ebook img

Design of Amino and Phosphine Functionalized Metal Organic Frameworks for Organocatalysis PDF

149 Pages·2015·22.51 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Design of Amino and Phosphine Functionalized Metal Organic Frameworks for Organocatalysis

ETH Library Design of Amino and Phosphine Functionalized Metal Organic Frameworks for Organocatalysis Doctoral Thesis Author(s): Xu, Xiaoying Publication date: 2015 Permanent link: https://doi.org/10.3929/ethz-a-010498488 Rights / license: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information, please consult the Terms of use. DISS. ETH NO. 22871 Design of Amino and Phosphine Functionalized Metal Organic Frameworks for Organocatalysis A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) presented by XIAOYING XU M. Sc. in Engineering, Dalian University of Technology born on 10.04.1986 citizen of China accepted on the recommendation of Prof. Dr. Jeroen A. van Bokhoven, examiner Prof. Dr.!Christophe Copéret, co-examiner Dr. Marco Ranocchiari, co-examiner 2015 (cid:5)(cid:1) (cid:6).(cid:1) (cid:6).(cid:19)(cid:18)(cid:12)(cid:1) (cid:23)(cid:13)(cid:19)(cid:22)(cid:10)(cid:1) (cid:25)(cid:13)(cid:19)(cid:1) (cid:23)(cid:13)(cid:14)(cid:18)(cid:15)(cid:1) (cid:23)(cid:13)(cid:6)(cid:23)(cid:1) (cid:22)(cid:8)(cid:14)(cid:10)(cid:18)(cid:8)(cid:10)(cid:1) (cid:13)(cid:6)(cid:22)(cid:1) (cid:12)(cid:21)(cid:10)(cid:6)(cid:23)(cid:1)(cid:7)(cid:10)(cid:6)(cid:24)(cid:23)(cid:26)(cid:2)(cid:1)(cid:4)(cid:1)(cid:22)(cid:8)(cid:14)(cid:10)(cid:18)(cid:23)(cid:14)(cid:22)(cid:23)(cid:1)(cid:14)(cid:18)(cid:1)(cid:13)(cid:14)(cid:22)(cid:1)(cid:16)(cid:6)(cid:7)(cid:19)(cid:21)(cid:6)(cid:23)(cid:19)(cid:21)(cid:26)(cid:1)(cid:14)(cid:22)(cid:1)(cid:18)(cid:19)(cid:23)(cid:1) (cid:19)(cid:18)(cid:16)(cid:26)(cid:1)(cid:6)(cid:1)(cid:23)(cid:10)(cid:8)(cid:13)(cid:18)(cid:14)(cid:8)(cid:14)(cid:6)(cid:18) (cid:1)(cid:13)(cid:10)(cid:1)(cid:14)(cid:22)(cid:1)(cid:6)(cid:16)(cid:22)(cid:19)(cid:1)(cid:6)(cid:1)(cid:8)(cid:13)(cid:14)(cid:16)(cid:9)(cid:1)(cid:20)(cid:16)(cid:6)(cid:8)(cid:10)(cid:9)(cid:1)(cid:7)(cid:10)(cid:11)(cid:19)(cid:21)(cid:10)(cid:1) (cid:18)(cid:6)(cid:23)(cid:24)(cid:21)(cid:6)(cid:16)(cid:1) (cid:20)(cid:13)(cid:10)(cid:18)(cid:19).(cid:10)(cid:18)(cid:6)(cid:1) (cid:25)(cid:13)(cid:14)(cid:8)(cid:13)(cid:1) (cid:14).(cid:20)(cid:21)(cid:10)(cid:22)(cid:22)(cid:1) (cid:13)(cid:14).(cid:1) (cid:16)(cid:14)(cid:15)(cid:10)(cid:1) (cid:6)(cid:1) (cid:11)(cid:6)(cid:14)(cid:21)(cid:26)(cid:1)(cid:23)(cid:6)(cid:16)(cid:10)(cid:2)(cid:1) — Marie Curie Table of Contents Abstract .......................................................................................................... III Résumé ........................................................................................................... V Chapter I Introduction .................................................................................. 1 1.1 Metal organic frameworks (MOFs): general properties and application ............ 2 1.1.1 Chemical properties of MOFs ..................................................................... 3 1.1.2 Applications of MOFs ................................................................................. 7 1.2 MOFs as heterogeneous catalysts .................................................................... 7 1.2.1 Inorganic complex on the organic linker ..................................................... 7 1.2.2 Organometallic complexes produced by PSM ........................................... 8 1.2.3 Coordinatively unsaturated sites (CUS) and defects ................................ 10 1.2.4 Guest active species encapsulated in the MOF cages ............................. 12 1.3 Organocatalysis .............................................................................................. 13 1.3.1 Homogeneous orgaocatalysts .................................................................. 13 1.3.2 Organocatalysis by MOFs ........................................................................ 18 1.4 Rationale of the thesis ..................................................................................... 21 Chapter 2 Methods for the synthesis and characterization of MOFs .... 23 2.1 Introduction ..................................................................................................... 24 2.2 Characterization of MOFs ............................................................................... 24 2.2.1 X-ray diffraction (XRD) ............................................................................. 24 2.2.2 Nitrogen physisorption .............................................................................. 