K with class number one, a b a b a b Γ := (γ,γ ) = , ′ ′ PSL(2, ) . K ′ c d c′ d′ c d ∈ OK n (cid:16)(cid:16) (cid:17) (cid:16) (cid:17)(cid:17)(cid:12)(cid:16) (cid:17) o It is known that Γ is an irreducible discrete subg(cid:12)roup of G = PSL(2,R)2 with the only K (cid:12) one cusp := ( , ), i.e. Γ -inequivalent parabolic fixed point. X = Γ H2 is called K K K ∞ ∞ ∞ \ the Hilbert modular surface. We have a lemma about the Euler characteristic of the Hilbert modular surface X . K Lemma 2.2. Let E(X ) be the Euler characteristic of the Hilbert modular surface X = K K Γ H2. Then we have E(X ) 2N. K K \ ∈ Proof. By noting the formula E(XK)= 2ζK(−1)+ Nj=1 νjν−j1 (see (2), (4) on [7, pp.46-47]), E(X ) is a positive integer. Let Y and Y be the non-singular algebraic surfaces resolved K K K− P singularities, in the canonical minimal way, of compactifications of Γ H2 and Γ (H H ) K K − \ \ × respectively. Here H is the lower half plane. Let χ(Y ) and χ(Y ) be the arithmetic genera − K K− of Y and Y respectively. By the formulas (12) and (14) on [7, p.48], we have K K− E(X ) = 2 χ(Y )+χ(Y ) . K K K− We complete the proof. (cid:0) (cid:1) (cid:3) We fix the notation for elliptic conjugacy classes in Γ . Let R ,R , ,R be a complete K 1 2 N ··· system of representatives of the Γ -conjugacy classes of primitive elliptic elements of Γ . K K ν ,ν , ,ν (ν N, ν 2) denote the orders of R ,R , ,R . We may assume that R 1 2 N j j 1 2 N j ··· ∈ ≥ ··· is conjugate in PSL(2,R)2 to cos π sin π cos tjπ sin tjπ R νj − νj , νj − νj , (t ,ν ) = 1. j ∼ sin π cos π sin tjπ cos tjπ j j (cid:16)(cid:16) νj νj (cid:17) (cid:16) νj νj (cid:17)(cid:17) For even natural number m 2 and l 0,1, ,ν 1 , we define α (m,j), α (m,j) j l l ≥ ∈ { ··· − } ∈ 0,1, ,ν 1 by j { ··· − } t (m 2) j l+ − α (m,j) (mod ν ), l j 2 ≡ (2.1) t (m 2) j l − α (m,j) (mod ν ). l j − 2 ≡ We divide hyperbolic conjugacy classes of Γ into two subclasses according to their types. K Definition 2.3 (Types of hyperbolic elements). For a hyperbolic element γ, we define that 6 Y.GON (1) γ is type 1 hyperbolic whose all fixed points are not fixed by parabolic elements. ⇔ (2) γ is type 2 hyperbolic not type 1 hyperbolic. ⇔ We denote by Γ , Γ , Γ , Γ and Γ , type 1 hyperbolic Γ -conjugacy classes, el- H1 E HE EH H2 K liptic Γ -conjugacy classes, hyperbolic-elliptic Γ -conjugacy classes, elliptic-hyperbolic Γ - K K K conjugacy classes and type 2 hyperbolic Γ -conjugacy classes of Γ respectively. K K 2.2. The space of Hilbert-Maass forms. Fix the weight (m ,m ) (2Z)2. Set the auto- 1 2 ∈ morphic factor j (z ) = czj+d for γ PSL(2,R) (j = 1,2). γ j |czj+d| ∈ Let ∆(j) := y2( ∂2 + ∂2 )+im y ∂ (j = 1,2) be the Laplacians of weight m for the mj − j ∂x2j ∂yj2 j j∂xj j variable z . j Let us define the L2-space of automorphic forms of weight (m ,m ) with respect to the 1 2 Hilbert modular group Γ . K Definition 2.4 (L2-space of automorphic forms of weight (m ,m )). 