RESEARCHARTICLE Deploying a quantum annealing processor to detect tree cover in aerial imagery of California EdwardBoyda1,2*,SaikatBasu3,SangramGanguly2,4,AndrewMichaelis4,5, SupratikMukhopadhyay3,RamakrishnaR.Nemani6 1DepartmentofPhysicsandAstronomy,SaintMary’sCollegeofCalifornia,Moraga,CA,UnitedStatesof America,2BayAreaEnvironmentalResearchInstitute,MoffettField,CA,UnitedStatesofAmerica, 3DepartmentofComputerScience,LouisianaStateUniversity,BatonRouge,LA,UnitedStatesofAmerica, a1111111111 4EarthScienceDivision,NASAAmesResearchCenter,MoffettField,CA,UnitedStatesofAmerica, a1111111111 5UniversityCorporationatCSUMontereyBay,Seaside,CA,UnitedStatesofAmerica,6NASAAdvanced a1111111111 SupercomputingDivision,NASAAmesResearchCenter,MoffettField,CA,UnitedStatesofAmerica a1111111111 a1111111111 *[email protected] Abstract OPENACCESS Quantumannealingisanexperimentalandpotentiallybreakthroughcomputationaltechnol- Citation:BoydaE,BasuS,GangulyS,MichaelisA, ogyforhandlinghardoptimizationproblems,includingproblemsofcomputervision.We MukhopadhyayS,NemaniRR(2017)Deployinga presentacasestudyintrainingaproduction-scaleclassifieroftreecoverinremotesensing quantumannealingprocessortodetecttreecover imagery,usingearly-generationquantumannealinghardwarebuiltbyD-waveSystems, inaerialimageryofCalifornia.PLoSONE12(2): Inc.Beginningwithinaknownboostingframework,wetraindecisionstumpsontexturefea- e0172505.doi:10.1371/journal.pone.0172505 turesandvegetationindicesextractedfromfour-band,one-meter-resolutionaerialimagery Editor:ShijoJoseph,KeralaForestResearch fromthestateofCalifornia.Wethenimposearegulatedquadratictrainingobjectiveto Institute,INDIA selectanoptimalvotingsubsetfromamongthesestumps.Thevotesofthesubsetdefine Received:June29,2016 theclassifier.Foroptimization,thelogicalvariablesintheobjectivefunctionmaptoquantum Accepted:February6,2017 bitsinthehardwaredevice,whilequadraticcouplingsencodeasthestrengthofphysical Published:February27,2017 interactionsbetweenthequantumbits.Hardwaredesignlimitsthenumberofcouplings Copyright:Thisisanopenaccessarticle,freeofall betweenthesebasicphysicalentitiestofiveorsix.Toaccountforthislimitationinmapping copyright,andmaybefreelyreproduced, largeproblemstothehardwarearchitecture,weproposeatruncationandrescalingofthe distributed,transmitted,modified,builtupon,or trainingobjectivethroughatrainablemetaparameter.Theboostingprocessonourbasic otherwiseusedbyanyoneforanylawfulpurpose. 108-and508-variableproblems,thusconstituted,returnsclassifiersthatincorporatea TheworkismadeavailableundertheCreative CommonsCC0publicdomaindedication. diverserangeofcolor-andtexture-basedmetricsanddiscriminatetreecoverwithaccura- ciesashighas92%invalidationand90%onatestsceneencompassingtheopenspace DataAvailabilityStatement:Dataareavailable fromFigshare(DOI:10.6084/m9.figshare. preservesanddensesuburbanbuildofMillValley,CA. 4644535). Funding:ThisworkwassupportedbytheNASA EarthScienceDivisionandperformedusingthe computingfacilitiesoftheNASAAdvanced Supercomputing(NAS)divisionandNASAEarth Exchange(NEX).Anyopinions,findings,and Introduction conclusionsorrecommendationsexpressedinthis Theproliferationofveryhighresolution(VHR)aerialandsatelliteimageryopensthewayto materialarethoseoftheauthorsanddonot significantimprovementsinremotesensingdataproducts.Itisnowpossibletoidentify necessarilyreflectthatofNASAortheUnited StatesGovernment.Thefundershadnorolein structuresatbetterthan1-meterresolution,downfrom30metersinexistingLandsat-based PLOSONE|DOI:10.1371/journal.pone.0172505 February27,2017 1/22 DeployingaquantumannealingprocessortodetecttreecoverinaerialimageryofCalifornia studydesign,datacollectionandanalysis,decision