Deformations and elements of deformation theory NIKOLAJGLAZUNOV NationalAviationUniversity 6 DepartmentofElectronics 1 1CosmonautKomarovAvenue,03680Kiev 0 UKRAINE 2 [email protected] n a J Abstract: This article consisted of an elementary introduction to deformation theory of varieties, schemes and manifolds, 8 with some applications to local and global shtukas and fever to Newton polygons of p-divisible groups . Soft problems and results mainly are considered. In the framework we give review of some novelresults in the theory of local shtukas, ] Anderson-modules,globalshtukas, Newton polygonsofp-divisiblegroupsandon deformationsof p-divisiblegroupswith T givenNewtonpolygons N . h Key–Words: Dualnumber,infinitesimaldeformation,Drinfeldmodule,localAnderson-module,localshtuka,globalshtuka, at modulistack,formalLiegroup,cotangentcomplex,commutativegroupscheme,uniformization,rigidity,Newtonpolygon, m loopgroupofareductivegroup [ 1 Introduction 1 v 1 This article consisted of an elementaryintroductionto deformationtheory of varieties, schemes and manifolds, with some 9 applicationstolocalandglobalshtukasandfevertoNewtonpolygonsofp-divisiblegroups. Fromthepointofviewofrigid, 9 hardandsoftproblemsandresultsinthispaperweconsidermainlysoftproblemsandresults. Intheframeworkwereview 1 some novel results and methods in the theory of local shtukas, Anderson-modules, global shtukas and Newton polygons 0 . of p-divisible groups. These include (but not exhaust) methods and results by V. Drinfeld[1], U. Hartl, E. Viehmann [5], 1 R.Singh[7],A.Rad[9],S.Harashita[6]andothers.M.Gromov[8]inhistalkattheInternationalCongressofMathematicians 0 6 in Berkeley have presented problemsand results of soft and hard symplectic geometry. In this connectionwe will present 1 somesoftproblemsandresultsindynamicsandinarithmeticgeometry. ”Soft”problemsandresultsinourtalkarelimited v: to the frameworkof deformations, infinitesimal deformations, and elements of local Anderson-modules,local shtukas and i globalshtukas. Review of some novelresults and methodson rigidity in arithmetic geometryand in dynamicsis givenin X author’spapers[30,31]. r a 2 Infinitesimal neighborhoods and infinitesimal deformations Dualnumberswere introducedandwere usedinW. Clifford[13] , E. Study[14], R. von-Mises[15]. Expandfollowingto [12,11]thedefinitionofdualnumberssothatitwastrueoveranyfield. Letk beafield,andk[ǫ]-theringofpolynomials overkinthevariableǫ. Factoringk[ǫ]bytheideal(ǫ2)togivethedesiredringofdualnumbersD overk : D = k[ǫ]/(ǫ2). Like the classical ring of dual numbers, ring D is a nilpotent ring. Further, unless specifically stated, we are under dual numbersmeanelementsoftheabove-definedringsD. LetSpecDbethecorrespondingaffinescheme. Theschemehasone geometricpointwhichcorrespondstothemaximalideal(ǫ). Itsstructuresheafhasnilpotentelementsthatdistinguishesthe schemefromclassicalalgebraicvarieties. 