1 2 L2(Γ H2; (m ,m )) := f: H2 C, C K 1 2 ∞ \ → (i)f((γ,γ′)(z1,z2)) = jγ(zn1)m1jγ′(z2)m2f(z1(cid:12)(cid:12),z2) (γ,γ′) ΓK (cid:12) ∀ ∈ (ii) (λ(1),λ(2)) R2 ∆(1) f(z ,z ) = λ(1)f(z ,z ), ∆(2) f(z ,z )= λ(2)f(z ,z ) ∃ ∈ m1 1 2 1 2 m2 1 2 1 2 (iii) f 2 = f(z)f(z)dµ(z) < . || || ∞ ZΓK\H2 o Here, dµ(z) = dx1dy1dx2dy2 for z = (z ,z ) H2. y2 y2 1 2 ∈ 1 2 Then, it is known that Proposition 2.5. Let L2 (Γ H2; (m ,m )) be the subspace of the discrete spectrum of the dis K 1 2 \ Laplacians and L2con(ΓK H2; (m1,m2)) be the subspace of the continuous spectrum. Then, \ we have a direct sum decomposition : L2(Γ H2; (m ,m )) = L2 (Γ H2; (m ,m )) L2 (Γ H2; (m ,m )) K 1 2 dis K 1 2 con K 1 2 \ \ ⊕ \ and there is an orthonormal basis φ of L2 (Γ H2; (m ,m )). { j}∞j=0 dis K\ 1 2 Definition 2.6 (Hilbert Maass forms of weight (m ,m )). Let (m ,m ) (2Z)2. We call 1 2 1 2 ∈ L2 (Γ H2; (m ,m )) dis K\ 1 2 the space of Hilbert Maass forms for Γ of weight (m ,m ). K 1 2 Let φ be an orthonormal basis of L2 (Γ H2; (m ,m )) and (λ(1),λ(2)) R2 such { j}∞j=0 dis K\ 1 2 j j ∈ that ∆(1)φ = λ(1)φ and ∆(2)φ = λ(2)φ . m1 j j j m2 j j j We write λ(l) = 1 +(r(l))2 and r(i) are defined by j 4 j j λ(l) 1 if λ(l) 1, (2.2) r(l) := j − 4 j ≥ 4 j qi 1 λ(l) if λ(l) < 1,  4 − j j 4 q for l = 1,2.  DETERMINANTS OF LAPLACIANS ON HILBERT MODULAR SURFACES 7 2.3. Double differences of the Selberg trace formula. Let m be an even integer. We studied and derived the full Selberg trace formula for L2(Γ H2; (0,m)) in [5]. (See [5, The- K \ orem 2.22].) Let h(r ,r )bean even “test function”which satisfy certain analytic conditions. 1 2 Roughly speaking, [5, Theorem 2.22] is as follows. ∞ (1) (2) h(r ,r ) = I(h)+IIa(h)+IIb(h)+III(h). j j j=0 X Here, the right hand side is a sum of distributions of h contributed from several conjugacy classes of Γ and Eisenstein series for Γ . Assuming that the test function h(r ,r ) is a K K 1 2 product of h (r ) and h (r ), we derived “differences of STF”([5, Theorem 4.1]) and “double 1 1 2 2 differences of STF” ([5, Theorem 4.4]). We explain for this. Let us consider the subspace of L2 (Γ H2;(0,m)) given by dis K\ m m V(2) = f L2 (Γ H2;(0,m)) ∆(2)f = 1 f . m ∈ dis K\ m 2 − 2 n (cid:12) o (cid:12) (cid:0) (cid:1) (cid:12) Let h (r) be an even function, analytic in Im(r)< δ for some δ > 0, 1 h (r)= O((1+ r 2) 