ebook img

Design of mid-IR and THz quantum cascade laser cavities with complete TM photonic bandgap PDF

0.56 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Design of mid-IR and THz quantum cascade laser cavities with complete TM photonic bandgap

Designofmid-IR andTHzquantum cascadelasercavitieswithcomplete TMphotonic bandgap MichaelBahriz,1 OrionCrisafulli,2 VirginieMoreau,1 RaffaeleColombelli,1, andOskarPainter2,† ∗ 1Institutd’Electronique Fondamentale, Bat. 220, Universite Paris-Sud, 91405 Orsay, France 2Thomas J. Watson, Sr., Laboratory of Applied Physics, California Institute of Technology, Pasadena, California 91125 (Dated:February2,2008) Wepresentthedesignofmid-infraredandTHzquantumcascadelasercavitiesformedfromplanarphotonic 7 crystalswithacompletein-planephotonicbandgap. Thedesignisbasedonahoneycomblattice,andachieves 0 afull in-plane photonic gap for transverse-magnetic polarized light whilepreserving aconnected patternfor 0 efficientelectrical injection. Candidatedefects modes for lasingareidentified. Thislatticeisthen usedasa 2 modelsystemtodemonstrateanovel effect: under certainconditions -thataretypicallysatisfiedintheTHz range-acompletephotonicgapcanbeobtainedbythesolepatterningofthetopmetalcontact.Thispossibility n greatlyreduces therequired fabrication complexity and avoidspotential damage of thesemiconductor active a region. J 1 PACSnumbers: 1 ] s I. INTRODUCTION c i t p Quantumcascade(QC)lasersaresemiconductorlasersourcesbasedonintersubband(ISB)transitionsinmultiplequantum o wellsystems1. Theiremissionwavelengthcanbetunedacrossthemid-infrared2,3 (mid-IR,5µm<l <24µm)andTHz4 (65 . µm<l <200µm)rangesoftheelectromagneticspectrum. Inthemid-IR,wheretheyarebecomingthesemiconductorsource s c ofchoicethankstotheirgoodperformance,thepotentialapplicationsarechemicalsensing,spectroscopyandfree-spaceoptical i communications. In the THz rangethe mostpromisingapplicationis the imagingofconcealedobjects. Biologicalmaterials, s y semiconductorchippackagingandclothingareallTHz-transparent(whiletheyareopaqueatshorterwavelengths),makingTHz h imagingusefulforsecurityandmedicalapplications. p MostoftheactivityintheQClaserfieldhasconcentratedonedge-emittinglasersduetotheintrinsictransverse-magnetic(TM) [ polarizationofISBtransitions,andcorrespondingdifficultyinimplementingvertical-cavitysurfaceemittinglasers(VCSELs). 1 Surfaceemissionhasbeenobtained,rather,byintegratingsecond-ordergratingsonedgeemittingdevices5,6 orbyreplacingthe v standard Fabry-Perotcavity with a photonic crystal (PC) resonator7,8. The latter solution, the application of photonic crystal 4 technologytoQClasers9,10,isparticularlyappealingbecauseoftheflexibilitythatitallowsthedesigner.Two-dimensional(2D) 4 photoniccrystalscanbeusedtocreatelocalizedmicrocavitylasersourcesthatcanbebuiltastwo-dimensionalarraysonasingle 1 chip11,12 orforlarge-area,high-power,single-modesurfaceemittinglasersources13. 1 Ofparticularimportanceindeterminingthepropertiesofanyphotoniccrystalstructureistheeffectiverefractiveindexcontrast 0 7 attainable. Thehighertheindexcontrast,thestrongertheopticaldispersionofthephotonicbandsandthegreatertheabilityto 0 localize,diffract,andreflectlightwithinthephotoniclattice.Ahighindexcontrastisthereforecrucialfordeviceminiaturization. / Inplanarwaveguidedevices, thepresenceofa fullopticalbandgapin two-dimensionsisbeneficial(althoughnotcompletely s c necessary) in forming ultra-low-volume laser cavities with minimal optical loss. As is discussed in Ref.14, for 2D photonic i crystals,TMopticalbandgapsarefavoredinalatticeofisolatedhigh-e regions.Unfortunately,thisconfigurationisincompatible s y withanelectricalinjectiondeviceduetoitsnon-connectednatureandanalternateapproachisrequired. h Inthispaperwestudytheuseofaconnectedhoneycomblatticeforcreating2DphotoniccrystalQClaserstructures.Webegin p inSectionIIwithareviewofthepropertiesofthis2Dlatticeviaaplanewaveexpansion(PWE)analysis. Weshowthatafull : v 2DopticalbandgapforTMpolarizationcanbeobtainedinthisconnectedlattice, andstudythelocalizedresonantmodesthat i formaroundasimplepointdefectinthelattice. InSectionsIIIandIVfullthree-dimensional(3D)finite-differencetime-domain