ebook img

Deformations and elements of deformation theory PDF

0.09 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Deformations and elements of deformation theory

Deformations and elements of deformation theory NIKOLAJGLAZUNOV NationalAviationUniversity 6 DepartmentofElectronics 1 1CosmonautKomarovAvenue,03680Kiev 0 UKRAINE 2 [email protected] n a J Abstract: This article consisted of an elementary introduction to deformation theory of varieties, schemes and manifolds, 8 with some applications to local and global shtukas and fever to Newton polygons of p-divisible groups . Soft problems and results mainly are considered. In the framework we give review of some novelresults in the theory of local shtukas, ] Anderson-modules,globalshtukas, Newton polygonsofp-divisiblegroupsandon deformationsof p-divisiblegroupswith T givenNewtonpolygons N . h Key–Words: Dualnumber,infinitesimaldeformation,Drinfeldmodule,localAnderson-module,localshtuka,globalshtuka, at modulistack,formalLiegroup,cotangentcomplex,commutativegroupscheme,uniformization,rigidity,Newtonpolygon, m loopgroupofareductivegroup [ 1 Introduction 1 v 1 This article consisted of an elementaryintroductionto deformationtheory of varieties, schemes and manifolds, with some 9 applicationstolocalandglobalshtukasandfevertoNewtonpolygonsofp-divisiblegroups. Fromthepointofviewofrigid, 9 hardandsoftproblemsandresultsinthispaperweconsidermainlysoftproblemsandresults. Intheframeworkwereview 1 some novel results and methods in the theory of local shtukas, Anderson-modules, global shtukas and Newton polygons 0 . of p-divisible groups. These include (but not exhaust) methods and results by V. Drinfeld[1], U. Hartl, E. Viehmann [5], 1 R.Singh[7],A.Rad[9],S.Harashita[6]andothers.M.Gromov[8]inhistalkattheInternationalCongressofMathematicians 0 6 in Berkeley have presented problemsand results of soft and hard symplectic geometry. In this connectionwe will present 1 somesoftproblemsandresultsindynamicsandinarithmeticgeometry. ”Soft”problemsandresultsinourtalkarelimited v: to the frameworkof deformations, infinitesimal deformations, and elements of local Anderson-modules,local shtukas and i globalshtukas. Review of some novelresults and methodson rigidity in arithmetic geometryand in dynamicsis givenin X author’spapers[30,31]. r a 2 Infinitesimal neighborhoods and infinitesimal deformations Dualnumberswere introducedandwere usedinW. Clifford[13] , E. Study[14], R. von-Mises[15]. Expandfollowingto [12,11]thedefinitionofdualnumberssothatitwastrueoveranyfield. Letk beafield,andk[ǫ]-theringofpolynomials overkinthevariableǫ. Factoringk[ǫ]bytheideal(ǫ2)togivethedesiredringofdualnumbersD overk : D = k[ǫ]/(ǫ2). Like the classical ring of dual numbers, ring D is a nilpotent ring. Further, unless specifically stated, we are under dual numbersmeanelementsoftheabove-definedringsD. LetSpecDbethecorrespondingaffinescheme. Theschemehasone geometricpointwhichcorrespondstothemaximalideal(ǫ). Itsstructuresheafhasnilpotentelementsthatdistinguishesthe schemefromclassicalalgebraicvarieties. 