solutions.Objects—individualsheds,tractors,streams,islands,rocks,trees,vines,andfur- topublish,orpreparationofthemanuscript. rows—comeintofocusfromoutofbroadswathsofforestorfield,allowingfordetailedsite- Competinginterests:Theauthorshavedeclared specificstudiesaswellasmoreaccuratedelineationsoflandcoverinthelarge.VHRdatasets thatnocompetinginterestsexist. arerichinpotentialities.Atthesametime,newlysophisticatedcomputeralgorithmsare requiredtoparsethedata. Duetohighvariabilitywithinclassesandinatmospheric,lighting,andphoto-geometric conditions,land-coverclasscognitionatveryhighresolutionremainsadifficultchallenge.In thisrealm,object-orientedtechniquesforintegratedsegmentationandclassificationhave showngreatrecentpromise.Theyofferarichersemanticsandmoreaccurateclassification whencomparedtoclusteringofspectralandtexturalprimitivesalone.(See,forexample,[1]in thecontextofcomputervisionor[2]forareviewinthecontextofremotesensing.)Object- orientedappraochesputsignificantdemandsoncomputationalinfrastructure.Themachine learningalgorithmsleadtomemory-andprocessor-intensivetraining(optimization)prob- lemsinwhichthousandsofparametersmustbedetermined,whiletherelevantVHRdatasets themselvesextendtoterabytesinsize.Giventhesepressures,itisnaturaltoaskwhatsortsof breakthroughs,algorithmicortechnological,maylieonthehorizon. Quantumcomputing(see,e.g.,[3])isonesuchpossibility.Broadlydefined,quantumcom- putingisanefforttoencodehardcomputationalproblemsinthedynamicsofquantumphysi- calsystems.Thestatespaceofquantumsystemsisexponentiallylargeinthenumberofbasic physicalvariables,andiftappedproperly,canyieldcomputationalresultsexponentiallyfaster thanthebestavailableclassicalalternatives.Thisadvantagehasbeendemonstratedformally forparticularproblems,integerfactorization[4]beingtheexamplemostoftencitedduetoits roleinthewidely-usedRSApublic-keycryptographyscheme.Thecommunityisactively workingtocharacterizethescalingadvantageswecanexpectforbroaderclassesofproblems. Withinthequantumcomputingparadigm,quantumannealing[5–7]isacomputational metaheuristicdesignedtosolveoptimizationproblems.Akintosimulatedannealing,quantum annealingseekstheminimumofacostfunctioninacomplexconfigurationspace.Physically, thecostfunctionencodesasthesystem’senergy.Thealgorithmproceedsbypreparingthesys- teminaquantumsuperpostionofallpossibleconfigurationsinthesolutionspace,allequally probable,thusinitiatingauniquelyquantumparallelprocessing.Thesystemthenisevolvedin timeuntilthesoughtminimalenergyconfigurationisoverwhelminglyprobable.Inprinciple, intheabsenceofthermalnoise,itcanbearrangedsothattheminimalenergyconfiguration willbemeasuredonread-outwithprobabilityarbitrarilyclosetoone.Ratherthansampling, physicalinteractionsbetweenquantumbitsdrivethesystemtotheenergyminimum.Aspart ofthisprocess,thesystemhasthepossibilityofquantumtunnelingthroughtall,narrowbarri- ersintheenergylandscapetoescapelocalminimainlessthanexponentialtime. AquantumannealingprocessorbuiltbyD-waveSystems,Inc.,with1152quantumbits (qubits)isnowoperatingatNASA’sAmesResearchCenter.ThedeploymentoftheD-wave 2Xfollowsearliertrialsof128-qubitand512-qubitprocessorsatLockheedMartinandat Ames.Muchworkhasgonetocharacterizetheperformanceofthesemachines.Evidenceof thepersistenceofquantumcoherenceduringcomputationhasbeenobservedinsubsystemsof eightqubits[8–10].Ontheotherhand,theprocessorhashandilybeenbeatenforspeedby desktopCPUsrunningoptimizedsimulatedannealingand/ormoretargetedsamplingalgo- rithms[11–13].Inlate2015,afirstsetofproblemswerecraftedonwhichtheD-wavequantum annealerrunssignificantlyfasterthanclassicalsimulatedannealing[14]. Motivatedtoadvanceourremotesensingcapabilitiesandtobetterunderstandthepossibil- itiesofquantumannealingvisionalgorithms,wesetouttotrainaproduction-scaleclassifier