X (FDTD)simulationsareusedtoanalyzethepropertiesofthehoneycomblatticeintwodifferentverticalwaveguidestructures. r SectionIIIdealswithmid-IRPCQClasers. Therealactive-regionandwaveguidestructureofamid-IRsurface-plasmon(SP) a QClaserisconsidered. Thehigh-indexcontrastinthiswaveguidestructureisobtainedbyairholesthatpenetratedeeplyinto the semiconductor layers. Section IV focuses on THz PC QC laser waveguide structures. In the metal-metal waveguides of THz lasers we find that the effective index contrast, and therefore the photonic bandstructure, is strongly dependent on the waveguidethickness37. Inparticular,belowacertaincriticalwaveguidethickness,afullphotonicgapcanbeinducedbythesole patterningofthemetallayers. Thisnoveleffectcouldbeusefulforthe developmentof a varietyofTHz lasers, includingPC surface-emittinglasers15,duetothesimplefabricationrequirements. 2 II. TWO-DIMENSIONALANALYSIS:PLANEWAVEEXPANSION A. Theplanewaveexpansionmethod The calculationsof this section are based on a planewaveexpansion(PWE) method. Itis a frequency-domainmethodthat allowsextractionoftheBlochfieldsandfrequenciesbydirectdiagonalization.ThecalculationswereperformedusingtheMIT PhotonicBands(MPB)simulationtool16.WiththePWEmethoditispossibletocomputethebandstructuresandelectromagnetic modesofperfectlyperiodicdielectricstructures. CalculationofdefectmodeswillbetackledinsectionIICusingasuper-cell approach. B. PhotoniccrystalstructureandTMgap The2Dphotoniccrystalconsideredinthisworkisthatofahoneycomblattice,consistingofahexagonalBravaislatticewith abasisoftwoairholesperunitcell(seeFig. 1(a)). Theholeradiusisr andthelatticeconstantisa. Thereciprocallattice is alsohexagonal,withG ,X andJthehighsymmetrypointsofthelattice(seeFig. 1(b)).Inthe2Dsimulationsofthissectionthe relativedielectricconstantofthedielectricbackgroundistakenase =11.22(n=3.35),correspondingtotheindexofrefraction ofmostIII-Vsemiconductormaterialsatfrequenciesbelowtheenergygap. FIG. 1: Structure of the honeycomb lattice. (a) Two-dimensional honeycomb latticewith two ”dielectric atoms” (A and B) per unit cell. a1=(a,0)anda2=(a/2,√3a/2)aretheprincipallatticevectors(a= a1 = a2),ristheholeradius.(b)Two-dimensionalreciprocalspace forthehoneycomblattice. ThereducedBrillouinzoneisshadedinblu|e. |Rec|ipr|ocallatticevectorsaresuperpositionsofG1=(0,4p /√3a) andG2=(2p /a,2p /√3a). FIG.2: Photonicbandcalculationsfora2Dhoneycomblatticeofairholesinadielectriclattice(e =11.22). (a)Photonicbandstructurefor TMpolarizationwithr/a=0.234.(b)Completebandgap(shadedblueregion)asafunctionofr/a.AfullTMgapexistsonlyforr/a>0.18 3 Fig. 2(a)showsthephotonicbandstructureforalatticewithr/a=0.234.Forthisr/aratioafullTMgapispresent,centered arounda/l 0.225,withawidthapproximately12%ofthecentralgapfrequency. Theexistenceofagap,however,depends ≈ stronglyonr/a. InFig.2(b)weplotthegap-mapforthislattice,whichclearlyshowsthatonlyaboveacriticalvalueofcircular hole size (r/a 0.18)can a TM photonicgap be obtained. This is a commonbehaviorof lattices of air holes; the largerthe holes,theclose≥rthelatticeistoasystemofisolatedhigh-e regions,andthelargertheTMphotonicbandgap9. Theadvantageof thehoneycomblatticeisthattheTMgapopenswhentheholesizeandporosityofthelatticearestillreasonablysmall,allowing formoreefficientelectricalinjection. C. 2Ddefectdesign:supercellmethod Inthissectionwestudy,in2D,thelocalizedresonancesthatformaroundapoint-likedefectofthehoneycomblattice. The defectthatweconsiderisobtainedbyremovingahexagonofsixholes,asshowninFig. 3(a). Thedefectmodesarecalculated with a supercell method using the same PWE solver. The presence of the defect cavity breaks the periodicity of the lattice, requiringthecreationofasupercelloverwhichthestructureisassumedperiodic. Thissupercellcontainsthedefectcavityand istiledinspace. TheWigner-Seitzcellofthereciprocallatticeofthesupercellwillbecorrespondinglysmallerthanthatofthe underlyingphotoniclattice,resultinginafoldingofthehoneycomblatticephotonicbands(seeFig. 