2.1 Infinitesimal neighborhoods Let X be a scheme over an algebraicallyclosed field k. Here and in the followingsubsection we mean under a pointof a scheme its geometric(closed) point, unless otherwise stated. We fix, followingto [11]], notations: o - closed point of the schemeSpeck,o-closedpointschemeSpecD,i:Speck→SpecD-canonicalembedding,underwhicho=i(o). Lemma1. Anymorphismφ:SpecD→X definesamorphismφ◦i(o):Speck→X,wherex=φ◦i(o)isaclosedpoint ofX. Proof.ThehomomorphismD →kwithkernel(ǫ)definesthecanonicalembeddingi,andthemorphismφ◦i(o)defines aclosedpointx∈X. LetU beanaffineneighborhoodofthepointx, m bethemaximalidealofthepointxink[U]. x Lemma 2. Let M be the set of morphisms of schemes SpecD → X such that φ(o) = x. Then M (SpecD,X) = x x M (SpecD,U). x Theprooffollowsfromlocalpropertiesofschemes. Definition3. TheschemeT =Speck[U]/m2 iscalledtheinfinitesimalneighborhoodofthefirstorderofthepointx. x x Remark4. ThehomomorphismSpeck[U] → Speck[U]/m2 definestheclosureimbeddingT → U andT istheclosed x x x subschemeinU. Usingthesestatementswehave Proposition5. MorphismsSpecD→X thattransformSpeckinx∈X areinone-to-onecorrespondencewithmorphisms SpecD→T . x 2.2 Infinitesimal deformations LetX →Y beamorphismofschemes. AschemeX isflatoverY ifthesheafO isflatoverO [12,11]. X Y Definition6. LetX,T beschemesandX →T theflatmorphismwithfixedpointt∈T suchthatX ≃X .Intheconditions t o theschemeX iscalledthe(global)deformationoftheschemeX . o Definition7. LetX betheschemeoffinitetypeoverfieldk andD theringofdualnumbersoverk.Intheconditionsthe 0 ′ ′ schemeX whichisflatoverDandsuchthatX ⊗ k ≃X iscalledtheinfinitesimaldeformationoftheschemeX . D o o Proposition8. GivenaglobaldeformationoftheschemeX ,thenthereexistsaninfinitesimaldeformationofthescheme o X . o Proof. ByLemma1thereexiststhemorphismSpecD → T whichisdefinedbysomeelementofthetangentspaceto ′ ′ T inpointt. HencethereisaschemeX flatoverD withtheclosedfiberX sothatX ⊗ k ≃ X . Itgivestherequired o D o infinitesimaldeformation. 3 On Local shtukas and divisible local Anderson-modules In their paper [5] U. Hartl, E. Viehmann have investigated deformationsand moduli spaces of bounded local G−shtukas. Latest(boundedlocalG−shtukas)arefunctionfieldanalogsforp−divisiblegroupswithextrastructure. Theauthor[7]investigatesrelationbetweenfiniteshtukasandstrictfiniteflatcommutativegroupschemesandrelation between divisible local Anderson modules and formal Lie groups. Let NilpFq[[ξ]] be the category of Fq[[ξ]]-schemes on whichξ islocallynilpotent. LetS ∈ NilpFq[[ξ]]. ThemainresultofthisdissertationbyR. Singhisthe following(section 2.5)interestingresult: itispossibletoassociateaformalLiegrouptoanyz-divisiblelocalAndersonmoduleoverS inthe casewhenξislocallynilpotentonS. AgeneralframeworkforthedissertationisthedecenttheorybyA.Grothendieck[3]. andhiscolleagues,itsextensions andspecializationstofinitecharacteristics. In Chapter 1 the author of the dissertation [7] defines cotangent complexes as in papers by S. Lichtenbaum and M. Schlessinger[16],byW.Messing[17],byV.Abrashkin[18]andprovethattheyarehomotopicallyequivalent. Moregenerallytoanymorphismf : A → B ofcommutativeringobjectsinatoposisassociatedacotangentcomplex L and to any morphism of commutativering objects in a topos of finite and locally free Spec(A)-group scheme G is B/A associatedacotangentcomplexL ashaspresentedinbooksbyL.Illusie[19]. G/Spec(A) In section 1.5 the author of the dissertation [7] investigates the deformations of affine group schemes follow to the mentionedpaperofAbrashkinanddefinesstrictfiniteO−moduleschemes.Nextsectionisdevotedtorelationbetweenfinite shtukasbyV.Drinfeld[1]andstrictfiniteflatcommutativegroupschemes. Thecomparisonbetweencotangentcomplexand FrobeniusmapoffiniteF -shtukasisgiveninsection1.7. p z−divisiblelocalAndersonmodulesbyU.Hartl[21]andlocalschtukasareinvestigatedinChapter2. Sections2.1,2.2and2.3onformalLiegroups,localshtukasanddivisiblelocalAnderson-modulesdefineandillustrate notionsforlateruse. Manyofthese,ifnotnew,aresetinanewform, InSection2.4theequivalencebetweenthecategoryofeffectivelocalshtukasoverSandthecategoryofz-divisiblelocal AndersonmodulesoverS istreated. InthelastsectionthetheoremaboutcanonicalF [[z]]-isomorphismofz-adicTate-moduleofz-divisiblelocalAnderson q moduleGofrankroverS andTatemoduleoflocalshtukaoverS associatedtoGisgiven. 