ofaerialimageryontheD-waveprocessor.Webeginwithanimplementationofaboosting algorithmknownasQBoost,developedspecificallyfortheD-wavearchitecture.Itwas PLOSONE|DOI:10.1371/journal.pone.0172505 February27,2017 2/22 DeployingaquantumannealingprocessortodetecttreecoverinaerialimageryofCalifornia employedin2009toidentifycarsinphotographsofstreetscenes,havingbeentrainedona processorwith52functioningqubits[15–17].Unfortunately,QBoost,alongwithproblems fromacommongeneralclassofquadratictrainingobjectives,doesnotscalewellontheD- wavearchitectureoronanyforeseeablequantumannealingprocessor.Bytruncatingand rescalingcouplingsintheQBoosttrainingobjective,withtheintroductionofanadditional trainablemetaparameter,weareabletomapproblemsofhundredsofvariablestotheD-wave chipandtobuildthedesiredclassifieroftreecoverinaerialimagery. Thisworkisanoffshootofaprototypestudy[18]plannedeventuallytodelivertreecover estimatesforthecontinentalUnitedStatesvia1-meter-resolutionVHRdatafromtheNational AgricultureImageryProgram(NAIP)[19].Theobject-orientedplatformproducespixelwise probabilisticmapsfortreecoverastheoutputofaconditionalrandomfield,whichitselfinte- gratesoutputsfromaregion-mergingsegmentationroutineandaneuralnetworkclassifier.In theprototype,treecovermapsweregeneratedfor11,095inputNAIPtilescoveringthestateof California,withcorrectdetectionratesof85%inregionsoffragmentedforestand70%for urbanareas.Wehaveformulatedtheboostedclassifiersothatitcanworkinconcertwithor standinfortheneuralnetworkinthelargerobject-orientedplatform.Althoughthisremains workinprogress,weareaimingataviablescientificapplicationofD-waveoutputinthenear term.Ourcontributionsincludethedemonstrationoftreecoverclassification,alongwitha detailedanalysisoftrainingonourremotesensingdataandashortcutsolutiontoembedthis classofproblemsintotheD-wavearchitecture.Interalia,wediscoveredsomesimple,classi- callyfast-to-trainquadraticdecisionstumpsonderivedimagefeaturesthatthemselvespro- ducesurprisinglygoodclassificationoftreecoverinCalifornia.Forpointofreference, antecedentcasestudiesofpotentialD-waveapplicationsinclude[20–27],while[28]presentsa broadcollectionofpotentialapplicationsofinteresttoNASA. Thepaperwillproceedasfollows.Wefirstreviewthestructureofproblemsamenableto solutionsontheD-wavequantumannealingprocessor.Mathematically,theyarequadratic unconstrainedbinaryoptimization(QUBO)problems,andinphysics,theyaregeneralized Isingmodelsofaspinglass.WediscussQBoostinthiscontext,theproblemofembedding intotheD-wavearchitecture,andourproposedmodificationstoQBoost.Wepresentthe detailsofourimplementationontheNAIPdataset,layingoutthetwoproblems,oneon108 qubits,anotheron508qubits,whicharethefocusofthisstudy,alongwithourresults.We concludewithadiscussionofchallengesandpossibleimprovementstothisframework. QuantumannealingontheD-waveprocessor InquantummechanicstheenergyfunctionisknownastheHamiltonian,denotedH.It encodesalldynamicsofasystemandwillvarywithtimetalongwithambientconditions.The basicprocessofquantumannealingistointerpolatephysicallybetweenaninitialHamilitonian H ,withaneasy-to-implementminimalenergyconfiguration(orgroundstate),andaproblem 0 HamiltonianH whoseminimalconfigurationissought.Forinstance,foralinearinterpola- P tionscheduleandcomputationtimeτ, (cid:16) (cid:17) t t HðtÞ¼ 1(cid:0) H þ H : ð1Þ t 0 t P TheinterpolationiseffectedphysicallyontheD-wavechipbyadjustingcurrentsthatflow toindividualqubits,eachofwhichisatinysuperconductingcircuit.Thesystembeginsinthe groundstateofH andends,ideally,inthegroundstateofH .Forperfectlyisolatedquantum 0 P systems,thegroundstateofH canbeattainedforsufficientlylargeτwithprobabilityarbi- P trarilyclosetoone.Inpractice,duetothermalnoiseandlossofquantumcoherence,optimal PLOSONE|DOI:10.1371/journal.pone.0172505 February27,2017 3/22 DeployingaquantumannealingprocessortodetecttreecoverinaerialimageryofCalifornia computetimesintheD-wavedeviceareactuallylessthanitscurrentlyminimalallowable time,τ=20μs.