3(b)). Thelocalizeddefect statesofthesupercellappearasbandswithalmostnodispersion,lyinginsidethephotonicbandgapofthehoneycomblattice. FIG.3: (a)Illustrationofthe2Dhoneycomblatticedefectcavitysupercell(backgrounddielectricmaterialshownasgrey,airholesshownas white).Theprinciplelatticevectorsarea1,a2,where a1 = a2 =a.Thedefectregionconsistsofremovalofthecentralhexagonofairholes | | | | (centralhexagonshownasadashedline). (b)FoldedTMphotonicbandstructurefora20-periodsupercellofthedefectcavityshownin(a) withr/a=0.24.Theblue-linescorrespondtothefoldedbandstructureofthehoneycomblattice.Theredlinesarethedefectfrequencylevels. Localizeddefectmodes:(c)hexapoleand(d-e)dipole-likemodes. APWEcalculatedbandstructureofthesupercelldefectstructurewithr/a=0.24isshowninFig. 3(b).Inthesecalculations, asupercellconsistingof20periodsofthehoneycomblatticewasusedinordertoobtainwelllocalizedresonantmodes. Three defect modes lie within the complete band gap: two degenerate dipole-like modes and a hexapole-like mode (Figs. 3(c-e)). Thesearethedefectmodesthatarepredictedforthe honeycomblattice throughsimplesymmetryarguments11. Ofthedefect modespresentinthebandgap,thedipole-likemodesaremoreconcentratedinthecenterofthedefectregion,thusgivingthem themostoverlapwiththeQCgainmaterial.Assuch,thesearethecavitymodeswewillfocusoninthe3Dsimulationsdescribed below. Ourchoiceofholeradius(r/a=0.24)intheabovecavitydesignwasmadebaseduponatrade-offbetweentheextentofthe photonicbandgapand cavitymodelocalization, with thatof the electricalandthermalresistance incurredin a semiconductor realizationofsuchastructure.Asalreadymentioned,thereducedconnectivityofaphotoniclatticemakeselectricalinjectionof adefectcavitymorechallenging.Electricalcurrentinsuchstructuresistypicallyinjectedfromtheedgeofthephotoniccrystal verticallythroughthedeviceactiveregion. Injectionintothedefectregionofthecavityisaresultoflateralcurrentspreading intothecenterofthephotoniccrystal. Theincreasedlateralresistanceofhighlyporousphotoniclatticessignificantlyreduces theinjectionefficiencyofthelaser,resultinginaddedheatingandreducedgain. Otherinjectiongeometriesarepossible,such astheuseofsurface-plasmonlasercavitiesinwhichthetopmetalcontactextendsovertheentirephotoniccrystalandprovides notonlyverticalwaveguidingbutalsoelectricalinjection. Thisgeometrywasusedinthedemonstrationofthefirstelectrically injected 2D photonic crystal microcavity laser7. Nonetheless, high-aspect ratio 2D photonic crystal lattices of high porosity poseagreaterchallengetofabricateduetothereducedcriticaldimensionsize. Itshouldbenotedthatfurtheroptimizationof the honeycomblattice can be obtained through use of air holes of a modified geometry. Lattices formed from air holes with a truncated circular cross-section were found to have largerphotonicbandgapsfor a givencritical dimension than that of the standardlattice. Inwhatfollows,however,wefocusonthehoneycomblatticewithcircularairholes. 4 III. 3D-FDTDANALYSISOFMID-IRDEVICES ThePWEmethodallowstherapidsolutionofstructureeigenmodesinthefrequencydomain.However,forthe2Danalysisde- scribedaboveonecanonlyapproximatethelaseractiveregionwithaneffectiveindexofrefraction.Theobjectiveofthissection istoverifythedesigndevelopedwiththe2DmodelinSectionII,andtoapplyittoarealisticmid-IRQClaserstructure.Anac- curaterepresentationofthestructurewaveguideintheepitaxialdirectionwillbetakenintoaccountwithina3Dfinite-difference time-domain(FDTD) approach. It is well known that the material system of choice for mid-IR QC lasers is InGaAs/AlInAs latticematchedtoInP2,3. Inaddition,waveguidesbasedonsurface-plasmons17havebeenshowntobeadvantageousforPCQC lasersinthemid-IR18. Thisisthereforethemodelsystemthatwewilluseforthe3Dsimulations. A. Mid-IRsurface-plasmonwaveguidesforQClasers SemiconductordiodelasersandconventionalQClasersrelyonopticalwaveguideswhereahigher-index-coreissandwiched between thick cladding layers of lower refractive index, thus confining the light inside the active region stack. The small refractiveindexdifferencebetweentheactivecoreandthewaveguidecladdingsresultsinastandardmid-IRQClaserwhichis typically6to9µmthick. FIG.4: Normalizedintensityprofileofthefundamentalopticalmodecomputedforaquantumcascadelaserdielectricwaveguide(a)anda