4 On uniformizing the moduli stacks of global G-shtukas ThedissertationbyArastehRad [9]isaPh.D.Thesis, writtenunderU.Hartl(Mu¨nster). Thedissertationisdevotedtothe developmentof the theoryof local P-shtukas with the aim of their relation to the modulistack of globalG-shtukas. Here PisaparaholicBruhat-TitsgroupschemebyPappas,Rapoport[23]andGisaparahoricBruhat-Titsgroupschemeovera smoothprojectivecurveoverfinitefieldF withqelementsofcharacteristicp. q LetCbeasmoothprojectivegeometricallyirreduciblecurveoverF .AglobalG-shtukaGoveranF -schemeSisatuple q q (G,s1,...,sn,τ)consistingofaG-torsorGoverCS :=C×FqS,ann-tupleof(characteristic)sections(s1,...,sn)∈Cn(S) andaFrobeniusconnectionτ definedoutsidethegraphsofthesectionss byHartl,Rad[22]. i LocalG-shtukasbyHartl, Viehmann[5]andbyViehmann[10]aregeneralizationstoarbitraryreductivegroupsofthe localanalogueofDrinfeldshtukas. DrinfeldShtukas(thespaceFSh ofF-sheaves)wasconsideredbyDrinfeld[1]andbyLafforgue[4]. D,r For more results concerning local shtukas and Anderson-modulessee dissertation by Singh [7] written also under U. Hartl. The mainresultsof the dissertation[9] are the following. The analogueof the Serre-Tatetheoremoverfunctionfields thatrelatingthedeformationtheoryofglobalG-shtukastothedeformationtheoryoftheassociatedlocalP -shtukasviathe ν global-localfunctor (Theorem 4.1). Representablity of the Rappoport-Zinkfunctor (Theorem 6.3.1.). The uniformization theoremfromSection7. Finally,thediscussionaboutuniformizationandlocalmodelofthemoduliofglobalG-shtukasare given. 5 On the supremum of Newton polygons of p-divisible groups with a given p- kernel type The author of the paper [6] provesthe existence of the supremum of Newton polygonsof p-divisible groupswith a given p-kerneltype and providesan algorithm determining it. The main results of the paper [6] are the following Theorem1.1. ξ(w)isthebiggestoneoftheNewtonpolygonsξ withµ(ξ)⊂w.,andCorollary2.2. ThereexiststhesupremumofNewton polygonsofp-divisiblegroupswiththegivenpm-kerneltype. Letkbeanalgebraicallyclosedfieldofcharacteristicp> 0,canddbenon-negativeintegerswithr := c+d> 0. Let W betheWeylgroupofthegenerallineargroupGL ,s ∈W thesimplereflection,S ={s ,...s },J :=S\{s }and r i 1 r−1 α letwbeanyelementoftheset(J,∅)-reducedelementsofW byN.Bourbaki[20]. Thetheoremisanunpolarizedanalogue ofCorollaryIIbyHarashita[24]. Inthepolarizedcase,theexistenceofthesupremumξ(w)followsfromtheresultsbyEkedahlandvanderGeer[25]. In thecasethereisagoodmodulispaceA ofprinciplepolarizedabelianvarieties. Intheunpolarizedcasethereisnoagood g modulispacelikeA . g ThedifferenceoftheauthormethodincomparisonwiththeEkedahl-vanderGeerapproachistheusingofT -action m by Vasiu [26] which gives that the set of T -orbits is naturally bijective to the set of isomorphism classes of truncated m Barsotti-Tategroupsoflevelmoverkwithcodimensioncanddimensiond. 