2 δ) 1 − − | | for some δ > 0 in this domain. Let g1(u) := 21π ∞ h1(r)e−irudr. Then we have −∞ R Proposition 2.7 (Double differences of STF for L2 Γ H2; (0,2) ). Let m = 2. We have K \ (cid:0) (cid:1) ∞ i h ρ (2) h 1 j 1 − 2 Xj=0 (cid:16) (cid:17) (cid:16) (cid:17) vol(Γ H2) K ∞ = \ rh (r)tanh(πr)dr 16π2 1 Z−∞ ie−iθ1 ∞ g1(u)e−u/2 eu −e2iθ1 du − 8ν sinθ coshu cos2θ R(θ1X,θ2)∈ΓE R 1 Z−∞ (cid:20) − 1(cid:21) 1 logN(γ0)g1(logN(γ)) logεg (0) 2logε ∞ g (2klogε)ε k. 1 1 − − 2 N(γ)1/2 N(γ) 1/2 − − − (γ,ωX)∈ΓHE − Xk=1 Here, λ (2) = 1/4+ρ (2)2 is the set of eigenvalues of the Laplacian ∆(1) acting on V(2). { j j }∞j=0 0 2 Proof. See [5, Corollary 6.3]. (cid:3) 8 Y.GON Proposition 2.8 (Double differences of STF for L2 Γ H2; (0,m) ). Let m 2N and K \ ∈ m 4. We have ≥ (cid:0) (cid:1) ∞ ∞ i h ρ (m) h ρ (m 2) +δ h 1 j 1 j m,4 1 − − 2 Xj=0 (cid:16) (cid:17) Xj=0 (cid:16) (cid:17) (cid:16) (cid:17) vol(Γ H2) K ∞ = \ rh (r)tanh(πr)dr 8π2 1 Z−∞ ie−iθ1ei(m−2)θ2 ∞ g1(u)e−u/2 eu −e2iθ1 du − 4ν sinθ coshu cos2θ R(θ1X,θ2)∈ΓE R 1 Z−∞ (cid:20) − 1(cid:21) logN(γ ) 0 g (logN(γ))ei(m 2)ω 1 − − N(γ)1/2 N(γ) 1/2 − (γ,ωX)∈ΓHE − ∞ 2logε g (2klogε) ε k(m 1) ε k(m 3) . 1 − − − − − − Xk=1 (cid:16) (cid:17) Here, λ (q) = 1/4+ρ (q)2 is the set of eigenvalues of the Laplacian ∆(1) acting on { j j }∞j=0 0 (2) V (q = m,m 2). q − Proof. See [5, Theorem 4.4] and [5, (5.3)]. (cid:3) 3. Asymptotic behavior of the completed Selberg zeta functions 1 We have to know the asymptotic behavior of the completed Selberg zeta functions Z2(s) 2 and Z (s) (m 4) when s , to prove Main Theorem (Theorem 1.6). We calculate their m ≥ → ∞ asymptotic behavior in this section. b b Lemma 3.1 (Stirling’s formula for Γ2(z)). Let Γ2(z) := exp ∂∂s s=0 ∞m,n=0(m+n+z)−s be the double Gamma function. Then we have (cid:0) (cid:12) P (cid:1) (cid:12) 3 z2 1 (3.1) logΓ (z+1) = z2 logz+o(1) (z ). 2 4 − 2 − 12 → ∞ (cid:16) (cid:17) Proof. Let G(z) be the Barnes G-function defined by (See [1, p.268].) z z+z2(1+γ) ∞ z k z+z2 G(z+1) = (2π)2e− 2 1+ e− k2 . k kY=1(cid:26)(cid:16) (cid:17) (cid:27) Here, γ = Γ(1) is the Euler constant. By using the relation (See [12, Proposition 4.1].) ′ − Γ2(z) = eζ′(−1)(2π)z−21G(z)−1, and the asymptotic formula (See [1, p.269].) z 3 z2 1 logG(z+1) = log(2π)+ζ ( 1) z2+ logz+o(1) (z ), ′ 2 − − 4 2 − 12 → ∞ (cid:16) (cid:17) we have the desired formula. (cid:3) DETERMINANTS OF LAPLACIANS ON HILBERT MODULAR SURFACES 9 Lemma 3.2 (Asymptotics of the identity factors). We have 1 3 1 (3.2) logZ2(s)= ζ ( 1) s2 s s2 s+ logs +o(1) (s ), id K − 2 − − − 3 → ∞ (cid:26) (cid:27) (cid:16) (cid:17) 3 1 (3.3) logZ (s)= 2ζ ( 1) s2 s s2 s+ logs +o(1) (s ). id K − 2 − − − 3 → ∞ (cid:26) (cid:27) (cid:16) (cid:17) Proof. By Definition 1.4, 1 logZ2(s) = ζ ( 1) logΓ (s)+logΓ (s+1) id K − 2 2 (cid:16) (cid:17) 1 and Lemma 3.1, we have the desired (3.2). We see that the relation logZ (s) = 2logZ2(s) id id implies (3.3). It completes the proof. (cid:3) Lemma 3.3 (Asymptotics of the elliptic factors). We have (3.4) logZ21 (s;2) = N νj2−1log s +o(1) (s ), ell − 12ν ν → ∞ j j j=1 X (3.5) logZ (s;m) = N νj2−1−12α0(m,j) νj −α0(m,j) log s +o(1) (s ) ell − 6ν ν → ∞ j(cid:8) (cid:9) j j=1 X for m 2N and m 4. Here α (m,j) 0,1,...,ν 1 are defined in (2.1). 0 j ∈ ≥ ∈ { − } Proof. We use Stirling’s formula of Γ(z). (See [11, p.12].) 1 1 logΓ(z) = z logz z+ log(2π)+o(1) (z ). − 2 − 2 → ∞ (cid:16) (cid:17) By Definition 1.4, N νj−1 ν 1 α (m,j) α (m,j) s+l j l l logZ (s;m) = − − − logΓ . ell ν ν j j Xj=1 Xl=0 (cid:16) (cid:17) 10 Y.GON We see that α (m,j) 0 l ν 1 = α (m,j) 0 l ν 1 = 0,1,2,...,ν 1 for l j l j j { | ≤ ≤ − } { | ≤ ≤ − } { − } each j. Thus we have νl=j−01 νj −1−αl(m,j)−αl(m,j) = 0, and find that νj−1ν 1 α (m,jP) α ((cid:0)m,j) s+l (cid:1) j l l − − − logΓ ν ν j j Xl=0 (cid:16) (cid:17) νj−1ν 1 α (m,j) α (m,j) s+l 1 s+l s+l 1 j l l = − − − log + log(2π) +o(1) ν ν − 2 ν − ν 2 Xl=0 j (cid:26)(cid:16) j (cid:17) (cid:16) j (cid:17) j (cid:27) νj−1ν 1 α (m,j) α (m,j) s+l 1 l l l l = − − − log(s+l) logν +o(1) j ν ν − 2 − ν − ν Xl=0 j (cid:26)(cid:16) j (cid:17) j(cid:27) νj−1ν 1 α (m,j) α (m,j) s 1 l s j l l = − − − logs+ log +o(1) ν ν − 2 ν ν Xl=0 j (cid:26)(cid:16) j (cid:17) j j(cid:27) νj−1ν 1 α (m,j) α (m,j) l s j l l = − − − log +o(1) ν · ν ν j j j l=0 X (ν 1)2 s νj−1α (m,j)+α (m,j) l s j l l = − log log +o(1) (s ). 2ν ν − ν · ν ν → ∞ j j j j j l=0 X By (2.1), we can check that α (m,j)+l (0 l ν α (m,j) 1) 0 j 0 α (m,j) = ≤ ≤ − − , l (α0(m,j) νj +l (νj α0(m,j) l νj 1) − − ≤ ≤ − hence we calculate further, νj−1lα (m,j) νj−α0(m,j)−1 l α (m,j)+l νj−1 l α (m,j) ν +l l 0 0 j = + − ν2 ν2 ν2 Xl=0 j Xl=0 (cid:0) j (cid:1) l=νj−Xα0(m,j) (cid:0) j (cid:1) (ν 1)(2ν 1) α (m,j) α (m,j) ν j j 0 0 j = − − + − . 6ν ν j (cid:0) j (cid:1) By noting α (m,j) α (m,j) ν = α (m,j) α (m,j) ν , we have 0 0 j 0 0 j − − νj−1ν 1 α(cid:0) (m,j) α (m(cid:1),j) s(cid:0)+l (cid:1) j l l − − − logΓ ν ν j j Xl=0 (cid:16) (cid:17) (ν 1)2 s νj−1α (m,j)+α (m,j) l s j l l = − log log +o(1) 2ν ν − ν · ν ν j j j j j l=0 X (ν 1)2 s (ν 1)(2ν 1) α (m,j) α (m,j) ν s j j j 0 0 j = − log 2 − − + − log +o(1) 2ν ν − 6ν ν ν j j j (cid:0) j (cid:1) j n o = νj2−1−12α0(m,j) νj −α0(m,j) log s +o(1) (s ). − 6ν ν → ∞ j(cid:8) (cid:9) j

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.