surface-plasmonwaveguide(b)designedforawavelengthof8µm. Theshadedgreenareasindicatethestackofactiveregionsandinjectors. Theverticaldashedlineindicatesthepositionofthedevicesurface.Inthedielectriccasethethicknessoftheepitaxiallygrownmaterialis 6 ≈ µm. Theoriginoftheabscissaisattheair-semiconductorinterface. Inthesurface-plasmoncasethethicknessisinstead 3µm. Theoptical confinementfactorisindicatedbyG . ≈ Maxwell’s equations, however, also allow for another type of optical waveguiding based upon surface-plasmons19. TM polarized electromagnetic guided modes exist at the interface of two dielectrics with opposite sign of the real part of their dielectric constants. Negative dielectric constants are typical of metals below the plasma frequency. Thus, guided surface- plasmonmodesatametal-semiconductorinterfaceareausefulwaveguidingsolutionforQClasers20. Thisisduetotheintrinsic TM polarization, i.e. normal to the layers, of intersubband transitions. SP waveguides need a smaller thickness of grown material,whileyieldingevenlargeropticalconfinementfactorsG (seeFig. 4). Thesurface-plasmondampingalongthepropagationdirectioncanbeapproximatedwiththefollowingformula21: a 4p nm·n3d, (1) ≈ l · k3 m where k (n ) is the imaginary (real) part of the metal index of refraction, n is the real part of the semiconductor index of m m d refraction,andl isthewavelength. The1/k3l dependenceofthepropagationlossesshowsthatSPwaveguidesareespecially m appealing at long wavelengths. In particular the 1/k3 factor, which pushes the field out of the metal region and reduces the m losses,becomesverysmallatlongwavelengths.AsimpleDrudemodelshowsthattheimaginarypartoftheindexofrefraction, foragenericmetal,increasesdramaticallywhenmovingfromshort(l =1-3µm)tolong(l =100-200µm)wavelengths.Recent advanceshavealsoshownthatlow-lossmetallicwaveguidescanbeimplementedatmid-IRwavelengths17.Wethereforeemploy thiswaveguidestructureasamodelsystemforthe3DnumericalsimulationsofourQClaserstructures.Thecorrespondinglayer sequenceisdisplayedinTableI,togetherwiththecorrespondingindecesofrefractionthatareusedforthesimulations. 5 TABLEI:Layerstructureforthemid-IRSPQClaser17modeledinthe3DFDTDsimulations.Nominaloperatingwavelengthisl 8µm. ≈ Material Doping(cm 3) Thickness(µm) n Function − air n.a. 4 1 topcladding Au n.a. 0.3 perfectconductor metalcontact InGaAs 1017/1018 0.05 3.3/3.47 contactlayers InGaAs-AlInAsMQW 1.7x1016 2.6 3.374 activeregion structure InGaAs 5x1016 0.5 3.475 Buffer/lowercladding layer InP 1017 3 3.077 substrate WhiletheverticalconfinementisprovidedbytheSPwaveguide,thein-planeopticalconfinementisinducedbythephotonic crystal. Ahighindexcontrastcanbeobtainedbypenetrationoftheairholesthroughthetopmetallayeranddeepintothesemi- conductorwaveguidestructure. Intuitively,reducedscatteringlossesareobtainedforaholedepthwhichoverlapsasignificant fraction of the guided mode energy22. In Fig. 5(a) we show a schematic of the vertical cross-section of the photonic crystal SP waveguide structure, and in Fig. 5(b) we plot the vertical mode profile of a localized defect mode (see Fig. 6(a)) of the honeycomblattice of air holeswith a holedepthof4.7µmin the semiconductorheterostructure. Atanoperatingwavelength of8µmthisresultsinaverticalmodeoverlap(energyoverlap)withtheairholesofalmost90%. Itisclearfromthisexample whysurface-plasmonQClasersareideallysuitedtoPCtechnology;theirreducedthicknessallowsforasignificantlyshallower etchofthesemiconductormaterialincomparisontoconventionallaserwaveguidestructuresinwhichanetchdepthof10µmor morewouldberequiredinthemid-IR. FIG. 5: (a) Surface-plasmon optical mode profile superimposed on a sketch of the vertical section of a mid-IR photonic crystal QC laser withairholesextending4.7µmdeepintothesemiconductor. (b)3D-FDTDcalculatedelectricfieldintensitycross-sectionofadefectmode (top-viewshowninFig. 6(a))ofthedeeplypatternedhoneycombphotoniclattice. Theverticalmodeprofileshowsasimilarbehaviorasthe 1D surface-plasmon simulationof (a), whereas theconfinement inthe in-plane direction isprovided by distributedBragg reflectionof the photoniclattice. B. Defectcavitydesign Thecavity investigatedin thissectionis the sameas in SectionIIC. Itis obtainedbyremovinga fullhexagonofair holes fromthePClattice. AsdepictedinFig. 