6 On the Newton strata in the loop group of a reductive group Theauthorofthepaper[10]generalizespurityoftheNewtonstratificationtopurityforasinglebreakpointoftheNewton pointin the contextof local G-shtukasrespectively of elementsof the loop groupof a reductivegroup. As an application sheprovesthatelementsoftheloopgroupboundedbyagivendominantcoweightsatisfyageneralizationofGrothendieck‘s conjectureondeformationsofp-divisiblegroupswithgivenNewtonpolygons. LetGbeasplitconnectedreductivegroupoverF ,letT beasplitmaximaltorusofGandletLGbetheloopgroupof p GbyFaltings[2]. Let R be a F -algebraand K be the sub-groupscheme of LG with K(R) = G(R[[z]]). Let σ be the Frobeniusof k q overF and also of k((z)) overF ((z)). For algebraicallyclosed k, the set of σ-conjugacyclasses [b] = {g−1bσ(g)|g ∈ q q G(k((z)))}ofelementsb∈LG(k)isclassifiedbytwoinvariants,theKottwitzpointκ (b)andtheNewtonpointν. G Theauthorofthepaper[10]provesthefollowingtwomainresults. Theorem1: LetS beanintegrallocallynoetherian schemeandletb∈LG(S). Letj ∈J(ν)beabreakpointoftheNewtonpointν ofbatthegenericpointofS. LetU bethe j opensubschemeofS definedbytheconditionthatapointxofS liesinU ifandonlyifpr (ν (x))=pr (ν). ThenU j (j) b (j) j isanaffineS-scheme. Theorem2: Letµ (cid:22) µ ∈ X (T)bedominantcoweights. LetS = S Kzµ‘K. Let[b]beaσ-conjugacy 1 2 ∗ µ1,µ2 µ1(cid:22)µ‘(cid:22)µ2 class with κ (b) = µ = µ as elements of π (G) and with ν (cid:22) µ . Then the Newton stratum N = [b]∩S is G 1 2 1 b 2 b µ1,µ2 non-emptyandpureofcodimensionhρ,µ2−νbi+ 12def(b)inSµ1,µ2. TheclosureofNbistheunionofallNb‘ for[b‘]with κG(b‘)=µ1andνb‘ <νb. Here ρ is the half-sum of the positive roots of G and the defect def(b) is defined as rkG− rkFqJb where Jb is the reductivegroupoverF withJ (k((z)))={g ∈LG(k)|gb=bσ(g)}foreveryfieldkcontainingF andwithalgebraically q b q closedk. TheproofofTheorem1isbasedonageneralizationofsomeresultsbyVasiu[27]. AninterestingfeatureofhermethodintheproveofTheorem2istheusingofvariousresultsontheNewtonstratification on loop groups as Theorem 1 and the dimension formula for affine Deligne-Lusztig varieties by Go˝rtz, Haines, Kottwitz, Reuman[28]togetherwithresultsonlengthsofchainsofNewtonpointsbyChai[29]. 7 Conclusion Deformationsandelementsofdeformationtheoryofmanifolds,varietiesandschemeshavepresented. Intheframeworkwe have reviewed some novelresults and methodsin the theory of local shtukas, Anderson-modules, globalshtukas, Newton polygonsofp-divisiblegroupsandondeformationsofp-divisiblegroupswithgivenNewtonpolygons.Inthisconnectionwe havepresentedsomesoftproblemsandresultsindynamicsandinarithmeticgeometry. ”Soft”problemsandresultsinour considerationsarelimitedtotheframeworkofdeformations,infinitesimaldeformations,elementsoflocalAnderson-modules, localshtukas,globalshtukasanddeformationsofp-divisiblegroupswithgivenNewtonpolygons. References: [1] V.Drinfeld,ModulivarietyofF-sheaves,Funct.Anal.Appl.21,no.2,1987,pp.107–122. [2] G.Faltings,Algebraicloopgroupsandmodulispacesofbundles,Journ.Eur.Math.Soc.