[11]Inthiscontext,itshouldbenotedthattheparameterτcapturesonlythe actualannealingtimeanddoesnotincludetimesforcooling,initialization,andreadoutofthe device. Becauseofthefacilityofphysicalcontrolattainablewithbinaryqubitsandpairwiseinterac- tionsbetweenthem,theproblemHamiltoniantakestheform: X X H ¼(cid:0) hs (cid:0) J ss: P i i ij i j ð2Þ i2V fi;jg2E InphysicsthisHamiltonianwasfirststudiedastheIsingmodelofamagnet.Thebinary variabless 2{−1,+1}arethuscalledspins,fixedinalatticegraphGwithverticesandedges i ðV;EÞ.Theprogrammableelementsarethelocalmagneticfields,h,andthecouplings i betweenspins,J .Bothareinprinciplecontinuumrealvariablesbutareinpracticelimitedto ij adiscretumbynoiseinthedevice.TheoptimizationseekstheminimumofH overallconfig- P urationsofthespins{s}. i Theintuitionfortheoptimizationisasfollows:Thenegativesigninthefirsttermindicates thattheenergyislowerwhenaspins alignswith(hasthesamesignas)themagneticfieldh at i i latticesitei;thisimperativecompeteswiththedemandthats alignoranti-alignwithneighbor- i ingspinss,accordingtothesignofthecouplingJ .IfJ >0,thecouplingbetweenspinsisfer- j ij ij romagnetic,drivingthemtoalign.IfJ <0,thecouplingisantiferromagnetic,drivingthemto ij anti-align.TheproblemofminimizingtheIsingenergyfunctionwithantiferromagneticcou- plingsisknowntobeNP-hard,meaningthatthecomputationaleffortrequiredforthehardest instancesscalesexponentiallywithproblemsizeforallknownclassicalalgorithms[29,30]. ComputationontheD-waveisfirstaprocessofmappingtheproblemtotheIsingstruc- ture,binaryandquadratic,thenembeddingitintotheavailablequbitlattice.OntheD-wave thequbitsarearrangedaccordingtoachimeragraph,asillustratedinFig1.Eachqubitcouples tofiveorsixothers,exceptwheretherearedefectsduetofaultyqubits.Iftheproblemdoesn’t Fig1.ChimerastructureofqubitconnectivityontheD-wave2Xprocessor.Thefull1152-qubitgraph extendstoa12x12latticeofgroupsofeightqubits.Withintheillustratedsubset,currentlyinoperablequbits aremarkedinred. doi:10.1371/journal.pone.0172505.g001 PLOSONE|DOI:10.1371/journal.pone.0172505 February27,2017 4/22 DeployingaquantumannealingprocessortodetecttreecoverinaerialimageryofCalifornia embeddirectly,auxiliaryqubitscanbeintroducedtoaugmenttheavailablecouplings,atasig- nificantcostinqubits.Bothmappingandembeddingimplyrestrictionsonthetypesofprob- lemsthatcanprofitablybetackledwiththeD-waveprocessor.Wewillinvestigatetheseissues inthecontextoftheQBoostalgorithm.Forathoroughrecentstudy,andformoredetailson quantumannealingintheD-waveprocessor,see[22,28]. Boosting Boostingisthetacticofbuildingastrongclassifierasanoptimallyweightedcombinationof weakclassifiers,eachofwhichmayclassifyonlymoderatelybetterthanrandomguessingon itsown.Iftheweakclassifiersarelinearintheinputfeatures,theboostedclassifiercarvesouta piecewise-planardecisionsurfacethatis,ifnottothesamedegreeasthatexpressedbyaneural network,effectivelynonlinear.In2008Neven,Denchev,Rose,andMacreadyproposeda boostedclassifier,christenedQBoost,thatcouldbetrainedonaD-waveprocessor[15].Given Nbinaryweakclassifiersc,i=1...N,eachofwhichclassifiesadatasampletaccordingto i c(t)2{−1,+1},theysoughtastrongclassifierofform i ! XN CðtÞ¼sign wcðtÞ : ð3Þ i i i¼1 Theauthorsachievedtheirbesttestresultswithbinaryweights,w 2{0,1},inwhichcase i thestrongclassifierissimplyanoptimalvotingsubsetofweakclassifiers.Thenaturalcost