5,we“etch”4.7-µmdeepholesintothesemiconductorlaserstructure,withther/aratio oftheairholessetto0.21. ThepropertiesofthedifferentlaserstructurelayersusedinthesimulationaregiveninTableI. Full 3D-FDTDsimulations11,12,22 wereperformedwith aneffectivegridresolutionof100nm, correspondingtoroughly20points perwavelengthinthehigh-indexsemiconductormaterialatanoperatingwavelengthof8µm. Theuseofperfectlyconducting boundariesforthetopmetalcontactlayerisasmallapproximationat8µmduetothemuchhigherplasmafrequencyoftheAu metalcontactsusedinpractice. A simulationof aphotoniccrystalcavitywith n =7 periodsinthe xˆ-directionandn =4 periodsin theyˆ-directionyields x y thethreelocalizeddefectmodesshowninFig. 6(a-c). Thesemodesarethesamemodesasfoundinthe2DanalysisofFig. 3. Comparisonof the 2D and 3D mode propertiesare summarizedin Table II. The normalizedfrequenciesof the defectmodes lie within the TM-like bandgap of the 3D honeycomb lattice waveguide structure, and are centered around a/l 0.2. At a ∼ wavelength of 8 µm this correspondsto a lattice constant of approximatelya=1.6 µm, a hole radius of r=0.34 µm, and a minimumdimensiongivenbythegapbetweennearestneighborholesofa(1/√3 2r/a)=0.25µm. − Effectivequalityfactorsassociatedwithin-plane(Q ),topsidevertical(Q),andbottomsidevertical(Q )radiationlossesare t b alsocalculatedforthe3DFDTDsimulations. ThetopksideverticaleffectiveQ-factorforallofthedefectmodesisestimatedat 6 TABLEII:Comparisonbetween2D(PWE)and3D(FDTD)simulateddefectmodes. Parameter x-dipolemode y-dipolemode hexapolemode PWEa/l 0.2115 0.2115 0.2162 FDTDa/l 0.196 0.197 0.205 Q 326 288 169 Qkt 1.2 107 9 106 1.1 107 × × × Q 92 93 114 b >106, dueto thefactthatthe cavitymodeslie predominantlybelowthe lightconeofthe topair-cladding23. Q onthe other b hand, can be increased only slightly fromthat reportedin Table II throughdeeper etchingof the air holes, limited mainly by thehigh-indexofthesemiconductorsubstrateandthelocalizednatureofthecavity. DuetotheTM-likepolarizationin-plane bandgap provided by the honeycomblattice, an increase in the number of PC mirror periods to a value above 10 effectively eliminatesin-planeradiationloss,andtheQ-factorofthecavitymodesislimitedbybothradiationintothesubstrateaswellas materialabsorptionlossduetoohmicheatinginthemetalsurface-plasmonlayer(forwavelengthsinthemid-IR,andaAumetal surface-plasmonlayer,materialabsorptionlimitstheQ-factortoapproximately1038). FIG.6:In-planemodeprofiles(Ez)forthe(a)x-dipole,(b)y-dipole,and(c)hexapoledefectmodesofthesurface-plasmonverticalwaveguide structurewithan“etched”hexagonaldefectcavityinthehoneycomblattice. IV. ANALYSISOFTHZDEVICES OurFDTDanalysisofmid-IRPCQClasersexaminedstructuresinwhichthehoneycomblatticewaspatternedthroughthe QC semiconductoractive region. This is necessary in order to induce a strong index contrast. However, a different solution is possible if the optical mode is highly confined in the vertical direction, as is the case for THz QC lasers with metal-metal waveguidestructures24,25. Inthiscase,andundercertainconstraintsrelatedtothestructurethickness,thesolepatterningofthe topmetalcontactiscapableofinducingacompletephotonicbandgap. Thesemetal-insulator-metal(MIM)structures26,aswe willrefertothemhere(seeFigs. 7and8),willbethefocusofourtimedomainmodelinginthefollowingsections. Theappeal ofthisdesignliesinthefactthatonlythetopmetallayerneedstobepatterned27,28,whichbothsimplifiesthefabricationprocess andimprovestheefficiencyofcarrierdiffusionintheactiveregion. A. MIMstructures:waveguidesforTHzQClasers Metal-metalwaveguides26 areusuallyemployedforQClasersintheTHzrange24,25 becausetheycanprovidealmostunity opticalconfinementfactors,andsimultaneously,relativelylowwaveguidelosses. Theactivelasercoreissandwichedbetween twometallayers(typicallyTi/AuorGe/Au/Ni/Au)whichactassurface-plasmonlayers(Fig. 7(a)). Thetwosurface-plasmon modesof both the top andbottommetal-coreinterfacesbecomecoupledand formtwo guidedmodes, one of evenparityand one of odd parity (assuminga nearly symmetricmetal-core-metalstructure, and where the vector parityis determinedby the symmetryofthemagneticfield).Thedispersiondiagramofadouble-metalwaveguidewithactivelayercorethicknessofL =1 a µmisdisplayedinFig. 