(JEMS)5,2003,pp.41–68.Zbl 1020.14002 [3] A. Grothendieck, Cate`gories fibre`es et descente, Expose` VI in Reve`tements e`tales et groupe fondemental (SGA 1), Troisie`mee`dition,corrige`,InstitutdesHautesEtudesScientifiques,Paris,1963. [4] L.Lafforgue,ChtoucasdeDrinfeldetcorrespondancedeLanglands,Invent.Math.147,2002,1-241. [5] U.Hartl,E.Viehmann,TheNewtonstratificationondeformationsoflocalG-shtukas,Journalfu¨rdiereineundange- wandteMathematik(Crelle)656,2011,pp.87–129. [6] S.Harashita,ThesupremumofNewtonpolygonsofp-divisiblegroupswithagivenp-kerneltype,Geometryandanaly- sisofautomorphicformsofseveralvariables.ProceedingsoftheinternationalsymposiuminhonorofTakayukiOdaon theoccasionofhis60thbirthday,University ofTokyo,Tokyo,Japan,September14–17,2009.Hackensack,NJ:World Scientific(ISBN978-981-4355-59-9/hbk;978-981-4355-60-5/ebook).SeriesonNumberTheoryanditsApplications7, 2012,pp.41–55. [7] R. Singh, Local shtukas and divisible local Anderson-modules, Mu¨nster: Univ. Mu¨nster, Mathematisch- NaturwissenschaftlicheFakulta¨t,FachbereichMathematikundInformatik(Diss.),2012,72p.Zbl1262.14001 [8] M.Gromov,SoftandHardSymplecticGeometry,ProceedingsoftheInternationalCongressofMathematicians,Berke- ley,California,USA,Vol.I,1986,pp.81–98. [9] A. Rad, Uniformizing the moduli stacks of global G-shtukas, Mu¨nster: Univ. Mu¨nster, Mathematisch- NaturwissenschaftlicheFakulta¨t,FachbereichMathematikundInformatik(Diss.),2012,85p. [10] E.ViehmannAm.J.Math.135,no.2,2013,pp.499–518.Zbl1278.14062 [11] I.Shapharevich,FoundationsofAlgebraicGeometry,v.1,v.2,Nauka,Moscow,1988. [12] R.Hartshorne,AlgebraicGeometry,Springer–Verlag,Berlin–Heidelberg–NewYork1977. [13] W.Clifford,MathematicalPapers,Macmillan,London,1882. [14] E.Study,GeometrieDerDynamen,Teubner,Leipzig,1903. [15] von-MisesR.AnwendungderMotorrechnung,Z.Angew.Math.Mech.4,1924,pp.193-213. [16] S. Lichtenbaum and M. Schlessinger, The cotangent complex of a morphism, Transactions of the American Math. society128,1967,pp.41-70. [17] W.Messing,TheCristalsAssosiatedtoBarsotti-TateGroups,LNM264,Springer-Verlag,Berlinetc.,1973. [18] V. Abrashkin,Galois modulesarisingfrom fromFaltings’sstrict modules, Compositio Mathematika142:4,2006, pp. 867-888. [19] L.Illusie,Complexcotangentetdeformations.I,II,LNM,Vol.239,Vol.283,SpringerVerlag,Berlin-NY,(1971,1972. [20] N.Bourbaki,LiegroupsandLiealgebras.Chapter4-6,SpringerVerlag,Berlin,2002. [21] NumberFields and Functionfields Two ParallelWorlds, Papers from the 4th Conference held on Texel Island, April 2004,ProgressinMath.239,Birkhauser-Verlag,Basel,2005,pp.167-222. [22] U.Hartl,A.Rad,UniformizingthemodulistacksofglobalG-Shtukas,preprint,2013,onhttp://arxiv.org/abs/1302.6351 [23] G. Pappas, M. Rapoport, Some questionsaboutG-boundlesof curves, Algebraic and Arithmetic Structure of Moduli Spaces,AdvancesStudiesinPureMathematics58,2010,pp.159-171. [24] S.Harashita,Ann.Inst.Fourier(Grenoble)60,no.5,2010,pp.1787–1839. [25] T. Ekedahl, G. van der Geer, Cycle classes of the E.-O. stratification on the moduli of abelian varieties, Algebra, arithmeticandgeometry: inhonorofYu.I.Manin.Vol.I,Progr.Math.269,Birkha˝user,Boston,2009,pp.567–636. [26] A. Vasiu, Reconstructing p−divicible groups from their truncations of small level, Comment. Math. Helv. 85, no. 1, 2010,pp.165–202. [27] A.Vasiu,Crystillineboundednessprinciple,Ann.Sci.E`coleNorm.Sup.(4)39,no.2,2006,pp.245–300. [28] U. G´’ortz, T. Haines, R. Kottwitz, D. Reuman, Dimensionsof some affine Deligne-Lusztigvarieties, Ann. Sci. E`cole Norm.Sup. (4)39,2006,pp.467–511. [29] C.Chai,Newtonpolygonsaslatticepoints,Journ.Amer.Math.Soc.13,2003,pp.209–241. [30] N. Glazunov,Extremalformsandrigidityinarithmeticgeometryandindynamics,ChebyshevskiiSbornik,vol.16,no. 3,2015,pp.124–146. [31] N. Glazunov,Quadraticforms,algebraicgroupsandnumbertheory,ChebyshevskiiSbornik,vol.16,no.4,2015,pp.77– 89.