2.1 Infinitesimal neighborhoods Let X be a scheme over an algebraicallyclosed field k. Here and in the followingsubsection we mean under a pointof a scheme its geometric(closed) point, unless otherwise stated. We fix, followingto [11]], notations: o - closed point of the schemeSpeck,o-closedpointschemeSpecD,i:Speck→SpecD-canonicalembedding,underwhicho=i(o). Lemma1. Anymorphismφ:SpecD→X definesamorphismφ◦i(o):Speck→X,wherex=φ◦i(o)isaclosedpoint ofX. Proof.ThehomomorphismD →kwithkernel(ǫ)definesthecanonicalembeddingi,andthemorphismφ◦i(o)defines aclosedpointx∈X. LetU beanaffineneighborhoodofthepointx, m bethemaximalidealofthepointxink[U]. x Lemma 2. Let M be the set of morphisms of schemes SpecD → X such that φ(o) = x. Then M (SpecD,X) = x x M (SpecD,U). x Theprooffollowsfromlocalpropertiesofschemes. Definition3. TheschemeT =Speck[U]/m2 iscalledtheinfinitesimalneighborhoodofthefirstorderofthepointx. x x Remark4. ThehomomorphismSpeck[U] → Speck[U]/m2 definestheclosureimbeddingT → U andT istheclosed x x x subschemeinU. Usingthesestatementswehave Proposition5. MorphismsSpecD→X thattransformSpeckinx∈X areinone-to-onecorrespondencewithmorphisms SpecD→T . x 2.2 Infinitesimal deformations LetX →Y beamorphismofschemes. AschemeX isflatoverY ifthesheafO isflatoverO [12,11]. X Y Definition6. LetX,T beschemesandX →T theflatmorphismwithfixedpointt∈T suchthatX ≃X .Intheconditions t o theschemeX iscalledthe(global)deformationoftheschemeX . o Definition7. LetX betheschemeoffinitetypeoverfieldk andD theringofdualnumbersoverk.Intheconditionsthe 0 ′ ′ schemeX whichisflatoverDandsuchthatX ⊗ k ≃X iscalledtheinfinitesimaldeformationoftheschemeX . D o o Proposition8. GivenaglobaldeformationoftheschemeX ,thenthereexistsaninfinitesimaldeformationofthescheme o X . o Proof. ByLemma1thereexiststhemorphismSpecD → T whichisdefinedbysomeelementofthetangentspaceto ′ ′ T inpointt. HencethereisaschemeX flatoverD withtheclosedfiberX sothatX ⊗ k ≃ X . Itgivestherequired o D o infinitesimaldeformation. 3 On Local shtukas and divisible local Anderson-modules In their paper [5] U. Hartl, E. Viehmann have investigated deformationsand moduli spaces of bounded local G−shtukas. Latest(boundedlocalG−shtukas)arefunctionfieldanalogsforp−divisiblegroupswithextrastructure. Theauthor[7]investigatesrelationbetweenfiniteshtukasandstrictfiniteflatcommutativegroupschemesandrelation between divisible local Anderson modules and formal Lie groups. Let NilpFq[[ξ]] be the category of Fq[[ξ]]-schemes on whichξ islocallynilpotent. LetS ∈ NilpFq[[ξ]]. ThemainresultofthisdissertationbyR. Singhisthe following(section 2.5)interestingresult: itispossibletoassociateaformalLiegrouptoanyz-divisiblelocalAndersonmoduleoverS inthe casewhenξislocallynilpotentonS. AgeneralframeworkforthedissertationisthedecenttheorybyA.Grothendieck[3]. andhiscolleagues,itsextensions andspecializationstofinitecharacteristics. In Chapter 1 the author of the dissertation [7] defines cotangent complexes as in papers by S. Lichtenbaum and M. Schlessinger[16],byW.Messing[17],byV.Abrashkin[18]andprovethattheyarehomotopicallyequivalent. Moregenerallytoanymorphismf : A → B ofcommutativeringobjectsinatoposisassociatedacotangentcomplex L and to any morphism of commutativering objects in a topos of finite and locally free Spec(A)-group scheme G is B/A associatedacotangentcomplexL ashaspresentedinbooksbyL.Illusie[19]. G/Spec(A) In section 1.5 the author of the dissertation [7] investigates the deformations of affine group schemes follow to the mentionedpaperofAbrashkinanddefinesstrictfiniteO−moduleschemes.Nextsectionisdevotedtorelationbetweenfinite shtukasbyV.Drinfeld[1]andstrictfiniteflatcommutativegroupschemes. Thecomparisonbetweencotangentcomplexand FrobeniusmapoffiniteF -shtukasisgiveninsection1.7. p