7(e). Forsub-wavelengthcorethicknessestheoddparitysurfacemodeiscut-off,whiletheevenparity 7 modeexistsallthe way downto zerofrequency. The electric andmagneticfieldprofilesofthe evenparitysurfacemodeata wavelengthofl =100µmareshowninFig. 7(b-d),showingthenear-unityconfinementfactorofthefieldsinthecoreregion. 0 FIG.7: (a)Schematicshowingthecross-sectionofaMIMwaveguide(metallayersareassumedsemi-infinite). (b)Ez normalelectricfield component,(c)Exlongitudinalfieldcomponent,and(c)Hy magneticfieldplotoftheevenparityguidedsurfacemodeatl =100µmforan activeregioncorethicknessofLa=1µm. (e)Dispersiondiagramofthedouble-metal(Au)waveguidestructure(La=1µm). Thecoreis modeledwithaconstantrefractiveindexofna=3.59,whilethemetallayersaremodeledusingaDrude-LorentzmodelforAu(background dielectricconstante b=9.54,plasmonfrequencyw p=1.35 1016rad/s,andrelaxationtime8 10−15s). × × As has been noted by other authors29, a reduction in the dielectric core region thickness of MIM structures results in an increaseinthein-planewavevectoroftheevenparityguidedmodeforaparticularfrequency. Thisisaresultofthe“pushing” oftheelectromagneticenergyintothemetalcladdingregionswithdecreasedcorethickness. Ofimporttothecurrentworkis theabilitytocreatealargeeffectiveindexcontrastthroughpatterningonlyofthemetallayers. Insuchapatternedstructurethe guidedmodesees two effectiveindecesas it propagates,the largeeffectiveindexof the guidedsurface-plasmonmodewhere the metal is left intact, and a lower effective index, more delocalized mode of the dielectric core and air-cladding where the metalisremoved.Thatthispictureisinfactvalid,andcanbeusedtogreateffect,isdemonstratedbelowwhereweanalyzethe bandstructureandlocalizedresonancesofdouble-metalwaveguideswithonlyasurface-patterninginthetopmetalcontact. B. PatternedMIMwaveguidebandstructureanalysis FIG.8: Schematicof thehoneycomb latticeandMIM structureusedinFDTDmodeling. (a) Topview of thelatticewithacentral defect consistingoftheremovingofthecentralhexagonofairholes. (b)Cross-sectionofthesimulatedstructure. Onlythetopmetallayer(perfect conductor) is patterned. The displayed layer thicknesses are for an operating wavelength of l 0=100 µm and a normalized frequency of a/l 0=0.17withinthebandgapofthehoneycomblattice. ThemodelMIMstructurethatwe willconsiderhere, shownschematicallyinFig. 8(b), consistsofthe followingsequence oflayers(frombottomtotop): abottomunpatternedmetalcontact,aQCactiveregiondielectriccore(modeledwithauniform 8 indexofn =3.59forsimplicity30),atoppatternedmetalcontact,andaregionofairabovethestructure. Themetallayersare a assumedtobeperfectconductors;lossduetoabsorptioninthemetalregionsisdiscussedinsectionIVD.Murabsorbingbound- aryconditions31areusedtomodelradiationlossoutofthestructure.ForeachoftheTHzFDTDsimulationsdescribedbelow,a gridresolutionof58pointsperlatticeconstantaofthehoneycomblatticewasused. Atanominaloperatingwavelengthof100 µm,andfornormalizedfrequenciesa/l 0.17withinthebandgapofthehoneycomblattice(seebelow),thelatticeconstant 0 ∼ isa=17µm. Atthiswavelengthandnormalizedfrequency(hereinafterthenominaloperatingconditions),thecorresponding spatialresolutionis0.3µm(roughly95pointsperwavelengthinthedielectriccorematerial),andtheMIMlayerthicknessesare asshowninFig. 8(b). FIG.9:FDTDcalculatedbandstructureofapatternedMIMwaveguidewithanormalizeddielectriccorethicknessofLa=La/a=0.176anda normalizedairholeradiusofr/a=0.25inthetopmetalcontact.Metallayersaresimulatedasperfectconductingboundaries.Atanoperating wavelength of l 0 =100 µm within the photonic bandgap (a/l 0 =0.17), the corresponding physical sizes of the patterned double-metal waveguideare a, r, La = 17, 4.25, 3 µm. { } { } Thebanddiagramforsurface-patternedMIMwaveguidestructureswith variousdielectriccore thicknesseswere computed to confirm the existence of a complete in-plane bandgap, and to examine the dependence of the bandgap frequency width on structure thickness. The simulation