functiontomatewiththeD-wavearchitectureisaregulatedquadraticloss.ForasetToftrain- ingsamples,witheachelementthavingbeenassignedatraininglabely(t)2{±1},atraining problemcanbeposedasfollows: ( ! ) X XN 2 XN Find : min wcðtÞ(cid:0) yðtÞ þl w : ð4Þ fwi;lg i i i t2T i¼1 i¼1 Theregularizationtermgovernedbytheparameterλisintendedtoimprovegeneralization andspeedinexecutionbykeepingthefinalclassifiercompact.Thenormalizationoftheweak classifiersisthenadjustedsoasnottoundulypenalizelargepositivemarginsfromthedecision hypersurface, XN cðtÞ2f(cid:0) 1=N;þ1=Ng $ (cid:0) 1(cid:20) wcðtÞ(cid:20)1: ð5Þ i i i i¼1 Thetrainingproblemthusformulatedisoneofquadraticunconstrainedbinaryoptimiza- tion(QUBO).Intheirinitialtestsofthealgorithm,Nevenetal.optimizedtheQUBOproblem directlyusingclassicalheuristicsolvers.ComparingwithAdaboost,theyfoundmodest improvementsinclassificationaccuracyandsignificantimprovment(oforder50%)incom- pactnessoftheboostedclassifiers. ToconverttheQUBOtoIsingform,onemakesthetransformations =2w −1.Thenew i i variabless takevaluess =±1.Expandingthequadratic,thecostfunctionbecomes i i ! ! X X X X l(cid:0) 2 cðtÞyðtÞ w þ cðtÞcðtÞ ww þconst i i i j i j i t2T i;j t2T ! ! ð6Þ X l X 1X 1X X ! (cid:0) cðtÞyðtÞþ cðtÞcðtÞ s þ cðtÞcðtÞ ss þconst0: 2 i 2 i j i 2 i j i j i t2T j;t2T i>j t2T PLOSONE|DOI:10.1371/journal.pone.0172505 February27,2017 5/22 DeployingaquantumannealingprocessortodetecttreecoverinaerialimageryofCalifornia Inthelatterequation,anextrafactoroftwointhequadratictermcompensatesforrewrit- ingthesumtopassoverallindexpairs(i,j)onceonly.Wecanthenidentifythemagneticfields andcouplingsoftheIsingframeHamiltonian(Eq(2)), l X 1X h ¼(cid:0) þ cðtÞyðtÞ(cid:0) cðtÞcðtÞ ð7Þ i 2 i 2 i j t2T j;t2T 1X J ¼(cid:0) cðtÞcðtÞ ð8Þ ij 2 i j t2T TheconstantsdroppedfromEq(6)donotaffecttheoptimization.Onecanreadilyinter- prethowvarioustermsinfluencetheconstructionofthestrongclassifier.Thecontribution ∑ c(t)y(t)toh describeshowwelltheoutputc(t)ofaweakclassifiercorrelatestothe t2T i i i traininglabelsy(t)overthetrainingsetT.Iftheycorrelatewell,theygiveastrongpositive contributiontothemagneticfield,drivingthespintobepositive.Apositivespinindicates thatthecorrespondingweightisequaltoone:Theweakclassifier’svoteistabulatedinthe P finalstrongclassifier.ThecouplingJ ¼(cid:0) 1 cðtÞcðtÞlikewisedescribesthecorrelation ij 2 t2T i j ofweakclassifiersc andc overthetrainingset.Ifthetwoweakclassifierscorrelatewell, i j J <0.Thespinss ands tendtooppositevalues,meaningoneandnottheotherwouldbe ij i j includedinthefinalstrongclassifier.Thisisasitshouldbe.Towhateverextenttheycorre- late,theysupplyredundantinformationonthedata. Embeddingintothechimeragraph TheQBoostprocedureresultsinafully-connectedIsingproblem,witheachs coupledtoevery i others bya(generically)non-zeroJ .TorunontheD-waveprocessortheproblemneedsto j ij beembeddedintothechimeragraph.Themaximaldegreeofthechimeragraphissix.The fullyconnectedIsingproblemonNspinsconstitutesagraphofdegreeN−1.Nonethelessthe lattercanbeembeddedintotheformerbymappingeachspinnottoanindividualqubitbutto aconnectedsubgraphofqubits,suchthateverysubgraph(correspondingtoans)isconnected i byatleastonechimeragraphedgetoeveryothersubgraph(correspondingtoans)[31].The j graphedgesbewteensubgraphscanbeassignedtheproblemcouplingsJ .Withinasubgraph, ij internalgraphedgescanbeassignedlarge,ferromagneticcouplingsJ toimposethecondition F thatallqubitsassociatedtoagivenspinalign,encodingoneandthesamespinstate. Thisembeddingcomesatahighcostinqubits.Sinceeachauxiliaryqubitinachimerasub- graphcouplestoatmostdotherqubits,thesubgraphsizemustscalewithNtoprovidesuffi- cientcouplingstoothersubgraphs.AstherearenecessarilyNsubgraphs,theembedding