z−divisiblelocalAndersonmodulesbyU.Hartl[21]andlocalschtukasareinvestigatedinChapter2. Sections2.1,2.2and2.3onformalLiegroups,localshtukasanddivisiblelocalAnderson-modulesdefineandillustrate notionsforlateruse. Manyofthese,ifnotnew,aresetinanewform, InSection2.4theequivalencebetweenthecategoryofeffectivelocalshtukasoverSandthecategoryofz-divisiblelocal AndersonmodulesoverS istreated. InthelastsectionthetheoremaboutcanonicalF [[z]]-isomorphismofz-adicTate-moduleofz-divisiblelocalAnderson q moduleGofrankroverS andTatemoduleoflocalshtukaoverS associatedtoGisgiven. 4 On uniformizing the moduli stacks of global G-shtukas ThedissertationbyArastehRad [9]isaPh.D.Thesis, writtenunderU.Hartl(Mu¨nster). Thedissertationisdevotedtothe developmentof the theoryof local P-shtukas with the aim of their relation to the modulistack of globalG-shtukas. Here PisaparaholicBruhat-TitsgroupschemebyPappas,Rapoport[23]andGisaparahoricBruhat-Titsgroupschemeovera smoothprojectivecurveoverfinitefieldF withqelementsofcharacteristicp. q LetCbeasmoothprojectivegeometricallyirreduciblecurveoverF .AglobalG-shtukaGoveranF -schemeSisatuple q q (G,s1,...,sn,τ)consistingofaG-torsorGoverCS :=C×FqS,ann-tupleof(characteristic)sections(s1,...,sn)∈Cn(S) andaFrobeniusconnectionτ definedoutsidethegraphsofthesectionss byHartl,Rad[22]. i LocalG-shtukasbyHartl, Viehmann[5]andbyViehmann[10]aregeneralizationstoarbitraryreductivegroupsofthe localanalogueofDrinfeldshtukas. DrinfeldShtukas(thespaceFSh ofF-sheaves)wasconsideredbyDrinfeld[1]andbyLafforgue[4]. D,r For more results concerning local shtukas and Anderson-modulessee dissertation by Singh [7] written also under U. Hartl. The mainresultsof the dissertation[9] are the following. The analogueof the Serre-Tatetheoremoverfunctionfields thatrelatingthedeformationtheoryofglobalG-shtukastothedeformationtheoryoftheassociatedlocalP -shtukasviathe ν global-localfunctor (Theorem 4.1). Representablity of the Rappoport-Zinkfunctor (Theorem 6.3.1.). The uniformization theoremfromSection7. Finally,thediscussionaboutuniformizationandlocalmodelofthemoduliofglobalG-shtukasare given. 5 On the supremum of Newton polygons of p-divisible groups with a given p- kernel type The author of the paper [6] provesthe existence of the supremum of Newton polygonsof p-divisible groupswith a given p-kerneltype and providesan algorithm determining it. The main results of the paper [6] are the following Theorem1.1. ξ(w)isthebiggestoneoftheNewtonpolygonsξ withµ(ξ)⊂w.,andCorollary2.2. ThereexiststhesupremumofNewton polygonsofp-divisiblegroupswiththegivenpm-kerneltype. Letkbeanalgebraicallyclosedfieldofcharacteristicp> 0,canddbenon-negativeintegerswithr := c+d> 0. Let W betheWeylgroupofthegenerallineargroupGL ,s ∈W thesimplereflection,S ={s ,...s },J :=S\{s }and r i 1 r−1 α letwbeanyelementoftheset(J,∅)-reducedelementsofW byN.Bourbaki[20]. Thetheoremisanunpolarizedanalogue ofCorollaryIIbyHarashita[24]. Inthepolarizedcase,theexistenceofthesupremumξ(w)followsfromtheresultsbyEkedahlandvanderGeer[25]. In thecasethereisagoodmodulispaceA ofprinciplepolarizedabelianvarieties. Intheunpolarizedcasethereisnoagood g modulispacelikeA . g ThedifferenceoftheauthormethodincomparisonwiththeEkedahl-vanderGeerapproachistheusingofT -action m by Vasiu [26] which gives that the set of T -orbits is naturally bijective to the set of isomorphism classes of truncated m Barsotti-Tategroupsoflevelmoverkwithcodimensioncanddimensiond. 