volume consists of a single unit cell of the honeycomb lattice with Bloch periodic boundaryconditionsappliedintheplaneofperiodicityandMurboundaryconditionsinthetopandbottomdirections(normal to the metaland semiconductorlayers). Figure9 showsthe banddiagramfor a structurewith a normalizedcorethicknessof L =L /a=0.176 and a normalized air hole radius of r/a=0.25 in the top metal layer. The correspondingphysical core a a thickness is L =3 µm under nominal operating conditions (l =100 µm, a/l =0.17). In the band diagram, truly guided a 0 0 modesliebelowtheairlight-line,whileleakymodeslieaboveit(inthiscaselightcanonlyleakintothetopverticaldirection where patterning of the metal has been applied). The bottom-mostband is a surface wave, lying just below the light-line of theactiveregioncore. Itisakintotheevenparityguidedsurface-plasmonmodeofthesymmetric(unpatterned)double-metal waveguidestudiedabove. Thehigher-lyingfrequencybandsconstitutezone-foldedversionsofthissurfacewave. Anin-plane photonicbandgapexistsfor guidedmodesof thisstructurebetween normalizedfrequenciesa/l =0.165 0.18. Due to the 0 − extremethinnessofthedielectriccore,thehigher-orderverticalmodesoftheMIMwaveguidearenotpresentinthisdiagram, butlieatmuchhigherfrequencies(a/l >0.75). Asaresult,thephotonicbandgapisatruefullin-planebandgapforguided 0 resonancesof the MIM structure, not just for a single polarizationor mode symmetry. Note, the modesthat lie along the air light-lineinthediagramareradiationmodes,predominantlylocalizedintheairregionsabovetheMIMstructure. InFig. 10we plotthe dispersionof thebandsdefiningthe(lowest)photonicbandgapbetweenthe highsymmetryX andJ pointsofthehoneycomblatticeforvaryingdielectriccorethicknesses. Thebandgapisseentoshrinkwithincreasingdielectric corethickness,closingforanormalizedactiveregionthicknessgreaterthanL =0.294(nominalphysicalthicknessL =5µm). a a Modefieldplots(see Fig. 11) attheX andJ pointsindicatethatthehighandlow frequencymodesdefiningthe bandgapare ofmixedtype: thelow-frequency“dielectric”or“valence”bandmodeispredominantlya surfacewave attheinterfaceofthe toppatternedmetalsurface,whereasthehigh-frequency“air”or”conduction”bandmodeispredominantlyasurfacewaveof thebottomunpatternedmetalinterface. Additionally,thehigh-frequencygapmodesitslargelybeneaththeunpatternedregions ofthetopmetalboundaryandthelow-frequencymoderesidesbelowthepatternedareaswith moreenergyresidinginthe air cladding. Thephotonicbandgapinthiscaseisaresultofdifferencesinthesetwosurfacewaves. Thissimplepicture,although correct,betraysitscomplexityfortworeasons: (i)perfectmetalconductorboundarieswereusedinthesimulations,whichdo notsupportsurfacewaveswhencontinuousandflat,and(ii)thepatternedairholesaremuchsmallerthanthewavelengthinair 9 FIG. 10: (a) Valence and conduction band dispersion between the X and J points for varying active region core thickness (La = 0.088( ),0.176( ),0.294( ),0.412((cid:3)) ; nominal physical thicknesses La= 1.5( ),3( ),5( ),7((cid:3)) µm). The symbols correspond to { ◦ × ⋄ } { ◦ × ⋄ } datapointsfromFDTDsimulationsandthelinesareguidestotheeye.Thenormalizedholeradiusforallsimulationswasfixedatr/a=0.25. Notethatthecompletebandgapshrinksasdevicethicknessincreases,andisclosedforLa>0.294(La>5µm). oftheguidedmode. Thatasurfacewavecanindeedexistattheinterfaceofapatterned perfectconductinglayerwaspointed outinRef.32, whereitwasshownthatitis preciselythecut-offfrequencyoftheair holesinthe perfectconductorwhichsets the effectiveplasmafrequencyof the layer. The thinnerthe dielectriccorelayer, the largerthe fractionof energythatresides at the top patterned metal interface, and a greater degree of mode delocalization that occurs into the air-cladding where the topcontactisremoved,botheffectswhichincreasetheeffectiveindexcontrastofthetwosurfacewavesandthusthephotonic bandgap. ItshouldbenotedthattheuseinourmodelofperfectconductingboundariesasopposedtoaAumetalcontactlayer, for instance, doesnotaffectthe photonicbandstructureshownin Fig. 9 and Fig. 10, as the plasma frequencyof Au is much greaterthantheTHz frequenciesunderconsideration. Furtherdiscussionandanalysisof