28 2.2.3 Nuclear magnetic resonance (NMR) ........................................................ 30 2.2.4 Infrared (IR) spectroscopy ........................................................................ 33 2.2.5 Thermogravimetric analysis (TGA) ........................................................... 34 2.2.6 Molecular modeling .................................................................................. 34 2.3 Synthesis of MOFs .......................................................................................... 35 2.3.1 Synthesis of MIXIRMOF-9-PPh (LSK-3) ................................................. 35 2 2.3.2 Synthesis of MIXIRMOF-9-NH -POPh (LSK-6) ...................................... 36 2 2 2.3.3 Synthesis of MIXIRMOF-9-Br-POPh (LSK-7) ......................................... 37 2 2.3.4 Synthesis of MIXIRMOF-9-Me-POPh (LSK-8) ........................................ 38 2 2.3.5 Synthesis of MIXIRMOF-9-NH -Me (LSK-9) ............................................ 39 2 2.3.6 Synthesis of MIXIRMOF-9-NH -Br (LSK-10) ............................................ 39 2 2.3.7 Synthesis of MIXMOF-5-NH -PPh (LSK-13) ........................................... 40 2 2 2.3.8 Synthesis of MIXMOF-5-NH ................................................................... 41 2 2.3.9 Synthesis of MIXUMCM-1-NH -PPh (LSK-16) ........................................ 42 2 2 2.3.10 Synthesis of MIXUMCM-1-NH .............................................................. 43 2 2.3.11 Synthesis of DMOF-NH ........................................................................ 44 2 2.3.12 Synthesis of DMOF-BPDC-NH ............................................................. 45 2 2.3.13 PSM of amino MOFs to thiourea-MOFs ................................................. 46 Chapter 3 Methods for the synthesis of linkers and catalysis of MOFs 49 3.1 Introduction ..................................................................................................... 50 3.2 Synthesis of linkers ......................................................................................... 50 3.2.1 Synthesis of 3-bromo-4-iodobenzoic acid ................................................ 51 3.2.2 Synthesis of 2-(diphenylphosphoryl)-[1,1'-biphenyl]-4,4'-dicarboxylic acid (POPh -BPDC) .................................................................................................. 51 2 3.2.3 Synthesis of 2-(diphenylphosphino)-[1,1'-biphenyl]-4,4'-dicarboxylic acid (PPh -BPDC) ..................................................................................................... 52 2 3.2.4 Synthesis of 2-amino-[1,1'-biphenyl]-4,4'-dicarboxylic acid (NH -BPDC) . 53 2 3.2.5 Synthesis of 2-bromo-[1,1'-biphenyl]-4,4'-dicarboxylic acid (Br-BPDC) ... 53 3.2.6 Synthesis of 2-methyl-[1,1'-biphenyl]-4,4'-dicarboxylic acid (Me-BPDC) . 54 ! I 3.2.7 Synthesis of 1,3,5-benzenetriacetophenone ............................................ 55 3.2.8 Synthesis of 4,4',4''-benzene-1,3,5-triyl-tribenzoic acid (H BTB) ............. 56 3 3.2.9 Synthesis of 1-benzyl-3-phenylthiourea ................................................... 56 3.3 Catalytic reactions ........................................................................................... 57 3.3.1 Coumarin synthesis .................................................................................. 57 3.3.2 Umpolung addition ................................................................................... 58 3.3.3 Knoevenagel condensation ...................................................................... 59 3.3.4 [3+2] cycloaddition ................................................................................... 60 3.3.5 Aldol-Tishchenko reaction ........................................................................ 60 3.3.6 Morita-Baylis-Hillman (MBH) reaction ...................................................... 62 Chapter 4 Catalysis I: Selective catalytic behavior of a phosphine- tagged MOF organocatalyst ........................................................................ 65 4.1 Introduction ...................................................................................................... 66 4.2 Synthesis and characterization of LSK-3 ........................................................ 67 4.3 Catalytic performance of LSK-3 ...................................................................... 70 4.4 Discussion ....................................................................................................... 72 4.5 Conclusion ....................................................................................................... 81 Chapter 5 Catalysis II: Tuning regioisomer reactivity in catalysis using bifunctional MOFs with mixed linkers ........................................................ 