overheadinqubitsscalesquadraticallywiththenumberofspinsN.Fortheexplicitexamples studiedrecentlyin[32],N=30wasthelargestfully-connectedproblemembedableina 512-qubitchimeragraph.Muchrecentwork[22,24,33–35]hasgoneintothisandrelated embeddingschemes,examiningmappingsoflogicalqubitstophysicalqubitsubgraphs,opti- malsettingsfortheinternalcouplingsJ ,thedistributionofproblemcouplingsJ among F ij graphedges,andmoregenerallyseekingproblemsthatarelessthanfullyconnectedandthere- foremoreamenabletoembeddinginthechimeragraph.Improvingtheconnectivityofhard- waregraphswillbecriticaltobroadeningthescopeofproblemssolvableonfuturequantum annealers. Intheir2009demonstrationofaQBoostclassifiertrainedtodetectcarsinstreetscenes [17],Nevenetal.embeddedviaadifferentapproach.TheymappedeachIsingspintoasingle qubitanddiscardedvaluesJ thatdidn’tembedintothechimeragraph.Tothispurposethey ij PLOSONE|DOI:10.1371/journal.pone.0172505 February27,2017 6/22 DeployingaquantumannealingprocessortodetecttreecoverinaerialimageryofCalifornia designedagreedyheuristicthatassignsspinstoqubitsinsuccession,eachspintothequbit whichwillmaximizetheedgeweightretained(thesumofthemagnitudesoftheembeddedJ ) ij withrespecttothepreviouslyembeddedspins.Underthisschemetheyretained11%oftotal edgeweightona52-qubitembedding.(Only52qubitswerefunctioningontheavailableD- waveprocessor,andtheyiteratedtrainingstepstogrowalargerclassifier.) Thisstrategydoesnotscale.Droppingtoohighaproportionofcouplingsleadstoasce- narioinwhicheachspinvariablecanbeoptimizedindependentoftheothers.If,foragiven spins ,themagneticfieldh isbiggerthanthesumofcouplingstootherspinsjretainedinthe a a embeddedlatticegraph,i.e., X if jh j> jJ j; a aj ð9Þ fa;jg2E thevalueofs intheoptimalsolutionisdeterminedsimplybythesignofh .Thiscanbeseen a a byconsideringthetotalcontributiontotheenergyduetospins ,namely, a X E ¼(cid:0) h s (cid:0) J s s: a a a aj a j ð10Þ fa;jg2E Asinthepreceedingequation,thesumhererunsoverthecoupledspinsj.Ifthespins is a anti-alignedwithitsmagneticfield,thefirsttermcontributes−h s =+|h |totheenergy.Flip- a a a pingthesignofs willdecreasethecontributionfromthattermby−2|h |.Atthesametime, a a thesecondtermisbounded, X X X (cid:0) jJ j(cid:20)(cid:0) J s s (cid:20) jJ j; aj aj a j aj ð11Þ fa;jg2E fa;jg2E fa;jg2E andsoflippingthesignofs ,regardlessoftheconfigurationoftheotherspins{s},imposesan Pa j energycostofatmostþ2 jJ j.Whenthecondition(9)holds,flippingthespinleadsto fa;jg2E aj anetdecereaseofenergy,andsothespinnecessarilyalignswithitsmagneticfield. Theconsequencesaretwo-fold.First,onecandeterminetheoptimalconfigurationofsuch spinssimplybycheckingthesignsoftheirmagneticfields.Thisisnotataskthatcallsfora quantumcomputer.Theimplicationfortheclassifieristhelossoffinebalancethatwastobe achievedamongallpossibleweakclassifiers.Weseektoretainonlytheminimalsetofweak classifiersthatcapturestheimportantfeaturesofthedata,butweakclassifierswhosespinssat- isfycondition(9)willbeincludedorexcludedirrespectiveoftheinclusionofothers. Unfortunately,thisscenarioistobeexpectedasthetotalnumberNofinputweakclassifiers growslarge.Thebasemotivationforquantumcomputingisthehopethatruntimeswillscale betterthanforclassicalalternativeswiththenumberofinputvariables.Theeffortonly becomesjustifiedonproblemswiththousandsortensofthousandsofbinaryvariables.Atthe sametime,thenumberofconnectionsbetweenqubits(fiveorsixinthecaseoftheD-wave chimeragraph)islikelytoremainsmall,duetothechallengeofbuildingandcontrollinginter- actionsbetweenmorethanafewbasicphysicalentities.Foraproblemwithaninitiallyfully connectedgraph,asimpleone-variable-to-one-qubitembeddingwilldiscardthousandsor