photonicbandgapstructuresformed fromsurfacepatternedmetalandperfectlyconductinglayerswillbepresentedinafuturestudy33. Inpractice,laserstructures withthicknessesmuchbelowthatofseveralmicronsmaybedifficulttofabricateandincurinsurmountableopticallosses(see belowfor discussion), butthe trend shownin Fig. 10 clearly indicatesthat suchstructureswouldsupportcompletebandgaps thatarequitesubstantial,approaching15%ofthegapcenterfrequencyforL =1.5µmatanoperatingwavelengthofl =100 a 0 µm. C. Characterizationofdefectmodes Ultimately,onewouldliketoutilizethestrongphotonicbandgapeffectspresentinthepatternedMIMwaveguidestructures studiedaboveto,forinstance,formlocalizedmicrocavitylaserresonators. Inordertodemonstratetheeffectivenessofthetop metalpatterninginthisregard,wehavealsosimulatedthelocalizedresonancesthatareformedwithinandaroundpointdefects of the honeycombmetal pattern studied in the previoussub-section. In Fig. 12(a) we show the E field plot of the localized z yˆ-dipole-like38modethatformsaroundapoint-defectconsistingoftheremovalofthecentral6holesinthetopmetal(seeFig. 8(a)) of a MIM waveguide with an active region thickness of L =3 µm (L =0.176). The corresponding(in-plane)spatial a a FouriertransformofthemodeisplottedinFig. 12(b),showingthatthemodeislocalizedatthek pointsinreciprocalspace, X and consistentwith a “donor”modeformedfromthe “conduction”bandedgeat the X-point11. This modeis identified as the samedipole-likemodeofthemid-IRsurface-plasmonsimulationsofFig. 6(b)insectionIII,whereinthosestructuresadeepair holepatterningofthesemiconductordielectricmaterialwasusedtocreatealargeindex-contrast. For the fixedwaveguidecore thicknessof 3 µm the yˆ-dipole-likemodeof Fig. 12(a) is seen to be highly localizedin real- space,asexpectedfromthebandgapsimulationsofFig. 10. Additionalconfirmationofthein-planelocalizationofthedefect modedueto anin-planephotonicbandgapeffectcan beobtainedby studyingthescaling ofthe in-planeradiationlosses asa functionofthenumberofperiodsofthePCpatterningsurroundingthecentraldefect. Thetotalqualityfactorduetoradiation lossisdeterminedby 1 1 1 = + , (2) Q Q Q rad k ⊥ 10 FIG.11: High-frequency (a-c)and low-frequency(d-f) gapmode fieldplots(Ez) attheX-point ofthehoneycomb latticefor thepatterned double-metalwaveguidestructureofFig. 10withLa=0.294(La=5µm). Thein-planefieldplotsof(a,d)correspondtoasectionthrough thecoreoftheMIMstructurejustbelowthepatternedtopmetalcontact. Thedashedwhitelinesin(a,d)and(b,e)indicatethepositionofthe sectionsusedinthefieldplotsof(b,e)and(c,f),respectively. whereQ andQ quantifythein-planeandout-of-planeradiationlosses12. Theout-of-planequalityfactorisfoundtobe>105 forthesekstructu⊥res; thusthe dominantradiationlossoccursin the in-planedirection. Fig. 13 showsa plotofthe Q-factoras a function of the number of surrounding PC periods. The radiation Q-factor increases exponentially with period number as expectedforabandgapmode,withacavityconsistingofonly12 6.5periodsabletosustainamodewithradiationQ>103. × D. Effectivemodevolumeandmetalabsorptionlosses Wehaveshownabovethatindoublemetalstructuresthefrequency-widthofthephotonicbandgapofanhoneycombphotonic latticeincreaseswhenthestructureisthinner. Itimplies,intuitively,thatthephotoniccrystalbecomesincreasinglyeffectivein confininglightwhenthewaveguidecorethicknessisreduced. Toquantifythemodallocalizationversuscoreregionthickness we calculatedthe effectivemodevolumesV of theyˆ-dipole-likemodeofFig. 12for variousactiveregionthicknesses(L ). eff a V isdefinedas: eff Re E2dV Veff= max|[e|E2], (3) | | wheremax[..]denotesthemaximumvalueoftheargument. TheresultsarereportedinTableIII. ThedecreaseofV withthe eff activecoreregionthicknessL issuper-linear,ascanbeseeninthethirdcolumnofTableIIIinwhichV /L istabulated. The a eff a super-lineardecreaseinV withactiveregionthinningisaclearindicationthatthephotoniccrystalformedfrompatterningof eff thetopmetalsurfaceprovidesmoreeffectivein-planeconfinementforthinnerwaveguidecores. FDTD simulations to this pointhave approximatedthe metal contacts defining the MIM waveguidestructures with perfect

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.