83 5.1 Introduction ...................................................................................................... 84 5.2 Synthesis and characterization of the MOFs LSK-6 and LSK-9 ...................... 85 5.3 Results and discussion .................................................................................... 90 5.4 Conclusion ....................................................................................................... 97 Chapter 6 Catalysis III: Tuning selectivity in the direct aldol-Tishchenko reaction using space constraints in amino MIXMOFs .............................. 99 6.1 Introduction ................................................................................................... 100 6.2 Results .......................................................................................................... 102 6.3 Discussion ..................................................................................................... 110 6.4 Conclusion .................................................................................................... 113 Chapter 7 Conclusions and outlook ....................................................... 115 Publications ................................................................................................ 121 Acknowledgements .................................................................................... 123 Appendix ..................................................................................................... 126 References .................................................................................................. 127 ! II ! Abstract Metal-organic frameworks (MOFs) are prepared by self-assembly of metal ions and/or clusters and organic linkers to form three-dimensional frameworks. As a subgroup of organo-hybrid materials, they can be utilized as pseudo-organocatalysts if functional groups with Lewis basicity or acidity are present in the organic linkers. Due to the long-range order present in MOFs, the functionalized linkers are homogeneously distributed over the entire framework of the lattice. The high crystallinity of MOFs compared to other solid materials reduces the complexity of the catalytic system and leads to clear structure-performance relationships in reactions. Organocatalysis uses low-molecular weight catalysts in which a metal is not part of the catalytic active site or the reaction substrate. Organocatalysts based on MOFs are candidates for developing chemical efficiency and high value-added chemical synthesis, owing to their advantages: a) they are metal-free low molecular-weight catalysts, some of which are natural products, b) they are easily designed for specific reactions, and c) there is no contamination of the final products. In this thesis, MOFs with Lewis base sites such as an amino or phosphine group were designed and synthesized for several targeted organocatalysis reactions. Tunable pore sizes and local environment allow the activity of such MOFs to be rationalized via analyzing size of substrates and possible intermediates within the MOF cage. Compared to their homogeneous analogues, MOF catalysts are isolated easily and can be recycled for multiple runs without a significant loss of catalytic activity and show interesting selectivity behavior. Chapter 4 demonstrates the synthesis, characterization and catalytic application of the phosphine-tagged MOF, LSK-3. Coumarin synthesis, Umpolung addition and Knoevenagel condensation reactions were performed on LSK-3. The results suggest that the framework creates steric hindrance around the phosphine active site and determines which molecules react in particular reactions. The catalytic behavior of LSK-3 was evaluated with the aid of molecular modeling (DFT) calculations and NMR spectroscopy techniques. This work is the first application of phosphine MOFs in organocatalysis and explores the potential of framework steric hindrance in imposing selectivity on a catalytic reaction. These findings expand the opportunities for control and design of the active site in the pocket of heterogeneous catalysts. The activity of two bifunctional MIXMOFs with IRMOF-9 topology that contain amino, diphenylphosphoryl and methyl groups is described in Chapter 5. The amino group ! III acts as an active site for the Knoevenagel condensation of ortho-, meta- or para- nitrobenzaldehyde and malononitrile, while the non-active site diphenylphosphoryl or methyl group moderate the spatial characteristics inside the MOF pores. The functional groups induced a unique catalytic response. An enhancement of reaction activity was found when