tensofthousandsofcouplingsagainstsomesomesmallfinitenumberretained.Anycomputa- tionalproblemthatbeginsbyimposingaquadraticlossfunctiononalinearcombinationof binaryvariables,asinEq(4),resultsinafullyconnectedgraph.Whilesomecouplingsmay turnouttobezero,genericallyeveryspincouplestoeveryotherspin. WecanmaketheseconsiderationsmoreexplicitbyconsideringthescalingwithNofthe varioustermsinIsingHamiltonian.Exceptinthecasethattheaccuracyofweakclassifiersis tunedcloseto50%,thecorrelations∑ c(t)y(t)willbeO(|T|/N),with|T|thesizeofthe t2T i PLOSONE|DOI:10.1371/journal.pone.0172505 February27,2017 7/22 DeployingaquantumannealingprocessortodetecttreecoverinaerialimageryofCalifornia trainingset.Forinstance,inourimplementationfortreecoverclassification,theaveragetrain- ingerrorofthelinearweakclassifiersis25%.Aweakclassifierwith25%trainingerrorwould have X ciðtÞyðtÞ¼:25jTjð(cid:0) 1=NÞþ:75jTjðþ1=NÞ¼:5jTj=N: ð12Þ t2T TheNappearsherethroughthenormalizationgiveninEq(5).Thisleveloftrainingaccu- racyimpliesalsothattheweakclassifiersarewellcorrelatedamongthemselves,withcorrela- tionsthatscaleas (cid:18) (cid:19) X jTj c ðtÞcðtÞ(cid:24)O : ð13Þ a j N2 t2T LettingkbethemaximumnumberofcouplingsbetweenqubitsinthegraphG ¼ðV;EÞ, forlargeNwehavetheoverallscalingrules: (cid:12) (cid:12) (cid:12)(cid:12) l X 1X (cid:12)(cid:12) (cid:18)jTj(cid:19) l jh j¼(cid:12)(cid:0) þ cðtÞyðtÞ(cid:0) cðtÞcðtÞ(cid:12)(cid:24)O (cid:6) ð14Þ a (cid:12) 2 i 2 i j (cid:12) N 2 t2T j;t2T X X(cid:12)(cid:12)(cid:12) 1X (cid:12)(cid:12)(cid:12) (cid:18)kjTj(cid:19) jJ j¼ (cid:12)(cid:0) c ðtÞcðtÞ(cid:12)(cid:24)O : ð15Þ aj (cid:12) 2 a j (cid:12) N2 fa;jg2E fa;jg2E t2T Sincetheregulatorisfixedonceforallspinsandkisfinite,agenericspinwillsatisfythe decouplingcondition(9), X jh j> jJ j; a aj fa;jg2E asNgrowslarge. Wecircumventedthesedifficulties,intheheuristicembeddingschemeofNevenetal.,by rescalingtheretainedcouplingsJ tocompensateforthoselost.ThedynamicsofIsingferro- ij magnets,inwhichlong-rangeorderappearsinsystemswithonlylimited,localinteractions, gaveusreasontohopethatasubsetoffiveorsixofN−1couplings,ifappropriatelyrescaled, wouldbesufficienttomaintainthecharacteristicbalancesoughtbetweentheweakclassifiers. Absentaprincipledwaytocomputearescalingonaspin-by-spinbasis,werescaledallcou- plingsbyaconstantfactorαwhichwetreatedasanewvariationalmetaparameter.Intuitively, αshouldworkouttobetheratiooflosttoretainedcouplings,α*N/5.(Thecurrentproces- sorisconstructedonan1152-vertexchimeragraph,with55currentlyinoperablequbits,mak- ingtheaveragenumberofviableedges5.6.Becausetheembeddingheuristicmaximizesthe sumofmagnitudesofretainedcouplingsinpreferencetotheirnumber,theresultingembed- dingsarenotmaximallydense.Ourembeddingstypicallyretainanaverageofbetweenfour andfivecouplingsperqubit.)Aplotofvalidationerroragainstthemetaparametersofour 108-qubitproblem,definedbelowinthesection“TreeCoverClassification,”isshowninFig2. pffiffiffi Steppingαbyfactorsof 2fromN/64toN,wefindthesolutionofoveralllowestvalidation pffiffiffi pffiffiffi errorfora2fN 2=8;N=4;N 2=4g.Thismatcheswellwithourexpectationsforαandsitu- atestheoptimalclassifierintheregimewherethecouplingsandmagneticfieldsshouldhave comparable,competinginfluenceontheoptimization.Moreover,wecanseeinthereturned classifierstheincreasinginfluenceofthecouplingswithincreasingα.Whenαisverysmall, theoptimizationisgovernedbythemagneticfieldsandtheresultingclassifiersconsist PLOSONE|DOI:10.1371/journal.pone.0172505 February27,2017 8/22 DeployingaquantumannealingprocessortodetecttreecoverinaerialimageryofCalifornia Fig2.Validationerrorasafunctionofthecouplingrescalingfactorandregulatorforthe108-qubit problem.Theregulatorisexpressedintermsofanewparameterf:λ=2f|T|/N.Foreachpair(α,f),the