6 On the Newton strata in the loop group of a reductive group Theauthorofthepaper[10]generalizespurityoftheNewtonstratificationtopurityforasinglebreakpointoftheNewton pointin the contextof local G-shtukasrespectively of elementsof the loop groupof a reductivegroup. As an application sheprovesthatelementsoftheloopgroupboundedbyagivendominantcoweightsatisfyageneralizationofGrothendieck‘s conjectureondeformationsofp-divisiblegroupswithgivenNewtonpolygons. LetGbeasplitconnectedreductivegroupoverF ,letT beasplitmaximaltorusofGandletLGbetheloopgroupof p GbyFaltings[2]. Let R be a F -algebraand K be the sub-groupscheme of LG with K(R) = G(R[[z]]). Let σ be the Frobeniusof k q overF and also of k((z)) overF ((z)). For algebraicallyclosed k, the set of σ-conjugacyclasses [b] = {g−1bσ(g)|g ∈ q q G(k((z)))}ofelementsb∈LG(k)isclassifiedbytwoinvariants,theKottwitzpointκ (b)andtheNewtonpointν. G Theauthorofthepaper[10]provesthefollowingtwomainresults. Theorem1: LetS beanintegrallocallynoetherian schemeandletb∈LG(S). Letj ∈J(ν)beabreakpointoftheNewtonpointν ofbatthegenericpointofS. LetU bethe j opensubschemeofS definedbytheconditionthatapointxofS liesinU ifandonlyifpr (ν (x))=pr (ν). ThenU j (j) b (j) j isanaffineS-scheme. Theorem2: Letµ (cid:22) µ ∈ X (T)bedominantcoweights. LetS = S Kzµ‘K. Let[b]beaσ-conjugacy 1 2 ∗ µ1,µ2 µ1(cid:22)µ‘(cid:22)µ2 class with κ (b) = µ = µ as elements of π (G) and with ν (cid:22) µ . Then the Newton stratum N = [b]∩S is G 1 2 1 b 2 b µ1,µ2 non-emptyandpureofcodimensionhρ,µ2−νbi+ 12def(b)inSµ1,µ2. TheclosureofNbistheunionofallNb‘ for[b‘]with κG(b‘)=µ1andνb‘ <νb. Here ρ is the half-sum of the positive roots of G and the defect def(b) is defined as rkG− rkFqJb where Jb is the reductivegroupoverF withJ (k((z)))={g ∈LG(k)|gb=bσ(g)}foreveryfieldkcontainingF andwithalgebraically q b q closedk. TheproofofTheorem1isbasedonageneralizationofsomeresultsbyVasiu[27]. AninterestingfeatureofhermethodintheproveofTheorem2istheusingofvariousresultsontheNewtonstratification on loop groups as Theorem 1 and the dimension formula for affine Deligne-Lusztig varieties by Go˝rtz, Haines, Kottwitz, Reuman[28]togetherwithresultsonlengthsofchainsofNewtonpointsbyChai[29]. 7 Conclusion Deformationsandelementsofdeformationtheoryofmanifolds,varietiesandschemeshavepresented. Intheframeworkwe have reviewed some novelresults and methodsin the theory of local shtukas, Anderson-modules, globalshtukas, Newton polygonsofp-divisiblegroupsandondeformationsofp-divisiblegroupswithgivenNewtonpolygons.Inthisconnectionwe havepresentedsomesoftproblemsandresultsindynamicsandinarithmeticgeometry. ”Soft”problemsandresultsinour considerationsarelimitedtotheframeworkofdeformations,infinitesimaldeformations,elementsoflocalAnderson-modules, localshtukas,globalshtukasanddeformationsofp-divisiblegroupswithgivenNewtonpolygons. References: [1] V.Drinfeld,ModulivarietyofF-sheaves,Funct.Anal.Appl.21,no.2,1987,pp.107–122. [2] G.Faltings,Algebraicloopgroupsandmodulispacesofbundles,Journ.Eur.Math.Soc.(JEMS)5,2003,pp.41–68.Zbl 1020.14002 [3] A. Grothendieck, Cate`gories fibre`es et descente, Expose` VI in Reve`tements e`tales et groupe fondemental (SGA 1), Troisie`mee`dition,corrige`,InstitutdesHautesEtudesScientifiques,Paris,1963. [4] L.Lafforgue,ChtoucasdeDrinfeldetcorrespondancedeLanglands,Invent.Math.147,2002,1-241. [5] U.Hartl,E.Viehmann,TheNewtonstratificationondeformationsoflocalG-shtukas,Journalfu¨rdiereineundange- wandteMathematik(Crelle)656,2011,pp.87–129. [6] S.Harashita,ThesupremumofNewtonpolygonsofp-divisiblegroupswithagivenp-kerneltype,Geometryandanaly- sisofautomorphicformsofseveralvariables.ProceedingsoftheinternationalsymposiuminhonorofTakayukiOdaon theoccasionofhis60thbirthday,University ofTokyo,Tokyo,Japan,September14–17,2009.Hackensack,NJ:World Scientific(ISBN978-981-4355-59-9/hbk;978-981-4355-60-5/ebook).SeriesonNumberTheoryanditsApplications7, 2012,pp.41–55. [7] R. Singh, Local shtukas and divisible local Anderson-modules, Mu¨nster: Univ. Mu¨nster, Mathematisch- NaturwissenschaftlicheFakulta¨t,FachbereichMathematikundInformatik(Diss.),2012,72p.Zbl1262.14001 [8] M.Gromov,SoftandHardSymplecticGeometry,ProceedingsoftheInternationalCongressofMathematicians,Berke- ley,California,USA,Vol.I,1986,pp.81–98. [9] A. Rad, Uniformizing the moduli stacks of global G-shtukas, Mu¨nster: Univ. Mu¨nster, Mathematisch- NaturwissenschaftlicheFakulta¨t,FachbereichMathematikundInformatik(Diss.),2012,85p. [10] E.ViehmannAm.J.Math.135,no.2,2013,pp.499–518.Zbl1278.14062 [11] I.Shapharevich,FoundationsofAlgebraicGeometry,v.1,v.2,Nauka,Moscow,1988. [12] R.Hartshorne,AlgebraicGeometry,Springer–Verlag,Berlin–Heidelberg–NewYork1977. [13] W.Clifford,MathematicalPapers,Macmillan,London,1882. [14] E.Study,GeometrieDerDynamen,Teubner,Leipzig,1903. [15] von-MisesR.AnwendungderMotorrechnung,Z.Angew.Math.Mech.4,1924,pp.193-213. [16] S. Lichtenbaum and M. Schlessinger, The cotangent complex of a morphism, Transactions of the American Math. society128,1967,pp.41-70. [17] W.Messing,TheCristalsAssosiatedtoBarsotti-TateGroups,LNM264,Springer-Verlag,Berlinetc.,1973. [18] V. Abrashkin,Galois modulesarisingfrom fromFaltings’sstrict modules, Compositio Mathematika142:4,2006, pp. 867-888. [19] L.Illusie,Complexcotangentetdeformations.I,II,LNM,Vol.239,Vol.283,SpringerVerlag,Berlin-NY,(1971,1972. [20] N.Bourbaki,LiegroupsandLiealgebras.Chapter4-6,SpringerVerlag,Berlin,2002. [21] NumberFields and Functionfields Two ParallelWorlds, Papers from the 4th Conference held on Texel Island, April 2004,ProgressinMath.239,Birkhauser-Verlag,Basel,2005,pp.167-222. [22] U.Hartl,A.Rad,UniformizingthemodulistacksofglobalG-Shtukas,preprint,2013,onhttp://arxiv.org/abs/1302.6351 [23] G. Pappas, M. Rapoport, Some questionsaboutG-boundlesof curves, Algebraic and Arithmetic Structure of Moduli Spaces,AdvancesStudiesinPureMathematics58,2010,pp.159-171. [24] S.Harashita,Ann.Inst.Fourier(Grenoble)60,no.5,2010,pp.1787–1839. [25] T. Ekedahl, G. van der Geer, Cycle classes of the E.-O. stratification on the moduli of abelian varieties, Algebra, arithmeticandgeometry: inhonorofYu.I.Manin.Vol.I,Progr.Math.269,Birkha˝user,Boston,2009,pp.567–636. [26] A. Vasiu, Reconstructing p−divicible groups from their truncations of small level, Comment. Math. Helv. 85, no. 1, 2010,pp.165–202. [27] A.Vasiu,Crystillineboundednessprinciple,Ann.Sci.E`coleNorm.Sup.(4)39,no.2,2006,pp.245–300. [28] U. G´’ortz, T. Haines, R. Kottwitz, D. Reuman, Dimensionsof some affine Deligne-Lusztigvarieties, Ann. Sci. E`cole Norm.Sup. (4)39,2006,pp.467–511. [29] C.Chai,Newtonpolygonsaslatticepoints,Journ.Amer.Math.Soc.13,2003,pp.209–241. [30] N. Glazunov,Extremalformsandrigidityinarithmeticgeometryandindynamics,ChebyshevskiiSbornik,vol.16,no. 3,2015,pp.124–146. [31] N. Glazunov,Quadraticforms,algebraicgroupsandnumbertheory,ChebyshevskiiSbornik,vol.16,no.4,2015,pp.77– 89.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.