using MOFs as catalysts compared to the homogeneous analogue aniline, whereas the diphenylphosphoryl group was observed to slow down the formation of the steric hindered ortho-isomer product. Chapter 6 presents the first successful catalytic application of PPh in the presence 3 of amino-containing and/or thiourea functionalized MIXMOFs for the reaction of linear aldehydes to give aldol-Tishchenko (AT) products. Neither PPh nor amino MOFs 3 catalyze the AT reaction. The reaction behavior is confirmed by broad experimental results, showing the amino group likely plays a role in stabilizing reaction intermediates. Only a specific distance between two non-adjacent amino groups within a cage enables anchoring of the intermediates. The confined space in the cages of the MOFs and the specific topology that causes the MOFs to behave like enzymatic catalysts allow this unique catalytic behavior to occur. In summary, the research reported here shows that the flexible MOF framework enables the design of catalysts with amino and phosphine functional groups with size selectivity and unique activity in organocatalysis. The understanding of structure- performance relationships in MOF catalysis can be achieved at the atomic level. These findings illuminate the importance of research towards designing highly selective and effective catalysts via the introduction of known-structured heterogeneous solid porous frameworks, to tune the reactivity and selectivity of catalysis via functional groups and confined space. ! ! IV ! Résumé& Les réseaux métallo-organiques (MOFs) sont des assemblages moléculaires tridimensionnels préparés à partir d’unités secondaires de coordination, formé d’ions métalliques ou de sous-groupes inorganiques, et de liaisons organiques. Faisant partie de la catégorie des matériaux organo-hybrides, les MOFs peuvent être utilisé en tant que pseudo-organo-catalyseurs lorsque que les lieurs organiques présentent des acides ou des bases de Lewis. Grâce à la structure ordonnée des MOFs, les lieurs fonctionnalisés sont généralement dispersés de façon homogène à travers le réseau cristallin. Le haut taux de cristallinité des MOFs, en comparaison avec d’autres classes de solides, tend à réduire le niveau de complexité des systèmes catalytiques introduits, ce qui permet une analyse plus fine des relations entre la structure et les performances de ceux-ci. L’organo-catalyse est définie par l’utilisation de catalyseurs à faible poids moléculaire, pour lequel aucun centre métallique n’est présent ni sur le site catalytique, ni sur le substrat. Les organo-catalyseurs basés sur les MOFs sont de bons candidats pour le développement durable de produits chimiques à haute valeur ajoutée grâce à leurs avantages suivant : a) ils ne contiennent aucun métal et sont parfois issus de sources naturelles, b) ils peuvent être facilement conçus pour des réactions spécifiques, et c) ils ne contaminent pas le produit fini. Dans ce mémoire, les MOFs contenant des bases de Lewis, comme par exemple des groupes amine ou phosphine, ont été synthétisés afin de répondre aux critères de différentes réactions organo-catalytiques ciblées. La taille ajustable des pores ainsi que l’environnement local des MOFs permettent de rationaliser leurs activités catalytiques en analysant la taille des substrats et des produits intermédiaires possibles en les comparant avec les cages des MOFs. En comparaison avec les catalyseurs homogènes, les MOFs sont aisément séparables de la phase liquide, ce qui leur permet d’être recyclés de nombreuses fois sans perte significative d’activité catalytique. De plus ils présentent des comportements sélectifs particuliers. Le Chapitre 4 résume la synthèse, caractérisation et applications catalytiques d’un MOF contenant des groupes phosphines nommée LSK-3. Différentes réactions types, incluant l’Umpolung, la condensation de Knoevenagel et la synthèse du coumarin, ont été générées en présence de LSK-3. Les résultats obtenus suggèrent que le réseau induit un encombrement stérique autour du site actif de la phosphine qui détermine le chemin réactif suivit par les substrats sélectionnés. Le comportement catalytique de LSK-3 a été évalué à l’aide de modèles computationnels (DFT) et vérifié expérimentalement par spectroscopie RMN. Cette recherche constitue la première application de MOFs contenant des phosphines en ! V

Description:
Organocatalysts based on MOFs are candidates for developing heterogeneous solid porous frameworks, to tune the reactivity and selectivity of catalysis via functional groups and .. Chapter 2), and the material could adsorb about 2.3 mmol of CH4 and 0.8 mmol of N2 or O2 per gram of anhydrous
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.