problemwasoptimizedwith1000callstotheD-waveprocessorandtheclassifierofminimalvalidationerror pffiffi pffiffi recorded.Theoverallminimalerrorof9%,indeepestblue,isattainedfora2fN 2;N;N 2g. 8 4 4 doi:10.1371/journal.pone.0172505.g002 predominantlyofthoseweakclassifierswhichindividuallyhavelowesttrainingerror.Towit, theclassifiersreturnedatthefoursmallestvaluesofαshareincommonthetwelveweak classifierswiththetwelvelowesttrainingerrors;whereas,theoptimalclassifierrealizedfor pffiffiffi pffiffiffi a2fN 2=8;N=4;N 2=4gincludesonlytwoofthosetwelve;andtheclassifieratα=N includesoneofthetwelve.Whenwecometoourresults,wewillexploretheseeffectsandthe propertiesoftheoptimalclassifierinmoredetail. Incorporatingthenewrescalingfactor,theenergyfunctiontobeminimizedacrossvari- ables{s,α,λ},becomes,finally, i X X H ¼(cid:0) hs (cid:0) a J ss; P i i ij i j i2V fi;jg2E l X 1X h ¼(cid:0) þ cðtÞyðtÞ(cid:0) cðtÞcðtÞ ð16Þ i 2 i 2 i j t2T j;t2T 1X J ¼(cid:0) cðtÞcðtÞ: ij 2 i j t2T WewillrefertotheprocessoftruncationandrescalingoftheproblemHamiltonianasa renormalization,anabuseofasuggestivetermfromstatisticalphysics.Inthinkingthrough thisapproach,itisworthrememberingthatwehadalreadydeviatedfromthemostnatural definitionofthetrainingproblematthepointofimposingaquadraticobjectivefunctionin placeofthetotalnumberofmisclassifiedtrainingsamples(L vs.L norm).Wedeviatedagain 2 0 whenweregularizedthequadraticfunction.ThechoiceofL overL normismadehabitually 2 0 ongroundsofcomputationaltractabilityandjustifiedexpostfactobytheutilityofthesolu- tionsthatresult.Likewisehere,welooktotheaccuracyoftheresultingclassifierstojustifythis reformulationoftheoriginaloptimizationproblem.Themostaccurateclassifierfoundforour 108-qubitproblemusingtherenormalizedHamiltonianEq(16)hasavalidationerrorrateof PLOSONE|DOI:10.1371/journal.pone.0172505 February27,2017 9/22 DeployingaquantumannealingprocessortodetecttreecoverinaerialimageryofCalifornia 9.00%.Thiscomparestoanerrorrateof10.13%forthebestsolutionfoundviasimulated annealingontheoriginalQBoostcostfunction.Wehavefoundthatthefinalclassifiercanbe improvedifselectedbyvalidationinpost-processingfromamongtheoutputsreturnedbythe annealingprocess,andwedosoasmatterofcourse,althoughourresultsindicatethatthe effectdiminishesforclassifiersoflargercardinality. Twofinaldetailsoftheimplementationbearmentioninthecontextoftheembedding,for bothofwhichwetakecuesfromtheoriginalreportonQBoost[15].Alongwiththerescaling factorα,theregulatorλmustbedeterminedintraining.Beforesubmittingaproblemforopti- mization,wespecifytheregulatorintermsofanewparameterf, l fjTj ¼ : ð17Þ 2 N Here,again,|T|isthenumberoftrainingsamplesandNthenumberofinputweakclassifi- ers.Themetaparameters(α,f)arechosenbyactingtheoutputstrongclassifiersona 3000-samplevalidationset.(Thisstepiscoincidentwiththepost-validationstepmentionedin thepreviousparagraph.)Ourpracticehasbeentodeterminethefractionfinitiallybyacoarse parameterscanandthentoretestwithfinerstepsizesaroundtheminimuminf.Thecardinal- ityofweakclassifiersinthestrongclassifieranditserrorratedependstronglyonf,asshown inFig3withαfixedatN/4.TheeffectoftheregulatorforgeneralαcanbeseeninFig2. Beyondenforcingcompactness,theregulatorevidentlyplaysanimportantroleinminimizing classifiertrainingorvalidationerror.Withweakclassifiersnormalizedsothatc(t)2{−1/N, i +1/N},thequadraticloss, ! XN 2 L¼ wcðtÞ(cid:0) yðtÞ ; ð18Þ i i i¼1 Fig3.Minimumvalidationerrorandweakclassifiersretainedasafunctionoftheregulatorλ=2f|T|/N. Foreachftheproblemwasoptimizedwith500callstotheD-waveprocessor,andsubsequently(inset),with 1000callsinresolvingtheminimum,withαfixedatN/4. doi:10.1371/journal.pone.0172505.g003 PLOSONE|DOI:10.1371/journal.pone.0172505 February27,2017 10/22
Description: